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Polarizabilities and photoionization cross sections are computed for the hydrides OH and HF. Finite
basis sets are used, with no explicit recourse to continuum orbitals, and single-center expansions are
avoided. The present method is based on an integral equation (dispersion relation) that relates the real
polarizability on the imaginary frequency axis to the photoionization cross section. Many-body pertur-
bation theory is used to compute the polarizabilities, and the perturbation expansion, which includes a
total of 68 distinct diagrams to second order in the Coulomb interaction, is believed to contain all
significant terms to that order. Thus there is a comprehensive inclusion of correlation effects, contrary
to most molecular photoionization computations presented so far. The present results are compared
with those of other computations, and with experiment in the case of HF.

PACS number(s): 32.80.Fb, 33.80.Eh

I. INTRODUCTION

The problem of computing atomic photoionization
cross sections continues to pose many challenges for
theorists, even after about 20 years of active research in
the field. Various methods have been derived to handle
this problem, but a common feature of the most sophisti-
cated atomic techniques is that numerical methods are
used and that explicit wave functions describing the out-
going unbound electron are sought [1-3]. Besides the
problem of obtaining accurate continuum orbitals, the
challenges in photoionization computations are posed by
many-body effects, which are particularly prominent in
this field of atomic physics. A reliable calculation of pho-
toionization cross sections requires a rather thorough in-
clusion of correlation effects in the initial as well as the
final electronic state of the system.

Compared with the high activity in atomic photoion-
ization, the field of molecular photoionization has so far
been rather dormant. The reason for this low activity is
probably that the sophisticated atomic techniques are not
readily applicable to molecules. A main problem is the
rather insurmountable difficulties involved in construct-
ing continuum orbitals for multicenter systems. Further-
more, computations on molecules have to be based on
finite basis sets, and techniques that are quite different
from the numerical atomic methods will generally be re-
quired.

Atomic methods have nonetheless been of value for
light diatomic hydrides like CH, OH, and HF. For such
systems continuum orbitals have been obtained from
single-center expansions, normally about the heavy nu-
cleus [4-7]. The effect of the H atom is then in the next
step handled by perturbation theory. Various variational
techniques are commonly used to derive the continuum
orbitals in the molecular case [6-9]. However, the
molecular single-center expansion computations are so
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far on the Hartree-Fock level of accuracy.

A few methods to compute atomic and molecular pho-
toionization cross sections by use of basis sets have been
developed so far. The Stieltjes method [10-12]
represents an algebraic approach to the problem that
makes no explicit recourse to continuum orbitals. The
continuum of the system is represented by a series of
pseudostates obtained from general techniques in quan-
tum chemistry. Several molecular computations, which
tend to be quite successful, have been carried out accord-
ing to the Stieltjes method [12-15]. Although the
Stieltjes method should be capable of including many-
body effects, the results presented so far seem to be on the
independent-particle level of accuracy.

Another class of methods using finite basis sets is the
technique of analytic continuation [16-19]. Successful
applications of those methods, however, are so far mostly
limited to very small atomic and molecular systems. The
most promising of the analytic continuation methods
seems to be the complex-basis-functions technique, which
has been used to obtain partial cross sections for N, [19].

The present work is based on another algebraic ap-
proach with no explicit recourse to continuum orbitals,
and the method does not in any essential way discrim-
inate between atomic and molecular systems. A more de-
tailed description of the present approach has been given
in a preceding paper by one of the present authors [20]
(hereafter referred to as I). As all methods to compute
photoionization cross sections for many-body systems
will be based on approximations, it is of general interest
to have various approaches that emphasize different as-
pects of the theory. The strength of the present method
should be its potential for predicting accurate total
molecular photoionization cross sections over a wide
range of frequencies. The method is, in addition, concep-
tually simple; the technical problems are limited to com-
puting the (real) polarizability on the imaginary frequen-
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cy axis where the polarizability has no poles. The
deficiency of the present method is certainly that, at least
in its current state of development, it does not yield par-
tial cross sections or reproduce narrow resonances. This
is, however, a general problem with finite-basis-set
methods.

The diatomic hydrides OH and HF have been chosen
as molecular test cases. Although the experimental data
on these systems are rather sparse, there are other exten-
sive theoretical results for comparison. Work is at
present in progress for molecules like CO, N,, and NO.

II. THEORY

A. The dynamic polarizability of diatomic molecules

The dynamic polarizability represents the linear re-
sponse of an atomic or molecular system to an external
field and is defined by the equation

p=a(w)F , (1)

where p is the electric dipole moment and F is the ap-
plied external field. The external field will be assumed to
be of the form F cos(wt ), directed along the space-fixed Z
axis, and the interaction with the external field adds a
time-dependent perturbation given by

N
Vx(t)=Fcos(wt) 3, Z;=1(e''+e “)VFd, . (2)

i=1

For a freely rotating diatomic molecule the observable
polarizability will be an average over the three perpendic-
ular molecule-fixed directions [21] x, y, and z, i.e.,

a(w)=1[a,(w)+a,(w)+a,(0)]

=i[20)(0)+(@)] . (3)

Disregarding vibrational motion of the molecule, the dy-
namic electronic polarizability of a diatomic molecule in
an electronic state |, ) is then given by [22]

aw)=a,(w)
k (#n)
X 1 L .
E,—E,—0o E,—E +o

4)

The expression for a(0w)=a,(w)=a,(®) is similar to
that for a (o) of Eq. (4), except that the dipole moment
d, along the molecular axis is replaced by d,, or d,.

In Eq. (4) above the summation is over bound excited
electronic states, and an integral over continuum states.
Hence, a reliable computation of the polarizability re-
quires an accurate representation of bound as well as con-
tinuum states of the total zero-field molecular electronic
Hamiltonian.
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B. Many-body calculation of a(w®)

In the present work the dynamic polarizability a(w)
will be computed by use of many-body perturbation
theory, as discussed in more detail in I. The many-body
expression for a(w) to be used in the present investiga-
tion takes the form

a,(0)=—({Wo|d, W] ) +{W,ld, | W] ))/{¥|¥,) , (5
where |W{) is given by the linked-cluster expansions [23]

1 peo.__ L
Eo—HoTo'

[\I’t )= e ——

! g‘ Ey,—H,%o

1

X ot ————H'|®y) . 6

Fg 1% ®)

The Hamiltonians H, and H' of Eq. (6) and the total
electronic Hamiltonian H are defined by

N

Hy= 3 |-ivi-Z+v,|,
i=1 i
N 1 N

H= 3 — 3V, (7)
i<j=1Tj =1

H=H,+H' .

Only the ground state of the molecule is of current in-
terest, and E of Eq. (6) denotes the lowest eigenvalue of
H,, with corresponding eigenstate |®,). The linked-
cluster expansion of Eq. (6) with no interaction with d,
yields the correct expression for the ground state |¥,) of
the total Hamiltonian H of Eq. (7). The expressions for
a, (@) or a,(w) are similar to Eq. (5), with d, replaced by
d, or d,, respectively.

The partition of the Hamiltonian of Eq. (7) is normally
referred to as the model Hamiltonian, or Moller-Plesset
Hamiltonian. Doing many-body perturbation theory, it
is of great interest to compare the results obtained with
different partitionings of the Hamiltonian. Another
widely used partitioning of the Hamiltonian is the shifted
or Epstein-Nesbet Hamiltonian defined by [24,25]

FHo= 3 |®,)(®,|H|® ) (P,

1=0

H=T3 3 |0 (P |H|®)) (D], (8)
k#11=0

H=H,+ 7",

where {|®,;)} denotes the complete set of eigenstates of
H, of Eq. (7). If the linked-cluster expansion of Eq. (6) is
based on the partition H=%,+%f', the denominators
will be shifted, and there will be no diagonal elements in
F¥' due to the restriction K7/ in the summation that
defines 7. The diagonal elements that are omitted by
use of the shifted Hamiltonian are actually included to all
orders through the denominator shifts caused by apply-
ing ¥, instead of H, in the perturbation expansion. In
many-body calculations of atomic polarizabilities, it has
normally been found that the terms included to all orders
by the shifted Hamiltonian are the most important
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higher-order corrections [3,23]. Anyway, a significant
disparity between the results obtained with the two
different partitionings of the Hamiltonian will indicate an
insufficient convergency of the perturbation expansion.

C. The choice of single-particle potentials

A successful many-body expansion requires a careful
selection of the single-particle potentials ¥; of Eq. (7).
The single-particle potentials yield the important single-
particle states ¢, (r;) from the Schrodinger equation

1¢v72 Zz —
_7V1_7+Vi Pn(r)=€,@,(1;) . 9)

1

In the present investigation the single-particle states will
be represented by analytic expansions in terms of a finite
set of known basis functions. This means that the contin-
uum is described by a finite set of virtual orbitals. The
Hartree-Fock potentials ¥y are an obvious choice for
the potentials ¥;. However, that choice leads to excited
single-particle states that are rather unphysical, as they
are obtained in the field of a neutral system (V¥ type of
potential). The great benefit of the Hartree-Fock poten-
tials is an extensive cancellation of terms in the perturba-
tion expansion for closed-shell systems, and even for
open-shell systems the cancellation will normally be very
close. In the perturbation expansion the perturbation H’
of Eq. (7) will introduce an effective single-particle poten-
tial V4 defined by its matrix elements

N
(@ilVegle) = 3 (@x@,10l@@, ) — (@i [ Vi@, ,

n=1
(10)

where

1
0=(1—Pp)—
w2

and where P, is the operator that permutes the coordi-
nates of electrons 1 and 2. Now, it is well known from
the definition of the Hartree-Fock potential that all the
elements of Vg will vanish for a closed-shell system if
Vyr is inserted for ¥ in Eq. (10). Even for open-shell sys-
tems, the contribution from the effective potential of Eq.
(10) will normally be quite insignificant when Vyg is in-
serted for V, at least for higher-order terms in the pertur-
bation expansion.

Doing many-body perturbation theory with finite basis
sets, great care has to be exercised if the single-particle
potentials are removed from the Hartree-Fock potentials.
Potentials that might seem quite physical may actually
cause the effective potentials of Eq. (10) to blow up, with
a consequent disaster for the perturbation expansion.

In the present work a considerable effort will be taken
to construct single-particle potentials for the excited
states that are more attractive than the Hartree-Fock po-
tentials, and which also lead to significant improvements
of the perturbation expansions. This will be achieved by
eliminating or at least minimizing the contribution from
the first-order terms in H' in the perturbation expansion.

LA e

FIG. 1. The four most important first-order diagrams con-
tributing to a(w). The heavy dot indicates interaction with the
dipole operator, and the cross represents interaction with the
effective potential [cf. Eq. (10)].

There are four important first-order diagrams, as shown
in Fig. 1. In the static case (w=0) the contribution
a{(0) from these four most important first-order dia-
grams takes the form

al0)=73

iJj

<]|Veﬂ‘|l)2 <2|Z|l><l|2|e>
p

(Sp_sj' )2

4 {plz)Cglolpi)ielg)
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+3 (11)
pa
where O is given by Eq. (10).

To obtain Eq. (11), the diagrams of Figs. 1(c) and 1(d)
have been added, and the denominators of their
mathematical expressions have been reorganized to show
their character as effective single excitation diagrams
[26]. The problem is now to determine the effective po-
tential V4 of Eq. (10) so that the first-order contribution
of Eq. (11) is eliminated, or, in practice, reduced as much
as possible. This is achieved through an iterational pro-
cess, starting with excited orbitals computed for the
Hartree-Fock potential. In practice, difficulties may
arise, in particular for highly excited orbitals, and some
terms in the summations of Eq. (11) will have to be left
out, so that the elimination of the first-order contribution
will be more or less complete.

The dominant contribution to the correction of the
Hartree-Fock potentials for the excited states will nor-
mally be provided by the diagram of Fig. 1(b) for p =gq.
Denoting this particular correction of the potential by
V,p» its matrix elements will be from Eq. (11):

1Vl = (1o
T

ip>+<jp pi) Y

1
V)
which is precisely the correction needed to modify the
Hartree-Fock potential to a ¥ ~! type of potential. It is,
however, interesting to note that a simple correction such
as that of Eq. (12) may lead to divergent perturbation ex-
pansions. The full correction of Eq. (11) will be found to
retain the V¥ ™! character of the potentials, and lead to
convergencies that are far better than those of the
Hartree-Fock potentials.

The present approach to compute effective potentials is
an extension and generalization of the so-called Qian po-
tentials [27] previously used for atoms. The Qian poten-
tials are based on a cancellation of the contributions from
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the diagrams of Figs. 1(a) and 1(b) when g and p denote
orbitals in the same shell. For light atoms there is often a
dominant contribution to the polarizability from a single
outer shell, and the Qian procedure is particularly ade-
quate. This is, however, generally not the case for dia-
tomic molecules where several outer shells of different
symmetries may yield significant contributions. Hence,
the full correction of Eq. (11) is required in the molecular
case. Furthermore, the Qian procedure does not elimi-
nate the diagrams of Figs. 1(c) and 1(d), which are often
the dominant first-order diagrams.

When the single-particle potentials are worked out, the
many-body computation of the molecular polarizabilities
proceeds basically as in the atomic case described in I.
For the closed-shell atoms treated in I, the perturbation
expansions were complete to second order in the
Coulomb terms H' or #'. In the present work many
more second-order diagrams need to be included since
the excited-state potentials are no longer of Hartree-Fock
type, and since an open-shell system will be considered.
The extra diagrams needed are all the second-order dia-
grams with one or two interactions with the effective po-
tential of Eq. (10). A considerable effort was made to ful-
ly include all the classes of extra diagrams that tend to be
of any significance, and a total of 30 diagrams involving
V.5 were added to the 38 closed-shell second-order dia-
grams of I.

It is worth noting that the effective potentials as deter-
mined from Eq. (11) tend to yield an approximate cancel-
lation of a large number of diagrams that are second-
order generalizations of the first-order ones of Fig. 1.
The class of diagrams that are nearly cancelled by the
effective potential in particular involve the second-order
bubble diagrams typical of the random-phase approxima-
tion. Hence, with the present choice of potentials, the
dominant second-order diagrams will be the true correla-
tion diagrams involving double and triple excitations.

D. Computation of photoionization cross sections

The real dynamic polarizability for imaginary frequen-
cies (w=in) is, as discussed in I, related to the photoion-
ization cross section o(w) through the integral equation

c « o)
2270 nt+w?

The effective potential discussed in Sec. II C for the static
case (w=0) will be used in the many-body computation
of a(in) also for n70. This approach will actually turn
out to ensure nice convergency properties of the pertur-
bation expansion even for small imaginary frequencies
different from zero. Generally, the convergence of the
expansion gets less problematic for increasing values of 7.
To compute polarizabilities for imaginary frequencies is
also particularly convenient as there are no poles on the
imaginary axis.

The cross section o(w) will be derived from the com-
puted values of a(in) by inverting the integral equation
(13), as described in I. The inversion is based on expand-
ing o(w) in terms of a finite set of N known functions

¥al@),

alin)= do . (13)
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N
olw)= 3 a,¢, (o). (14)

n=1

To make this procedure work, the number of terms N
should be kept as low as possible. Hence, some thought
has to be given to the selection of the basis functions
¥, (). Ideally, each of them should have the same basic
features as that of the cross section. They should in par-
ticular tend to zero for both the limiting cases w—0 and
w— oo. The present choice is, as in I,

—k,®

Y, (0)=w’e (15)

To ensure a linearly independent set of functions, the ex-
ponents k, were chosen according to the relation

k,=ko,C" !, (16)

where C is a real constant larger than 1. For a specific
atomic or molecular system the constants k, and C and
the number of terms in Eq. (14) are determined so that an
optimal and stable solution of Eq. (13) is attained. The
best choice of these parameters will normally require
some trial and error. The inversion of Eq. (13) by use of
Egs. (14) and (15) leads to a continuous curve for o(w).
As the finite basis set yields a representation of bound ex-
cited states as well as continuum states, a(in) of Eq. (13)
and consequently o(w) will contain the contributions
from both types of excited states.

The real part of the polarizability Rea(w) on the real
axis is obtained from the computed values of o(w) and
the Kramers-Kronig dispersion relations [28] as

o(w')

2

sdo' . (17

c o
Rea(w)=—P
2?2 fO o' —w
Rea(w) yields information on important optical proper-
ties such as the index of refraction and the Verdet con-
stant [29].

III. COMPUTED RESULTS

A. Static polarizabilities of OH and HF

Computed results for the ground states of the closed-
shell system HF and the open-shell system OH will be
presented in this section. OH and HF have been selected
since there are other theoretical studies of these mole-
cules, both on polarizabilities and photoionization cross
sections [5,7,14,30,31]. The hydrides also generally retain
essential atomic characters, which ensures a reasonable
convergence of the many-body expansion. The experi-
mental material available is unfortunately sparse—in
particular for OH.

The basis sets used for the present calculations are ex-
tensions of the sets of Slater atomic orbitals with opti-
mized exponents published by Cade and Huo [32]. For
OH as well as HF, the basis set was extended by a diffuse
2s, 2p and 3d orbital on the heavy atom, and a diffuse 1s
and 2p orbital on H. With the orbital exponent in
parentheses, the specific extensions are as follows for OH:
0254(1.0), 02p(0.8), o 1s4(0.8), m2p((0.75), w3dy(1.1),
and m2py(1.0), and for HF: 02s5.(1.0), 02pg(0.8),
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TABLE I. Computed static polarizabilities (in a.u.) for OH and HF. The results were obtained at
the equilibrium internuclear separations of R =1.834 a.u. and R =1.733 a.u. for OH and HF, respec-

tively.
a
Molecule Potential Model H Shifted H Model H Shifted H
OH vy 8.00 9.25 6.28 6.55
yN-1 8.46 8.42 7.27 6.58
HF vy 5.87 6.71 4.69 5.28
yN-l 6.26 6.21 5.84 5.33

0155(0.9), m2pp(0.8), m3dg(1.1), and m2py(1.2).

In addition, a set of six & orbitals was included, based
on four 3d orbitals on the heavy atom and two 3d orbitals
on H. The § orbitals were of the even-tempered type, i.e.,
the exponents were obtained from the relation

En=ER" ", (18)

with §,=0.50 and R =1.8 for O and F, and §,=0.75 and
R =2.0 for H. Hence, the present basis sets consist of 19
o orbitals, 11 7 orbitals, and 6 6 orbitals. A few tests
were also made with a slightly larger basis set (more
diffuse orbitals). The results obtained did not, however,
deviate from those of the present basis in any significant
way. Even the inclusion of a few ¢ orbitals did not lead
to significant changes in the computed results.

Computed values of the static polarizabilities (w=0)
are given in Table I for OH and HF. The results are
based on a perturbation expansion which is believed to be
fairly complete to second order in H' or #' [cf. Egs. (7)
and (8)], as discussed in Sec. IIC. Since there will be a
rapid increase in the rate of convergence of the expansion
with increasing (imaginary) frequency (cf. Tables II and
III), the static case represents the biggest computational
challenge. In Table I computed results are given for both

the partitioning of the Hamiltonian of Eq. (7) (model
Hamiltonian) and that of Eq. (8) (shifted Hamiltonian).
Computations were also carried out for two different
excited-state potentials. The V' potential denotes the
standard Hartree-Fock potential, whereas V7V ~!
represents the effective potential based on eliminating or
minimizing the first-order contributions from the dia-
grams of Fig. 1 [cf. Eq. (11)].

A striking feature of Table I is the rather large dispari-
ty between the values of @ =a, obtained for the two par-
titionings of the Hamiltonian with the V'~ potential. This
disparity is in both cases almost completely removed by
the V¥ ! potential, a result which should give consider-
able confidence in this potential.

For the perpendicular component a =a,=a,, the
characteristic feature is the high stability of the comput-
ed values for the shifted Hamiltonian with regard to
changes in the potential. It is also noteworthy that the
values of a; computed with the shifted Hamiltonian are
intermediate between the extremal ones obtained with the
model Hamiltonian. Hence, an important conclusion to
be made from Table I is that the shifted Hamiltonian
with the ¥V~ potential clearly gives the most reliable
results for the static polarizability of OH as well as HF.

TABLE II. Computed values (in a.u.) of a;(in) (upper half of the Table) and a,(in) (lower half) for
OH. The first and second entries for each 7 value refer to the ¥ and ¥~ ! potentials, respectively.

Model Hamiltonian, order

Shifted Hamiltonian, order

7 Zero First Second Total Zero First Second Total
0.00 6.163 0.667 1.173 8.003 8.693 —2.143 2.703 9.253
7.124 —0.033 1.364 8.455 6.832 0.118 1.469 8.419

0.15 6.025 0.572 1.062 7.659 8.271 —2.010 2.406 8.667
6.869 —0.088 1.224 8.005 6.601 0.065 1.324 7.990

0.60 4.581 —0.152 0.290 4.719 5.064 —1.066 0.734 4.732
4.715 —0.397 0.372 4.690 4.583 —0.255 0.419 4.747

2.00 1.493 —0.380 —0.086 1.027 1.230 —0.181 —0.069 0.980
1.391 —0.292 —0.060 1.039 1.405 —0.288 —0.061 1.056

0.00 5.202 0.083 0.057 5.342 6.284 —1.047 1.126 6.363
5.801 —0.580 1.233 6.454 6.028 —0.652 1.068 6.444

0.15 4.907 0.356 0.452 5.715 5.971 —0.982 1.217 6.206
5.385 —0.276 1.746 6.855 5.730 —0.622 1.185 6.293

0.60 3.736 —0.054 0.024 3.706 3.927 —0.682 0.498 3.743
3.600 —0.277 0.628 3.951 3.785 —0.463 0.453 3.775

2.00 1.330 —0.259 —0.086 0.985 1.121 —0.168 0.039 0.992
1.135 —0.163 0.014 0.986 1.125 —0.160 0.025 0.990
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TABLE III. Computed values (in a.u.) of oy(in) and a,(in) for HF. Explanations as for Table II.

Model Hamiltonian, order

Shifted Hamiltonian, order

n Zero First Second Total Zero First Second Total
0.00 4.712 0.305 0.852 5.869 6.454 —1.70 1.96 6.71
5.327 —0.106 1.035 6.256 5.485 —0.227 0.953 6.211
0.20 4.570 0.222 0.747 5.539 6.060 —1.56 1.67 6.17
5.027 —0.134 0.889 5.828 5.229 —0.262 0.828 5.795
0.60 3.723 —0.154 0.298 3.867 4.227 —0.969 0.672 3.930
3.790 —0.219 0.319 3.890 3.919 —0.377 0.360 3.902
2.00 1.397 —0.326 —0.032 1.039 1.212 —0.197 0.016 1.031
1.305 —0.195 —0.070 1.040 1.300 —0.249 0.010 1.061
0.00 3.463 0.509 0.715 4.687 4.561 —0.516 1.238 5.283
3.985 0.015 1.841 5.841 4.159 —0.202 1.371 5.328
0.20 3.369 0.437 0.626 4.432 4316 —0.514 1.064 4.866
3.748 0.018 1.565 5.331 3.954 —0.213 1.177 4918
0.60 2.814 0.100 0.263 3.177 3.193 —0.453 0.491 3.231
2.781 —0.048 0.737 3.470 2.980 —0.215 0.509 3.274
2.00 1.183 —0.200 —0.015 0.968 1.077 —0.155 0.041 0.963
1.043 —0.112 0.052 0.983 1.080 —0.140 0.027 0.966

The computation of a, for OH is complicated by the
fact that the perturbation expansion is hardly convergent
for the model Hamiltonian. The reason is the strong in-
teraction (beyond the lowest order) between the nearly
degenerate occupied 3o state and the unoccupied  state
(configuration 10220%3037%). The computed values of
a(in), however, show good convergence for n=0.10 a.u.
and higher 7 values, and the values of a; of Table I are
based on the lowest-order correction for =0 and the
first- and second-order contributions for »=0.10 a.u.
The convergency problems are far less dramatic for the
shifted Hamiltonian.

No experimental value of the static polarizability
seems to be available for OH. The multiconfiguration
computation of a; by Adamowicz [30] is 7.54 a.u. at the
internuclear separation of R =1.7946 a.u. This value is
significantly lower than those of Table I.

For HF there is an experimental value of 5.60 a.u. for
the isotropic polarizability @={(a;+2a,) [33]. The ex-
perimental value is thus in excellent agreement with the
(best) present theoretical value of 5.62 a.u. obtained with
the shifted Hamiltonian and the V¥ ™! potential. The
most extensive computation of the static polarizability of
HF seems to be that of Diercksen et al. [31]. Their
values are @;=6.50 a.u. and a,=5.40 a.u., respectively,
based on a coupled Hartree-Fock method, extended with
a fourth-order perturbation expansion. The present stat-
ic polarizabilities obtained with the shifted Hamiltonian
and the V'V ! potential are thus in good agreement with
the sophisticated results of Diercksen et al. The experi-
mental values [34] of the anisotropy Aa=a;—a, of
1.48+0.14 a.u. is, however, in poor agreement with the
present results as well as those of Diercksen et al.

B. The dynamic polarizability a(in)

The present many-body method is also readily applic-
able to the computation of dynamic polarizabilities for
complex frequencies. Values of a(in) and a,(in) were

computed at about 25 points in the range n=0.0 to 12.0
to serve as a basis for the calculation of o(w) from Eq.
(13). Computed values are given in Tables II and III for
a few 7 values with specification of the individual contri-
butions from the three lowest orders in the perturbation
expansion.

The results of Tables II and III clearly show how the
VN1 potential was constructed by minimizing the first-
order contribution for y=0. The same feature is also
essentially retained for other low 7-values. However,
a,(0) for OH is an exception since in this case there is a
strong interaction between the filled 30 shell and the
open 7 shell that cannot be eliminated by changing the
excited-state potentials. This strong interaction also
leads to problems with the convergence of the perturba-
tion expansion, in particular for the model Hamiltonian,
as discussed in Sec. IIT A.

As in the static case, there is also for higher 7 values
very good agreement between the a values obtained with
the ¥V ! potential for the two partitionings of the Ham-
iltonian. For «, the shifted partitioning of the Hamil-
tonian leads to very close agreement between the results
for the two potentials. Hence, there is good reason to
conclude that the shifted Hamiltonian with the ¥V ! po-
tential yields the most reliable estimates of the dynamic
polarizabilities (in) and a,(in) for OH as well as HF.

It is also clear from Tables II and III that the rate of
convergence of the perturbation expansion generally in-
creases rather fast with increasing 7 values. For 7=0.60
a.u. and higher, there is seen to be good agreement
among the results of the four different computations.

Contributions beyond the lowest order (Hartree-Fock)
in the many-body expansion are normally ascribed to
correlation effects. However, the results of Tables II and
III clearly reveal that the magnitude of the lowest-order
term as well as those of the next two orders are heavily
dependent on the single-particle potential and the parti-
tioning of the Hamiltonian. Hence, the concept of corre-
lation is certainly not very well defined in many-body cal-
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culations of polarizations. A reasonable and more precise
definition of correlation could be to identify this effect
with the contribution from double, triple, and higher ex-
citations for a potential like the present V" ~! potential,
which largely eliminates the single excitations. The
second-order corrections of Tables II and III are all for
the V'V ! potential largely due to true double and triple
excitations.

In numerical many-body calculations of atomic polari-
zabilities and photoionization cross sections, the triple
excitations are normally left out due to the large techni-
cal problems involved in their computation. In the
present work we found that the triple excitations make a
substantial contribution (typically —0.5 to —1.0 a.u. in
the static case) for OH as well as HF. Fortunately, this
contribution tends to be cancelled by other double excita-
tions which are also normally left out in numerical
many-body computations.

Finally, it should be mentioned that types of ¥ ! po-
tentials other than that discussed so far were also investi-
gated. In the case of OH a natural and physical choice
would be to obtain the excited states in the field of the
33~ ground state of the OH™ ion. This choice of single-
particle potential actually led to excited-state orbital en-
ergies which were very close to those of the present V'V -1
potential. The rate of convergence of the perturbation
expansion based on the OH™ potential was at best rather
poor, and for the computation of & (0) with the model
Hamiltonian, there was actually no convergence at all
through the lowest three orders.

C. Photoionization cross sections

Photoionization cross sections were calculated by in-
verting Eq. (13), as described in I and in Sec. IID. The
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isotropic polarizability
alin)=1[2a,(in)+a(in)] (19)

was computed for about 25 7 values in the range =0 to
12 a.u., and the discrete a values were fitted to a series of
exponentials to obtain a continuous representation of
a(in). Basis functions were generated as described by
Egs. (14)-(16), and for OH a four-term expansion [cf. Eq.
(14)] was found to be sufficient, with k;,=2.60 and
C =2.0 [cf. Eq. (16)]. For HF the cross section o(w) ex-
tends to higher frequencies like the case for atomic neon,
and five terms were necessary in the expansion, with
ky=1.10 and C =2.0. The numerical stability of the in-
version procedure was checked by making reasonable
changes of the parameters k, and C.

Computed cross sections are given in Tables IV and V
for OH and HF, respectively, and computations were car-
ried out for the two partitionings of the Hamiltonian and
the two potentials V'~ (Hartree-Fock) and V" ~!. The
present way of computing the cross section yields a con-
tinuous curve for o(w), which is actually a measure for
the total absorption coefficient and which should be zero
for frequencies below the first excitation energy of the
molecule. The photoionization cross section is certainly
obtained only for frequencies above the ionization thresh-
old.

The results obtained from the four different computa-
tions are all seen to be in reasonable agreement for OH as
well as for HF. By the computation of the polarizabili-
ties, it was concluded that the shifted Hamiltonian [cf.
Eq. (8)] with the ¥~ ! potential tends to give the most
reliable results. Hence, the cross sections obtained from
this computation are shown in Figs. 2 and 3 for OH and
HF, respectively.

TABLE IV. The cross section o(w) (Mb) as calculated from the inversion of Eq. (13) for OH. The
total photoionization cross section is obtained for frequencies above the ionization threshold of

@, =0.48 a.u.

2] Model Hamiltonian Shifted Hamiltonian
(a.u.) vy | A yy yy-1
0.00 0.00 0.00 0.00 0.00
0.30 1.91 291 2.96 2.47
0.40 6.67 8.06 7.73 7.29
0.50 11.18 12.70 12.03 11.77
0.60 14.33 15.70 14.85 14.80
0.70 16.01 17.03 16.16 16.31
0.80 16.51 17.09 16.32 16.64
0.90 16.23 16.35 15.75 16.19
1.00 15.49 15.19 14.76 15.31
1.10 14.51 13.86 13.59 14.21
1.30 12.31 11.21 11.20 11.87
1.50 10.18 8.92 9.05 9.69
1.70 8.26 7.04 7.22 7.79
2.00 5.83 4.85 5.03 5.46
2.50 3.00 2.45 2.56 2.79
3.00 1.40 1.14 1.19 1.30
3.50 0.60 0.49 0.51 0.56
4.00 0.25 0.20 0.21 0.23
5.00 0.04 0.03 0.03 0.03
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TABLE V. The cross section o(w) (Mb) as calculated from the inversion of Eq. (13) for HF. o(w)
represents the photoionization cross section for frequencies above the ionization threshold w,=0.59

a.u.
) Model Hamiltonian Shifted Hamiltonian
(a.u.) yN yy-t vy |
0.00 0.00 0.00 0.00 0.00
0.30 0.33 1.25 1.28 1.03
0.40 3.12 4.69 4.67 4.23
0.50 6.61 8.56 8.42 7.89
0.60 9.76 11.73 11.41 10.94
0.70 12.12 13.77 13.23 12.95
0.80 13.60 14.69 13.94 13.93
0.90 14.34 14.75 13.81 14.10
1.00 14.52 14.24 13.13 13.72
1.20 13.84 12.37 11.10 12.16
1.50 11.75 9.43 8.27 9.58
2.00 7.98 6.22 5.81 6.64
2.50 491 4.46 4.85 492
3.00 2.77 3.33 4.23 3.75
3.50 1.46 2.52 3.62 2.88
4.00 0.73 1.92 3.00 2.21
5.00 0.16 1.10 1.88 1.28
6.00 0.03 0.61 1.07 0.71
7.00 0.01 0.31 0.56 0.37
8.00 0.00 0.16 0.28 0.18
10.00 0.00 0.03 0.06 0.04

In Fig. 2 the present results are compared with the
computed ones of Stephens and McKoy [7]. The results
of Stephens and McKoy are based on numerical photo-
electron continuum orbitals obtained using the iterative
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FIG. 2. Computed total absorption (photoionization) cross
section for OH. 0J, present results; O, Stephens and McKoy (7]
(length form). The vertical dashed lines indicate the ionization
threshold and the energy of the first excited 422" state, respec-

tively.

Schwinger variational technique and multiplet-specific
Hartree-Fock orbitals. Thus, their computation does not
go beyond the Hartree-Fock level of accuracy. The
length-form results of Stephens and McKoy are shown in
Fig. 2, since the present results were also obtained with
the length form. As discussed in I, the velocity form is
not relevant for the present method of computation.
From Fig. 2 it is clear that there are considerable
discrepancies between the present results and those of
Stephens and McKoy, both for the lowest- and for the
highest frequencies. The velocity results of Stephens and
McKoy which are not shown in Fig. 2 are, however, in
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FIG. 3. Computed total absorption (photoionization) cross
section for HF. 0O, present results; O, Faegri and Kelly [5]
(length form); A, Cacelli et al. [14] (length form); @, experiment
[35]. The vertical dashed lines indicate the ionization threshold
and the onset of diffuse absorption bands [37], respectively.
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somewhat better agreement with the present ones. Un-
fortunately, there seem to be no experimental results on
OH so far.

In a similar way, Fig. 3 shows the present cross sec-
tions for HF compared with the computed ones of Fagri
and Kelly [5] and Cacelli et al. [14]. The latter two com-
putations are both on the Hartree-Fock level of accuracy.
That of Feegri and Kelly is based on a single-center
spherical wave approximation for the continuum orbitals,
whereas that of Cacelli et al. is based on the Stieltjes
technique, using a discrete basis set and single-center ex-
pansion. As for OH, the present cross sections for HF
are seen to be lower than those obtained with single-
center Hartree-Fock methods. It should, however, be
mentioned that both Fagri and Kelly, Cacelli et al., ob-
tain velocity-form cross sections that are considerably
lower than their length-form results, which are shown in
Fig. 3.

Figure 3 also shows the experimental cross section of
Carnovale et al. [35] obtained with the method of (e,2e)
spectroscopy. Except for frequencies closely above the
ionization threshold, there is reasonable agreement be-
tween experiment and the three theoretical predictions
shown in Fig. 3, including the present one. More experi-
mental results obtained with different methods would cer-
tainly be of great interest for HF.

The real part of the polarizability on the real frequency
axis as obtained from Eq. (17) and the computed cross
section o(w) is shown in Figs. 4 and 5 for OH and HF,
respectively. Rea(w) yields information on the index of
refraction n (@) through the relation [36]

n(w)=1+27N Realw) , (20)

where N is the number of molecules per unit volume.
The energy of the first excited state is marked by the vert-
ical dashed line in Figs. 4 and 5. For OH it is interesting
to note that the maximum of Rea(w) occurs at a frequen-

10.0

5.0

0.0

| |
1.0 2.0

o(a.u.)

FIG. 4. Dispersion curve [real part of a(w) on the real fre-
quency axis] for OH. The vertical dashed line indicates the en-
ergy of the first excited 423 state.
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FIG. 5. Dispersion curve for HF. The vertical dashed line
indicates the onset of diffuse absorption bands [37].

cy that is substantially higher (0.3 a.u.) than the frequen-
cy 0.15 a.u. corresponding to the first excited 4227 state
(configuration o7*). Hence, the 423% state seems to
make a minor contribution to the polarizability of OH.
This conclusion is also in agreement with the computed
absorption cross section, which actually shows a small
negative value at the excitation frequency of the 4%3%
state (cf. Fig. 2).

In HF, on the other hand, the maximum of Rea(w) is
found at a frequency very close to the frequency of 0.28
a.u. where the (continuous) absorption bands start [37].
Thus, in HF the first bound excited states seem to make a
dominant contribution to the polarizability. Figure 5
also shows a small positive cross section at the lowest ex-
citation energy in HF.

For OH as well as HF, the polarizability tends to obey
the free-electron dispersion relation

n

wZ

Rea(w)= — (21)

for large frequencies, where n is the number of “free”
electrons.

IV. CONCLUSION

The success of a method to compute atomic and molec-
ular photoionization cross sections depends heavily on its
ability to handle the many-body effects that play an
essential role in the complex polarizability. In the
present investigation a considerable effort has been put
into the discussion of the rate of convergence of the
many-body expansion. The choice of single-particle po-
tentials for the excited states is in particular crucial. The
potentials should be physical in the sense that they yield a
fair description of the field felt by the outgoing electron.
On the other hand, they have to be very carefully chosen
to prevent the perturbation expansion from being diver-
gent due to large interactions with the effective potential.

The molecular systems require the use of finite basis
sets, and this allows less flexibility in the choice of
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excited-state potentials than the numerical methods used
for atomic systems. Compared with numerical work, the
use of basis sets yields no explicit representation of the
state of the free electron, and we have to carry the com-
putation through for an N-particle system. Working with
basis sets, the Hartree-Fock potentials are convenient in
the sense that they will normally prevent divergencies of
the perturbation expansion. They are, however, unphysi-
cal as the outgoing electron will feel the field of a neutral
system. Hence, the Hartree-Fock potentials may yield
slow convergence and poor results even when, as in the
present case, the perturbation expansion is carried to the
second order in the Coulomb interaction. In the present
work this problem was solved by constructing single-
particle potentials for the excited states that tend to mini-
mize or eliminate the first-order contributions in the per-
turbation expansion.

The inversion of the integral equation [Eq. (13)] is
another crucial point. Future work should probably be
directed at working out methods of inversion that are
more sophisticated than the present one. The present
method of inversion should be quite adequate for fre-
quency regions where the cross section is monotonically
increasing of decreasing. Pronounced maxima or minima
in the cross section will obviously be more difficult to de-
scribe, and narrow resonances will not be recovered at all
since they make no contribution to Eq. (13).
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