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Angular distributions for near-threshold (e, 2e) processes for H, He, and other rare-gas targets
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Distorted-wave calculations of the triply differential cross sections for electron-impact ionization of H,
He, Ne, Ar, Kr, and Xe are presented for final-state electrons sharing (4 eV excess energy and for the
coplanar, O, &

=n geometry. Results for H and He targets, presented briefly elsewhere [C. Pan and A. F.
Starace, Phys. Rev. Lett. 67, 185 (1991)],are analyzed in greater detail and compared with available ex-
perimental and other theoretical results. In particular, for He targets the effects of exchange and of
second-order capture processes are exhibited. These are shown to be of lesser importance than other
short-range effects on the s-wave phase shifts of both incident and final-state continuum electrons for
reproducing the experimentally observed target dependence of the electron angular distributions for H
and He targets [P. Schlemmer, T. Rosel, K. Jung, and H. Ehrhardt, Phys. Rev. Lett. 63, 252 (1989)].
More approximate theoretical (e, 2e) results for Ne, Ar, Kr, and Xe targets also show striking target
dependences; they are compared with available experimental results.

PACS number(s): 34.80.Dp

I. INTRODUCTION

The experimental and theoretical analysis of the triply
differential cross sections for (e, 2e) processes is a sensi-
tive means for elucidating the fundamental dynamics of
three-body systems interacting via Coulomb forces [1—4].
Recent low-energy (e, 2e) experiments [5—8] for various
targets have shown the triply differential cross sections to
be highly dependent on the target even though at asymp-
totic separations the long-range fields in the final state are
target independent. While the Wannier theory [9—12] for
the threshold energy dependence has been analyzed for
all contributing partial waves [13—15] only very recently
have theoretical estimates of their relative importance,
which are essential for describing the triply differential
cross sections, been made [16—18]. In particular, Pan
and Starace [17] showed (for the case in which the two
electrons leave in opposite directions) that the experimen-
tally observed [6] target dependence of near-threshold tri-
ply differential cross sections for (e, 2e) processes in H
and He stems essentially from short-range effects on the
s-wave phase shifts of both incident and final-state con-
tinuurn electrons.

The theoretical treatment of (e, 2e) processes is
difficult because there does not exist an analytic solution
for the wave function for two electrons moving in a
Coulomb field. While the asymptotic boundary condition
that such a wave function should satisfy is known, incor-
poration of this boundary condition in numerical calcula-
tions has only recently been accomplished [19]. Further
approximations to the exact wave functions are needed to
make numerical calculations possible. Typically, espe-
cially in order to facilitate analytic treatments, the in-
cident electron is described by a plane wave and the
final-state continuum electrons are assumed to move in a
point Coulomb potential. Neither of these approxima-

tions is accurate for low energies (i.e., near threshold)
since the relative importance of low angular momentum
partial-wave components in both initial and final wave
functions increases at low energies. For H and He, it is
predominantly the s-wave components which sample the
structure of the target and thereby have phase shifts
which carry information about the target [17]. Since our
concern here is with the target dependence of near-
threshold (e, 2e) processes, we focus mostly on the accu-
rate treatment of such short-range interactions of the in-
cident and final continuum electrons with the target. For
the special case in which the two continuum electrons
leave in opposite directions (i.e., 8,2=m ), we find empiri-
cally that a simple screening approximation for their mu-
tual interaction suffices.

Another approximation typically made is to calculate
continuum radial wave functions using local potentials to
describe the interaction with the neutral or ionized tar-
get. In our calculations we wish to treat the target-
dependent, short-range interactions as accurately as pos-
sible. We have therefore calculated radial wave functions
in appropriately defined Hartree-Fock (i.e., direct and ex-
change) potentials. While this makes it difficult for us
therefore to define a capture amplitude, capture processes
are nevertheless to some extent included in our results.

Specifically, then, in this paper we give a more detailed
presentation of our previously reported distorted-wave
calculations [17] of the triply differential cross sections
for (e, 2e) processes for H and He targets. We also
present theoretical triply differential (e, 2e) results for
other rare-gas targets. Whereas our prior numerical re-
sults for H and for He were only for the case of 4 eV ex-
cess energy [17], we report here results for 2 and 0.5 eV
excess energy since there are also for these cases experi-
mental data [5,16,20] with which we can compare. For H
and for He, we compare our results in addition with the
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recent theoretical calculations of Brauner et al. [16] and
of Jones, Madison, and Srivastava [18]. For He, we
present in addition detailed information on the role of ex-
change and capture processes and compare our findings
with those of Jones, Madison, and Srivastava [18].

For the rare-gas atoms Ne, Ar, Kr, and Xe we present
here results of more approximate distorted-wave calcula-
tions for near-threshold (e, 2e) triply differential cross
sections. Our results for 4, 2, and 0.5 eV excess energy
have angular distributions which are very different from
those for H and He targets. They are compared with
available experimental results [7,8].

In Sec. II we present a detailed description of our
distorted-wave calculations. In Sec. III we present re-
sults of our calculations for 4, 2, and 0.5 eV excess energy
for H and He targets and compare with available experi-
mental and other theoretical results. In particular,
differences in the absolute magnitudes of the various
theoretical calculations are examined. In Sec. IV we
present results of our calculations for 4, 2, and 0.5 eV ex-
cess energy for Ne, Ar, Kr, and Xe targets and compare
with experimental results. In Sec. V we summarize our
findings and present our conclusions. Finally, we note
that for the equal-energy-sharing case with 2 eV excess
energy we give in tabular form all of the theoretical pa-
rameters needed to reconstruct our (e,2e ) results for H,
He, Ne, Ar, Kr, and Xe in order to facilitate comparisons
with future experimental and theoretical results (cf. Table
III).

II. THEORY

The general theory of (e, 2e) processes has recently
been reviewed both by Byron and Joachain [3] and, for H
atom targets, by Brauner, Briggs, and Klar [19]. Fur-
thermore, parametrized forms for the angular distribu-
tions have been presented by Huang [21] and by Altick
[22]. We focus here therefore on our ab initio theoretical
approach for taking short-range interactions into account
when calculating (e, 2e ) triply differential cross sections.

A. General description of approximations used

For infinite nuclear mass, the differential cross section
for electron-impact ionization [19]becomes (in a.u. )

2~4
I & +f I

vl++ & I'fi(Ef —E;) .
1 2

In Eq. (1), k is the magnitude of the momentum of the in-
cident electron, k, and k2 are the momenta of the two
continuum electrons in the final state, and E; and Ef are
the energies of the initial and final states. The perturba-
tion V is the difference between the exact Hamiltonian
and the approximate Hamiltonian used to construct 4,+,
the distorted wave used to describe approximately the in-
itial state [23]. In our calculations V is defined approxi-
mately by

N—X

where the first term on the right-hand side of Eq. (2) is

the Coulomb interaction between the incident electron
and the N target electrons and where the second term is a
Hartree-Fock (HF) approximation to this interaction
which we use in constructing 4,+. . (More specifically, in
constructing N,+. , we describe the electron of the H atom
by the 1s Coulomb function and the electrons of rare-gas
atoms by ground-state HF wave functions. The radial
wave functions describing the incident electron for each
partial-wave contribution to N,

+ are calculated in the ap-
propriate term-dependent HF potential [24], as discussed
below and as specified explicitly in the Appendix. ) Omit-
ted in Eq. (2) are corrections to our description of rare-
gas atom targets by ground-state HF wave functions.
Such corrections stem from electron correlations among
the target electrons, as examined in more detail in Sec.
II D below. We emphasize that our inclusion of VH„+' in
the description of the initial state is an improvement
upon the typical description of the incident electron by a
plane wave. In particular, it is needed to describe
theoretically the experimentally observed target effects.

The final-state wave function 4f in Eq. (1) should be
in principle the exact solution to the full Hamiltonian
satisfying the exact boundary conditions [25] for two con-
tinuum electrons moving in the Coulomb field of the ion-
ized target. We have expanded our final-state wave func-
tion in independent electron states for the two continuum
electrons and have coupled their orbital and spin angular
momenta to partial waves characterized by L and S.
These LS-coupled partial waves for the pair of ionized
electrons couple to the singly ionized target ion
differently for H, He, and the other rare gases.

For H, L and S are the total orbital and spin angular
momenta of the system and are thus conserved during the
collision. For He, the target ion is in a S state and hence
L is the total orbital angular momentum of the system.
However, S must be coupled to the spin of the target
electron to form the system's spin, which equals —,'. Thus,
in He, the target electron couples singlet and triplet states
of the continuum electron pair. However, we have ig-
nored such interchannel coupling in the case of He and
treat the channels designated by L and S as uncoupled.
Finally, for Ne, Ar, Kr, and Xe, the target ion is in a P
state and neither L nor S is a good quantum number for
the entire collision system. In general, there may be
several LS partial waves of the continuum electron pair
which may couple to the P state of the target ion to form
a particular total ( T) orbital and spin angular momentum
state Lz-Sz- of the system. In our calculations for Ne, Ar,
Kr, and Xe we have approximated the interchannel in-
teractions between the set of partial waves LS which con-
tribute to a given state Lz-Sz- of the system by those in-
teractions which are diagonal in L. These approxima-
tions used in calculating our final-state wave functions for
rare-gas targets are defined explicitly in the Appendix.

A further approximation to 4'f in our calculations is
our replacement of the exact Coulomb interaction be-
tween the two continuum electrons by a variationally
determined screening potential [26—28). For the
configuration considered here in which k&= —kz, the
effective charges 5, and A2 are determined by the condi-
tion [26—28]
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ZT —6i
k,

ZT —A2

k2

ZT ZT 1+
k, k2 k, +k2

(3)
expand the continuum electron momentum states in par-
tial waves in both initial and final states.

where ZT is the net asymptotic charge of the ionized tar-
get. In our calculations we satisfy Eq. (3) using the fol-
lowing screening charges [28]:

k
(i =1,2) .

(k, +k2)
(4)

This choice of screening charges ensures that asymptoti-
cally each of the ionized electrons experiences the correct
classical force (assuming that r, =k„r2=k2, and

r, /k, =rz/k2). It also ensures that the total potential
energy for the system is correct at asymptotic distances.

In our calculations, these screening charges are used to
replace the exact Coulomb interaction by the sum of the
following screening potentials (i =1,2):

B. Partial-wave expansions

The initial state 4,+ is characterized by the orbital and
spin angular momenta of the ¹lectron target, denoted
by L0M0S0Ms, and by the momentum k, and spin mag-

0

netic quantum number m, of the incident electron. The
final state 4f is characterized by the orbital and spin an-

gular momenta of the (N 1)-electron tar—get ion core,
denoted by LcMcScMS and by the momenta, k, and

C

k2, and spin magnetic quantum numbers, m, and m, , of
I '2'

the two continuum electrons. Since the Coulomb interac-
tions which govern the (e,2e) process are diagonal in the
total orbital and spin angular mornenta (denoted by
LrMrSrM& ) of the (N+1)-electron collision system, it

T

is convenient to express the transition matrix amplitudes
as a coherent sum of contributions characterized by the
quantum numbers LTMTSTMz-. This requires that we

I

V(k], k2) =b;y p(r )

where yp(r ) is chosen to have the properties that yp~O
as r~O and y ~pl/r as r~oo. Specifically, yp(r) is a
special case of the general function

yz(nl, n'l', r)=r' +—"f "t P„i(t)P„I(t)dt

+r"f t "+"P„,(t)P„,(t)dt, (6)

where P„I(r ) is a radial wave function for the nl subshell
of the target atom. If we denote the valence subshell of
our target atom by n pip, then y p(r ) =yz p(nplp, nplp;r ).

In what follows, we define explicitly our initial and
final wave functions as well as the form of the T-matrix
elements in our calculations. We then reduce the general
triply differential cross section in Eq. (1) to forms specific
to H, He, and other rare-gas targets in which dynamical
and geometrical factors are clearly specified.

1. Single ele-ctron wave functions

The partial-wave expansion for a single-electron wave
function characterized asymptotically by momentum k
and spin magnetic quantum number m, is [29]

+I
Pj',*'(r)=k 'i g g i'exp[+i(o, +5I)]Y; (k)

1=0m = —1

X r 'P, t(r ) Yt (r)y (7)

In Eq. (7), the + and —superscripts on the one-electron
wave function denote the outgoing wave and incoming
wave boundary conditions that are appropriate, respec-
tively, for the initial- and final-state continuum electrons
[30]. The Yt functions in Eq. (7) are spherical harmon-
ics and y is a two-component spinor. The Coulomb

S

phase o I is defined by [30]

cri
—=argI (l+1 iq/—k),

where q is the net charge of the target atom or ion. Of
course, if q =0, then o i =0. Note that for anal-state con-
tinuum electrons, the net charge q includes the effect of
electron screening [cf. Eqs. (3)—(5)]. The radial function
has the asymptotic form

' 1/2
2P„(r)—

r ~ nk
sin[kr —ln. /2+ (q /k ) ln(2kr )

+o, +5,], (9)

2. Initial state wave f-unction

Using a partial-wave expansion such as that in Eq. (7)
for the incident electron, we may expand the initial state

in terms of antisymmetrized, LS-coupled wave func-
tions 0';((Lpl)LrMr(Sp ,')SrMs ) for —the (N+1)-
electron collision complex,

where 51 is the phase shift with respect to a Coulomb
wave, or, if q=O, with respect to a plane wave. The
phase shift carries information about the short-range in-
teractions between the target atom or ion and the contin-
uum electrons. In general, both the radial wave function
P,i(r ) and its phase shift 5t depend on both the state of
the target atom or ion and on the angular momentum
coupling of the continuum electron to the target atom or
ion. These dependences will be displayed explicitly when
we specify the initial and final states of the (N+1)-
electron system. Finally, the momentum state wave func-
tion in Eq. (7) is normalized to a 5 function in momentum
k, while the radial wave function in Eq. (9) is normalized
to a 5 function in energy c, where c.=k /2.

oo +1

X X P X ' exp[+i5t(LpSpLrSr)]Yt (kW', ((Lpl)LrMr(Sp —)SrMs
1=0Irt = —1 L&,MZ. Sr, MS

T

X (LrMr iL pMplm ) (SrMs iSpMs —,'m, ), (10)
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ed, respectively, in the Hartree and in the HF approxima-
tions, as we demonstrate below when we present our nu-
merical results. Additional treatment of capture process-
es requires a higher-order treatment of electron correla-
tions within the target, which we formulate here.

Let us return to basics [23]. Our initial-state wave
function l4,+) is the solution of an approximate HF
Hamiltonian,

small. Second, in order to calculate the effect of target
electron correlations on the (e, 2e) processes we study
without introducing a diferent representation of the jtnal
state, we require an alternative formulation for the transi-
tion matrix amplitude T&;.

For this reason, we define the state lg,
+ ) as an eigen-

state of the Hamiltonian H;+ V', i.e.,
(H; + V') lg,

+ ) =E; ly,
+ ). It follows then that

N+1
[Hp(r;)+ VHF(r;)] (20) (26)

N+1 N+1
H,„„,= X Ho(r, )+

i =1 j)i=1 J

The difference between H,„„,and H, is

(21)

where H; l4,+) =E; lC—),+), H()(r; ) is the sum of kinetic
energy and other radial potentials for the ith electron,
and VH„(r;) is the HF potential for the ith electron. In
contrast, the exact Hamiltonian H,„„,is

Ix,'&==le,'&+
E . v'x, '&,
E; —H;+tg

we easily obtain an expansion of T&; in powers of V':

(27)

where ff should be the exact final-state wave function,
but, of course, we plan later to substitute our approxi-
mate final-state wave function. Using now the formal
representation of ly,

+ ) in terms of l4,+. ), i.e.,

H,„„,—H;= V+ V'

where Vis defined in Eq. (2) and where

(22)

(28)
N

1
N

V'= g —g V „(r,).HF (23)

In Eq. (1), our transition matrix element was approximat-
ed by assuming V'=0, i.e., that the target atom Hamil-
tonian for He, Ne, Ar, Kr, and Xe targets could be accu-
rately described by the HF Hamiltonian. The exact
treatment is to represent the transition matrix amplitude
T~; by,

Tf; =
& gf(,„„,) l

V+ V'
l 4,+ ), (24)

(25)

This result stems from our use of the frozen-core approxi-
mation for the final-state target electrons as well as our
use of a single Hermitian potential (cf. the Appendix) to
describe both bound and continuum electrons in the final
state. The well-known property [34] that matrix elements
of the perturbation V' between frozen-core HF
configurations that differ only by a single electron orbital
wave function are zero then gives the result in Eq. (25).
Two conclusions stem from the result in Eq. (25). First,
to the extent that our description of the final state is a
good approximatioh, target electron correlation effects on
the (e, 2e) processes we study in this paper should be

provided, of course, that Pf is indeed the exact final-state
wave function. However, this formulation is troublesome
for numerical calculations since matrix elements of V'

may involve an overlap of the incident continuum elec-
tron with one of the final continuum electrons. (In our
calculations, an initial continuum radial wave function is
not necessarily orthogonal to a final continuum radial
wave function since they are calculated using different
potentials. )

Our Eq. (1), however, is exact for the approximate
final-state wave function we employ. That is,

The second term in Eq. (28) represents a correction to the
transition amplitude in our Eq. (1) stemming from elec-
tron correlation effects among the electrons of the target.
Such corrections do not apply, of course, for H-atom tar-
gets. Among the processes represented by the second
term in Eq. (28) are those in which V' promotes two tar-
get electrons to bound or continuum excited orbitals; the
incident electron may then interact via V with one or the
other of these two excited target electrons, possibly re-
sulting in capture of the incident electron by the target.

We have treated some electronic correlations, includ-
ing those explicitly leading to capture of the incident
electron, stemming from the second term in Eq. (28) for
the case of He targets. Our interest is in determining the
magnitude of such higher-order effects relative to those
stemming from the first term in Eq. (28). The explicit in-
teractions we have treated are given in the Appendix.
Our results are presented in the next section. As we ex-
pected, it turns out that for He the corrections stemming
from the second term in Eq. (28) are small.

III. RESULTS

A. Symmetry properties of cr' '

Since all of our results concern the final-state
configuration in which 012=+ and since nearly all of our
results presented in this paper concern the case in which
the two continuum electrons share the available energy
equally, it is useful to review the constraints which these
special cases place on the truly differential cross sections
[14,15]. First, since k) = —k2, the 3j symbol originating
from the right-hand side of Eq. (12) implies that the am-
plitude A in Eq. (15) is n on zero if and only if
( —1 ) = ( —1) . Thus only those angular momenta L

iI+12

of the final-state continuum electron pair are permitted
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for 3j symbols may then be used to collapse the double
sum over pairs of spherical harmonics (dependent on the
arguments k& and k) into a single sum, which may be ex-
pressed in terms of Legendre polynomials (dependent on

I

the argument k&.k) using a standard relationship [33].
The result is that the triply differential cross section in

Eq. (13) summed over final states and averaged over ini-
tial states may be written as follows:

~'"—:([Lol[So][l]) '

M, M, m m, m, M, M
X X

0 Sp™S si $2 SC C

A (I,L,S,LT ST ) A "(1',L', S,LT,S )
4k [Lo] L, L, L,L, I, r s,sr

x X I~]P~(ki k)( —1) ' 'ILrl[LH([L]IL'][i][i']}'"

L L '
A. I l' A, LT LT k LT LT

0 0 0 0 0 0 L' L L~ I' I Lp

In Eq. (14), the symbol [x ]=2x + 1 and the amplitudes A are defined by

(14)

A (l,L,S,Lr, Sr ) =

where

[Sr]
2[So]

I, 12 L
g ( —1) ' f(l, l„l2)([l, ][12])'~

l), 12

X(+f([Lc(l,l~)L]LT[Sc(—,
'

—,')S]ST}Vlql, ((Lol)LT(So ,')Sr)}— (15)

.I+ l
1
+ 12f(l, l, , l2)= i ' —exp[i(51+o'I +fil +o I +fi (16)

The general expression for o' ' in Eq. (14) simplifies further for the cases of interest in this paper. Thus, for the H
atom, Lo =Lc =Sc=0, L = l =LT, L'= I'=Lr, and ST=S. Hence Eq (14) becomes

L L' A,

oH'= g g AH(LS)AH(L'S) +[A]Pq(k, k)[L][L']
4k L L' S

For rare-gas (RG) atom targets, Lo =So =0, Sr =Sc=
—,', LT = l, and LT = l'. Hence Eq. (14}becomes

g ~R3o' —— g g Q A„o(lLS ) A R'o(1'L'S ) +[A, ]Pg(k, k)( —1) [1][l']([L][L'])'
4k LL S

L L' A, I l' A, I I'

0 0 0 0 0 0 L' L L (18)

Finally, for the He atom, Eq. (18) reduces further since

LC =0, 1=L, and 1'=L'. Hence Eq. (18) becomes

o.IH,'= g g AH, (LS)AH, (L'S)
4k LL' S

X +[A,]P,(k, .k)[L][L']

L L'
0 0 0 (19)

Note that Eq. (19) is identical in form to Eq. (17) for the
H atom. This has been achieved by including certain
spin-dependent factors in our definition of the amplitudes
in Eq. (15), i.e., those before the sum on the right-hand
side. Explicit expressions for the amplitudes AH, AH„
and A R~ are given in the Appendix.

D. Higher-order capture corrections

At first glance, our formulation of (e, 2e) processes in
Eqs. (1) and (2) would appear to omit capture processes in
which the incident electron not only ionizes a target elec-
tron but also exchanges places with a second target elec-
tron. Such processes involve a change of state of three
one-electron orbitals. Since the transition operator V in
Eq. (1) and (2) is a two-body operator, it cannot effect
such a three-body transition. Nevertheless, capture pro-
cesses are included implicitly in our formulation since the
wave function of our incident electron is calculated in HF
approximation in which exchange interactions with the
target are included. Thus, while capture processes are
not calculated explicitly in Eqs. (1) and (2), their implicit
effects can be extracted by comparing results in which the
radial wave function for the incident electron is calculat-



45 ANGULAR DISTRIBUTIONS FOR NEAR-THRESHOLD (e,2e). . . 4593

ed, respectively, in the Hartree and in the HF approxima-
tions, as we demonstrate below when we present our nu-
merical results. Additional treatment of capture process-
es requires a higher-order treatment of electron correla-
tions within the target, which we formulate here.

Let us return to basics [23]. Our initial-state wave
function I4,+) is the solution of an approximate HF
Hamiltonian,

small. Second, in order to calculate the effect of target
electron correlations on the (e,2e) processes we study
without introducing a diferent representation of the final
state, we require an alternative formulation for the transi-
tion matrix amplitude Tf;.

For this reason, we define the state Iy,
+ ) as an eigen-

state of the Hamiltonian H;+ V', i.e.,
(H; + V') lg,

+ ) =E; lg,
+ ). It follows then that

N+1
[Hp(r; )+ Vup(r; ) ] (20) (26)

where H; I4,+) =E; IC—),+), H()(r; ) is the sum of kinetic
energy and other radial potentials for the ith electron,
and Vii„(r;) is the HF potential for the ith electron. In
contrast, the exact Hamiltonian H,„„,is

where ff should be the exact final-state wave function,
but, of course, we plan later to substitute our approxi-
mate final-state wave function. Using now the formal
representation of ly,

+ ) in terms of I4,+. ), i.e.,

N+1 N+1
H,„„,—= X Hp(r; )+ X

The difference between H,„„,and H, is

H,„„,—H;= V+ V'

where Vis defined in Eq. (2) and where

(21)

(22)

we easily obtain an expansion of T&; in powers of V':

(27)

(28)

(23)

In Eq. (1), our transition matrix element was approximat-
ed by assuming V'=0, i.e., that the target atom Hamil-
tonian for He, Ne, Ar, Kr, and Xe targets could be accu-
rately described by the HF Hamiltonian. The exact
treatment is to represent the transition matrix amplitude
T~; by,

Tf; = ( Qf(,„„,) I
V+ V'

I 4,+ ), (24)

provided, of course, that Pf is indeed the exact final-state
wave function. However, this formulation is troublesome
for numerical calculations since matrix elements of V'

may involve an overlap of the incident continuum elec-
tron with one of the final continuum electrons. (In our
calculations, an initial continuum radial wave function is
not necessarily orthogonal to a final continuum radial
wave function since they are calculated using different
potentials. )

Our Eq. (1), however, is exact for the approximate
final-state wave function we employ. That is,

(25)

This result stems from our use of the frozen-core approxi-
mation for the final-state target electrons as well as our
use of a single Hermitian potential (cf. the Appendix) to
describe both bound and continuum electrons in the final
state. The well-known property [34] that matrix elements
of the perturbation V' between frozen-core HF
configurations that differ only by a single electron orbital
wave function are zero then gives the result in Eq. (25).
Two conclusions stem from the result in Eq. (25). First,
to the extent that our description of the final state is a
good approximatioh, target electron correlation effects on
the (e, 2e) processes we study in this paper should be

The second term in Eq. (28) represents a correction to the
transition amplitude in our Eq. (1) stemming from elec-
tron correlation effects among the electrons of the target.
Such corrections do not apply, of course, for H-atom tar-
gets. Among the processes represented by the second
term in Eq. (28) are those in which V' promotes two tar-
get electrons to bound or continuum excited orbitals; the
incident electron may then interact via V with one or the
other of these two excited target electrons, possibly re-
sulting in capture of the incident electron by the target.

We have treated some electronic correlations, includ-
ing those explicitly leading to capture of the incident
electron, stemming from the second term in Eq. (28) for
the case of He targets. Our interest is in determining the
magnitude of such higher-order effects relative to those
stemming from the first term in Eq. (28). The explicit in-
teractions we have treated are given in the Appendix.
Our results are presented in the next section. As we ex-
pected, it turns out that for He the corrections stemming
from the second term in Eq. (28) are small.

III. RESULTS

A. Symmetry properties of cr' '

Since all of our results concern the final-state
configuration in which 0&2=+ and since nearly all of our
results presented in this paper concern the case in which
the two continuum electrons share the available energy
equally, it is useful to review the constraints which these
special cases place on the truly differential cross sections
[14,15]. First, since k)= —k2, the 3j symbol originating
from the right-hand side of Eq. (12) implies that the am-
plitude A in Eq. (15) is nonzero if and only if

iI+12
( —1) =(—1) . Thus only those angular momenta L
of the final-state continuum electron pair are permitted
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which have the same parity as the continuum electron
pair.

Second, for the case of equal energy sharing, very gen-
eral considerations [14,15] of the symmetry of the final-
state wave function under interchange of the coordinates
of the two continuum electrons leads to the result that
the total spin S of the continuum electron pair must have

I I +12the same parity as (
—1) . That this same result fol-

lows for the particular multielectron final-state wave
functions we employ in this paper may be seen by a de-
tailed examination of the properties of the amplitudes A
defined in Eq. (15). One may easily show that appropri-
ate combinations of direct and exchange terms for the
final-state pair (s, l „E2l2 ) with those for the exchange and
direct terms, respectively, for the final-state pair
(s,l2, E2l i ) lead (in the case that si = s2) to an overall fac-
tor [1+(—1) +

] in the expressions for the amplitudes
A.

The consequence of these symmetry properties of the
transition amplitudes A on the triply differential cross
section in Eq. (14) is as follows. Notice that both the am-
plitude A and its complex conjugate A ' in Eq. (14) de-
pend on the same spin S for the final-state continuum
electron pair. (This is a consequence of the summations
over spin magnetic quantum numbers. ) For the case of
equal energy sharing, the amplitudes A and A* are
nonzero only if I. and I.' both have the same parity as S.
This fact in turn implies that only Legendre polynomials
Pi having euen values of l(. contribute to Eq. (14) since the
3j symbol involving I., I.', and A, in that equation is zero
for odd values of A, .

Hence, when c., =@2 for the case that 0&2=m, the triply
differential cross section is symmetric about (9, =n. /2 (if
k defines the z axis). Conversely, when s,PE&, L and L'
in Eq. (14) may have opposite parity. Thus Legendre po-
lynomials with odd order A, contribute, leading to a loss
of symmetry about 8, =n. /2.

B. Results for H and He targets

In Ref. [17] we presented triply differential cross-
section results for (e, 2e) processes involving H and He

targets for the cases in which the two final-state continu-
um electrons share 4 eV of excess energy. Both equal-
energy-sharing ( s, = s2 =2 eV) and unequal-energy-
sharing (s& =3.5 eV and F2=0.5 eV) results were present-
ed. In particular, a detailed analysis of the scattering am-
plitudes for the equal-energy-sharing case was presented
in order to provide an explanation for the experimentally
observed [6] target dependence of the (e, 2e ) angular dis-
tributions for H and for He.

In this paper, we present first a detailed analysis of the
unequal-energy-sharing case c,=3.5 eV and F2=0.5 eV,
whose triply differential cross sections we presented in
Ref. [17]. We then compare our (e,2e ) results with avail-
able experimental and other theoretical work for the
cases of equal energy sharing of 2 eV and 0.5 eV excess
energy. Finally, we exhibit the effect of exchange and of
higher-order capture processes on our results.

I Resul. ts for 4 e V excess energy
with c&=3.5 eV and c&=0.5 eV

Our triply differential cross sections for this case are
presented in Fig. 2 of Ref. [17). The key features of these
cross sections for H and for He may be understood from
examination of our calculated amplitudes, which are
presented in Table I. The relative magnitudes and phases
of these amplitudes are shown for the first six partial
waves L (for both S=O and 1) of the final-state pair of
continuum energy electrons. While the absolute magni-
tudes of these amplitudes are quite difterent for H and for
He, the relative magnitudes of these amplitudes, which
determine the angular distribution, are quite similar.
Furthermore, the relative amplitudes for partial waves
satisfying ( —1) + =+1 (which are the only ones that
are allowed in the equal-energy-sharing case) are quite
similar to those calculated for 4 eV excess energy with
c, , =E2=2 eV (cf. Table I of Ref. [17]).

One observes from Table I that the same amplitudes
which are dominant for the equal-energy-sharing case are
also dominant for the unequal-energy-sharing case:
namely, those amplitudes having (

—1) + =+1 with
L 3. The amplitudes having ( —1) + = —1 are an or-

TABLE I. Relative amplitude and phase for the electron-impact ionization scattering amplitudes A(LS) for H and for He targets

for final-state electron kinetic energies 2
k

&

=3.5 eV and
2 k2 =0.5 eV.

Relative amplitude
~
A (LS) I /I A ( 'S')

I Arg A (LS) (rad)

Partial wave

H
1 )L+s

He
1 )L+s

H
1)L+s

He
1 )I. +s

1.000'
0.401
0.469
0.293
0.022
0.033

0.052
0.041
0.074
0.145
0.121
0.018

1 000'
0.430
0.538
0.203
0.021
0.013

0.075
0.090
0.050
0.124
0.066
0.011

4.69
2.96
4.14
3.24
4.23
4.03

187
1.41
3.33
5.16
4.14
4.37

6.29
3.19
4.41
3.19
3.97
3.78

2.70
0.53
3.85
5.18
4.01
4.22

'For H, ~
A ('S'1~ =0.3175 au. ; for He,

~
A ('S')~ =0.1943 au.

To facilitate comparison of H with He, all H amplitudes in this column have been multip1ied by the phase ( —1)'+ [cf. Eqs. (A13)
and (A14)]. This was also done in Table I of Ref. [17].
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a He-atom target. Since the experimental data are rela-
tive, we plot the relative triply differential cross sections

(29)

where ~ and Pz are defined by comparison of Eq. (29)
with Eq. (17) in the case of H and with Eq. (19) in the
case of He. The relative experimental data were fit to our
results using Eq. (29) and a standard least-squares pro-
cedure which takes account of the experimental error es-
timates.

Figure 1(a) shows that our theoretical results for the
case of 2 eV excess energy are in excellent agreement
with the experimental measurements of Rosel et al. [35].
Since these relative experimental measurements have
been fit to our calculated results, the comparisons with
the theoretical calculations of Brauner et al. [16] and
with Jones, Madison, and Srivastava [18] are shown at a
disadvantage. However, even when fits of experiment to
these other theoretical results [16,18] are carried out, the
remaining discrepancies between these other theoretical
results [16,18] and experiment [35] are qualitatively simi-
lar to those between our calculation and these other
theoretical results. Namely, our calculations predict a
higher and flatter cross section in the vicinity of 90 than
do those of Brauner et al. [16]. Furthermore, the width
in 0, of the bottom of the bowl-shaped cross section is
predicted to be somewhat wider in our calculations than
in those of Brauner et al. [16]. However, our cross sec-
tions are significantly lower in magnitude in the range
40' 0& 140' than those of Jones, Madison, and Srivas-
tava [18].

Although the theoretical results of Brauner et al. [16],
Jones, Madison, and Srivastava [18], and ours more or
less agree qualitatively for the relative triply differential
cross section for H shown in Fig. 1(a), there are
significant quantitative discrepancies for the absolute
values of O' '. Since these differences depend on the an-

gle 0„we present in Table II the values of 0. which we
have calculated by integrating each group's results for
tr' ' over the solid angle 0& [cf. Eq. (29)] for the case
E, =c.2=1 eV and 0,2=m-. One sees that the result of
Brauner et al. [16] for cr is two orders of magnitude
smaller than those of either Jones, Madison, and Srivasta-
va [18] or ours, as has been noted already in Ref. [18].
Brauner et al. [16] have attributed the small values of

their absolute results near threshold to the wave-function
normalization they used. The result of Jones, Madison,
and Srivastava [18] and ours are of the same order of
magnitude, but ours is slightly larger.

Figure 1(b) shows our theoretical results for the case of
0.5 eV excess energy. These results are interesting be-
cause there is a small but noticeable local maximum at
0&=a/2. Our calculations for E,„~1.0 eV (not all of
which are shown) all give a minimum of o H' at 8, =~/2.
No experimental data for 0.5 eV excess energy are known
to us.

Figure 2(a) shows our theoretical results for He for the
case of E,„=2eV. We present two of our theoretical re-
sults: one with (long-dashed curve) and one without
(solid curve) inclusion of the higher-order capture pro-
cesses mentioned in Sec. IID above and discussed in
more detail below. Clearly such processes have only a
very small effect (primarily in reducing slightly the height
of the local maximum at O, =m. /2), thereby indicating
that our approximations are consistent, as discussed in
Sec. II D. Both of our results are in qualitative agree-
ment with the relative experimental measurements of
Selles, Huetz, and Mazeau [5] and of Rosel et al. [20].
The short-dashed curve represents the theoretical results
of Jones, Madison, and Srivastava [18], which predict a
much lower maximum at 0&=~/2 than found either by
us or by experiment [5,20]. Comparisons of the absolute
values of cr for He are presented in Table II. Our result
appears to be a factor of 2 or so higher than that of Jones,
Madison, and Srivastava [18]. Clearly, absolute experi-
mental measurements of o' ' are needed to resolve this
disagreement for He (as well as the disagreements men-
tioned above for H).

In Fig. 2(b) our theoretical results with and without in-
clusion of higher-order capture processes are presented
for the case of E,„=0.5 eV. Again, there is qualitative
agreement with the relative experimental measurements
of Selles, Huetz, and Mazeau [5].

3. Analysis of exchange and capture sects

When one formulates the (e, 2e) process in a basis of
states in which the incident electron is not antisym-
metrized with respect to the target electrons (cf., e.g. ,
Refs. [3,18,26], the effects of exchange and capture can be
easily presented as these effects require separate calcula-

TABLE II. Absolute integrated triply differential cross section o. for H and He for the case 0»=~
and —kl = —k2 =1 eV.

o. (a.u.)'

Target

H
He

Brauner et al.

0.0135

Jones, Madison,
and Srivastava'

3.19
0.358

Present
results

3.73
0.762

2' +I
'From Eq. (29), o.= f dP, f o' 'd( cose, ).

0 (3)Calculated from data for o' ' presented in Ref. [16],Fig. 6.
'Calculated from data for o' ' presented in Ref. [18],Fig. 5.
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tions. In our calculations, however, all initial and final
states are explicitly antisymmetrized and, in fact, ex-
change interactions are taken into account in calculating
the continuum electrons' radial wave functions. Thus
effects of exchange and capture processes are implicit in
our calculations. Nevertheless, we can examine their
effects by doing numerical experiments in which some of
these exchange effects are selectively turned off (i.e., not
included). The results of these numerical experiments are
presented in Fig. 3, whose results we now discuss.

Our procedure of treating exchange interactions be-
tween the continuum electrons and any electrons in the
target atom or ion includes implicitly a treatment of cap-
ture. However, since we treat exchange effects to infinite
order, we cannot determine if the incident electron, for
example, remains behind on the target ion, or whether,
after some indeterminate number of exchanges, it escapes
as one of the final continuum electrons. However, by
turning off such exchange interactions we can obtain a
clear picture of the numerical effect of such exchange in-
teractions and thereby also a crude estimate of the mag-
nitude of capture processes.

The results of such numerical experiments are shown
in Fig. 3. We see immediately that the effect of exchange
in both H and He is primarily to affect the magnitudes of
the cross sections near O, =n. /2, but not to change their
qualitative shapes. In H, omitting exchange in calculat-
ing the radial wave functions of the incident electron
tends to raise the magnitude of the cross-section
minimum at 8&=m/2. In He, omission of exchange in
calculating the radial wave functions of the incident elec-
tron tends in contrast to lower the magnitude of the
cross-section maximum at 8, =~/2. For He, when ex-
change is omitted also in calculating the radial wave
functions for the final-state continuum electrons, the lo-
cal maximum is lowered even further. (In H, of course,
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the final state does not have any target electrons with
which the continuum electrons can undergo exchange. )

Consider now the higher-order capture processes we
discussed in Sec. II D above. Our results including such
effects by means of the second term in Eq. (28) are shown
for He targets as the long-dashed curve in Fig. 2. We
have not done numerical experiments in which such
higher-order corrections are calculated without inclusion
of exchange since their overall effects are so small (cf.
Fig. 2).
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FIG. 3. Relative triply differential (e,2e) cross sections for H
and He targets for the case of 2 eV excess energy with equal en-
ergy sharing. Solid curves: present theoretical results including
all exchange interactions. Dashed curves: present theoretical
results omitting all exchange interactions, designated H(d ) and
He(d). Dotted curve: present theoretical results for He omit-
ting only exchange interactions of the incident electron with the
target electrons.
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C. Results for Ne, Ar, Kr, and Xe targets

As noted in Sec. II A, our calculations for the heavier
rare-gas targets are more approximate than those for ei-
ther H or He targets. The reason is that the heavier

I-
Z
4J
Q Z
& 0
0 O

LIJgM

+~0
mO0

0
20 40

(a)
~ ~ ~

60 80 100 120 140 160

ANGI E 8i ( deg )

z
IJJ
lKez&0h. I

—
10 O

LIJ
&- M

LL m
0 M+0

lLuO

0
20

(b)
60 80 100 120 140 160

ANGLE 8i ( deg )

I—z
LLI

az
L 0
C5 O

LLJ

g R

~ (/)
i—0
wO0

LIJ
0
20

I

40

(c)
I I I I I

60 80 100 120 140 160

ANGLE 8i ( deg )

FIG. 5. Same as for Fig. 4 for an Ar-atom target.

Our conclusion regarding capture processes on the
(e, 2e) triply differential cross sections for H and for He
is that such effects may be quantitatively significant.
However, they do not explain the qualitative differences
in the angular distributions for H and for He. (This con-
clusion is reached also by Jones, Madison, and Srivastava
[18].) Rather, the qualitative differences stem from other
short-range (specifically, direct potential) effects on the s-
wave phase shifts of both incident and final-state continu-
um electrons [17).
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FIG. 6. Same as for Fig. 4 for a Kr-atom target, with the fol-

lowing addition: the open circles are experimental results of
Rosel, Bar, Jung, and Ehrhardt, Ref. [7].

rare-gas target ions in the final state have angular
momentum LC = 1 rather than L& =0. This nonzero an-

gular momentum means that the angular momentum L of
the final continuum electron pair is no longer a good
quantum number for the final state. We have approxi-
mated the final-state interchannel interactions between
different angular momenta L (for fixed total angular
momentum Lr for the final state) by retaining only those
interactions which are explicitly diagonal in L. This ap-
proximation is defined more precisely in the Appendix.
What we have retained is a substantial portion of the in-
trachannel interactions of each LS state of the final con-
tinuum electron pair with the residual target ion.
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TABLE III. Dynamical parameters determining the absolute triply differential cross section 0' ' for
the case 0»=~ and —,'k1= 2k2=1 eV.

Target
Parameter'

0. (a.u. )

P2

P4

P6
Ps
Pio

12

14

H

3.73
3.090
2.367
0.855
0.115
0.008

He

0.762b

1.129
1.833
0.325
0.022
0.001

Ne

0.531
2.022
0.807
0.118

—0.036
—0.006

Ar

21.6
0.562
0.315
0.640

—0.412
—0.043
—0.005

Kr

39.5
0.251

—0.161
1.099

—0.523
—0.059
—0.008
—0.001

Xe

75.3
1.039
0.733
1.469

—0.467
—0.035
—0.016
—0.003

'Cf. Eq. (29).
Results in this column for He include the higher-order effects discussed in Sec. II D.

Our relative triply differential cross sections for the
case 8&2=~ and for equal energy sharing are shown for
Ne, Ar, Kr, and Xe targets, respectively, in Figs. 4, 5, 6,
and 7. Each figure gives our results for three excess ener-

gies: 4, 2, and 0.5 eV. Whenever possible, comparisons
are made with the relative experimental rneasurernents of
Rosel et al. [7] and of Selles, Mazeau, and Huetz [8]. No
other theoretical results are known to us.
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FIG. 7. Relative triply differential (e,2e) cross sections for a
Xe-atom target for final states having 0»=m and the continuum
electrons sharing the excess energy E,„equally. (a) Solid curve:
present theoretical results [cf. Eqs. (29) and (18)] for 4 eV excess
energy; dashed curve: present theoretical results for 0.5 eV ex-
cess energy. (b) Solid curve: present theoretical results for 2 eV
excess energy; open circles: experimental results of Rosel, Bar,
Jung, and Ehrhardt, Ref. [7], for 2 eV excess energy above the
Xe+( P3/2) thresholds; open squares: experimental results of
Rosel et al. , Ref. [7], for 2 eV excess energy above the
Xe+( P1/2) threshold.

I Compa. rison with results for H and He

Before discussing each of the heavy rare-gas target re-
sults individually, it is interesting to compare them first
with the results for H and for He targets. One sees im-
mediately from Fig. 4 that the angular distribution for
Ne is very similar to that for H. Furthermore, one sees
from Figs. 5 —7 that Ar, Kr, and Xe have two local maxi-
ma centered about 8& =m/2 in contrast to the single max-
imum observed in He at 8,=m. /2.

It is useful to interpret these differences in terms of the
dimensionless angular distribution asymmetry parame-
ters pI defined in Eq. (29). For the case of 2 eV excess
energy with equal energy sharing, our results for these
parameters are presented in Table III for H, He, Ne, Ar,
Kr, and Xe. We have chosen this value of E,„since there
is much experimental data available with which to com-
pare our results. Furthermore the parameters pI in Table
III will facilitate use of our results by other investigators.
In particular, since we also give the value of o in Table
III, all parameters are given to construct our absolute tri-
ply differential cross sections [using Eq. (29)]. This
should prove useful in the future when absolute experi-
mental measurements become available.

One sees from Table III that H and Ne are similar in
that P2 is the largest asymmetry parameter. He is unique
in that p4 is its largest asymmetry parameter. Finally,
Ar, Kr, and Xe are similar in that p6 in their largest
asymmetry parameter, although all of the asymmetry pa-
rameters p2, p4, p6, and ps have significantly large magni-
tudes.

These differences in the relative magnitudes of the
asymmetry parameters pI tnay in turn be traced to
differences in importance of the various allowed scatter-
ing amplitudes ARo(lLS). Frotn Eq. (18), we see from
the two 3j symbols that

~
L L'~ A, ~ L +L ' an—d

~l
—1'~ A, 1+1'. Furthermore, the pairs L,L' and l, l'

must have the same parity. For Ne, the three largest am-
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plitudes ARG(lLS) are those for s( P), p('D ), and d( F).
Both of the latter two amplitudes contribute to P2 as does
the interference term involving the s( P) and d( F) am-
plitudes. For Ar, Kr, and Xe, the three largest ampli-
tudes are those for f('G), p('D), and either d( P) (for
Ar) or p('S) (for Kr and Xe). Furthermore, the g( H)
amplitude is significant also. Both the f('G) and the
g(3H ) amplitudes contribute to the f36 asymmetry param-
eter for these elements.

2. Discussion of results for Ne, Ar, Kr, and Xe targets

Our results in Fig. 4 for Ne show a decreasing
minimum in the relative triply differential cross section as
the excess energy decreases from 4 to 0.5 eV. This behav-
ior stems primarily from a 59% decrease in the coefficient
P4 over this change in excess energy. For 4 eV excess en-

ergy, there is good quantitative agreement with the rela-
tive experimental measurements of Selles, Mazeau, and
Huetz [8]. For 2 and 0.5 eV excess energy there is only
qualitative agreement with experiment [8).

Our results in Fig. 5 for Ar show a very interesting
change in the angular distribution as the excess energy
decreases from 4 to 0.5 eV. Whereas there are two local
maxima and a central minimum about 0, =m/2 for 4 and
for 2 eV excess energy, there is only a rather flat-topped
local maximum at 0&=~/2 for 0.5 eV excess energy.
This behavior stems from a rapid increase in P4 (from—0. 18 to 1.2) combined with a simultaneous rapid de-
crease of P6 (from 0.98 to 0.01) as the excess energy de-
creases from 4 to 0.5 eV. Agreement with the relative ex-
perimental results of Selles, Mazeau, and Huetz [8] is
qualitatively good for E,„=4and 0.5 eV. For E,„=2eV,
however, experiment [8] finds a local maximum at
t9&=m. /2 while theory predicts a local minimum. This
disagreement for E,„=2eV may be interpreted as experi-
mental evidence that the decrease of f36 and the increase
of P4 occur more rapidly with decreasing E,„ than is pre-
dicted theoretically.

Our results in Fig. 6 for Kr show that the peak-to-
trough amplitude for the two local maxima and the cen-
tral minimum at 0, =m. /2 decreases as the excess energy
decreases from 4 to 0.5 eV. As in Ar, this decreasing am-
plitude stems from the simultaneous decrease of P6 and
increase of P4 as the excess energy decreases. For E,„=4
and 2 eV our results are in good qualitative agreement
with both the experimental results of Selles, Mazeau, and
Huetz [8] and those of Rosel, Bar, Jung, and Ehrhardt
[7], although the theoretical peak-to-trough amplitude of
oscillation is in each case larger than is found experimen-
tally. For E,„=0.5 eV, experiment finds a local max-
imum at 0, =m/2 while theory predicts a local minimum.
This disagreement for E,„=0.5 eV may be interpreted as
experimental evidence that the decrease of f36 and the in-
crease of f34 are more rapid with decreasing E,„ than pre-
dicted theoretically. Note that Selles, Mazeau, and
Huetz [8] resolve the Kr( P&&2 ) and Kr( P, &z) thresholds
but find that the angular distributions for the two thresh-
olds are nearly the same. We show in Fig. 6 only their re-
sults for the Kr( P3&z ) threshold.

Our results in Fig. 7 for Xe show an increasing peak-
to-trough amplitude for the two local maxima and the
central minimum at O, =m/2 as the excess energy de-
creases from 4 to 0.5 eV. This behavior stems from a rel-
atively constant value of P6 combined with rapidly de-
creasing values of f32 and P4 as E,„decreases. In compar-
ison with the relative experimental measurements of
Rosel, Bar, Jung, and Ehrhardt [7], there is reasonably
good quantitative agreement. Note how the experimental
data of Rosel et al. [7] for the Xe( P, &2) and Xe( P, &2)
thresholds are quite similar, as was the case for the data
of Selles, Mazeau, and Huetz [8] for the fine-structure
levels of Kr.

IV. SUMMARY AND CONCLUSIONS

In this paper we have provided a detailed description
of our approach for describing the target dependence of
the angular distributions for near-threshold (e,2e) pro-
cesses for final-state configurations in which 8,2=sr. For
H and He we have provided a detailed analysis of the
nonequal-energy-sharing case (e, =3.5 eV and can=0. 5

eV) that was first presented in Ref. [17]. We have also
presented results for the equal-energy-sharing case for ex-
cess energies of 2 and 0.5 eV and compared our results
with available experimental and other theoretical results.
In particular, for He we have provided a detailed analysis
of the effects of exchange and higher-order capture in-
teractions on our results. We have also presented here
results of more approximate distorted-wave theoretical
calculations for the triply differential cross sections for
(e,2e) processes in Ne, Ar, Kr, and Xe for the case of
O, z=~ and equal energy sharing of 4, 2, and 0.5 eV ex-
cess energy. These triply differential theoretical (e, 2e)
results for these heavier rare-gas targets were shown to be
generally in reasonable qualitative agreement with avail-
able experimental results. Finally, for the case of 2 eV
excess energy with equal energy sharing, we have present-
ed in Table III the parameters 0 and I3i from which other
researchers may construct our absolute triply differential
cross sections for all of the targets considered: H, He,
Ne, Ar, Kr, and Xe.

Among our key conclusions is the fact that short-range
effects on the s-wave phase shifts of both incident and
final-state continuum electrons are the reason for the
qualitatively different behaviors of the (e, 2e ) angular dis-
tributions for H and for He targets. In particular, ex-
change and higher-order capture processes are shown to
affect the triply differential cross sections for He quanti-
tatively but not qualitatively. We also note (as have
Jones, Madison, and Srivastava [18]) that the three
theoretical calculations [16—18] for near-threshold (e, 2e )

processes in H, while differing only in detail for the rela-
tive triply differential cross section for H, differ
significantly for the absolute triply differential cross sec-
tion for H. Significant differences in the absolute cross
sections for He also have been shown. Absolute (e, 2e)
experimental measurements are needed to help sort out
these differences. Finally, for the (e, 2e ) angular distribu-
tions for the heavier rare-gas targets Ne, Ar, Kr, and Xe
our results appear in general to be in qualitative agree-
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ment with available relative experimental measurements.
In the few instances where there are qualitative
differences between our results and experiment, it appears
these stem from the fact that changes in the angular dis-
tribution as a function of the excess energy E,„are pre-
dicted theoretically to occur more slowly with decreasing
E,„ than observed experimentally.

In conclusion, we mention finally that our emphasis
here has been on target effects on (e,2e ) angular distribu-
tions near threshold and not on the energy dependence of
the absolute triply differential cross section near thresh-
old. Indeed, by replacing the true Coulomb interaction
between the two outgoing electrons by variationally
determined screening potentials [26—28] we exclude the
possibility of obtaining the correct energy dependence of
the triply differential cross sections near threshold, which
is the subject of the Wannier-Peterkop-Rau (WPR)
theory [9—12]. As discussed by Selles, Mazeau, and
Huetz [8], the WPR theory applied to the triply
differential (e, 2e) cross section for the 8,2=m. geometry
has a cross section near threshold proportional to
E,„.However, the range of validity of the WPR
theory is uncertain and thus it is not clear whether it ap-
plies in the energy range 0.5~E,„~4 eV that we have
considered here. For all of these reasons we have not fo-
cused on the energy dependence of our absolute triply
differential cross sections.
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APPENDIX

1. Wave functions for the continuum states

The approximate single-particle Hamiltonian for the
radial wave functions used in this work is

1 d Z I (I +I)h= —— ——+ +V
r

(A 1)

where VH„ is a Hartree-Fock (HF) potential describing
electronic interactions. In this work the ground-state tar-
get wave functions are evaluated using the computer pro-
gram McHF77 [36]. The same one-electron wave func-
tions are used to construct the wave function of the final-
state ionic core. Each radial continuum wave function
P,I in the initial- and final-state wave functions in Eqs.
(10) and (11) is evaluated using a potential V, i which is
dependent on the angular momentum coupling of the to-
tal wave functions in these equations. This potential is
derived from the variational principle,

5(% f( LTMr STMs )~Hi+;( LTMT SrMs )) =0 (A2)

by keeping those terms involving interactions between
the c,l state and the occupied bound states.

For each value of the continuum electron's orbital an-
gular momentum l, if there exist occupied electron orbit-
als with the same l in the target atom, the orthogonality
between the wave functions of these bound electrons and
the partial waves of the incident and outgoing continuum
electrons is ensured by constructing a single Hermitian
potential [37—41]

VH„= V i+(1 Pt)(V, i
—

Vg )—(11 Pi), —(A3a)

where PI =g; ~ n; I ) ( n; I i, with the summation running
over the occupied states of the target, and where Vg I is
the potential used for these occupied states. Otherwise

VHF = V.I (A3b)

is used in Eq. (A 1).
Since the HF potentials V I for the ground-state orbit-

als of atoms as well as the potential terms describing the
interaction of a continuum electron with closed subshells
are given in standard references [42,43], the expressions
for Vg I are not given here, and in the expressions for V,&

given below, terms related to closed subshells are not
given except when needed for comparisons. Such terms
are of course included in our calculation. The potentials
V,I used in this work are listed as linear combinations of
operators J„I and K„"t defined through [41]

J„IPn t (r ) =yg(«, nl;r )P„ I (r ),
KnIPn'I'(r ) yx(nl, n'I', r )Pni(r )

(A4)

(A5)

V =J +( —1) [I] 'K'

VHe —2Jo [I ]
—IK I

(A6)

(A7)

The potentials used for the wave functions P, I

(I =1,2) for the final-state continuum electrons are given
in Eqs. (A8), (A9), and (A10) below for the cases of H,
He, and other rare gases, respectively,

VH g JO
E, -1 I 1$ (A8)

(A9)

V =(5+6,, )J„—31[1—1] '[I ] 'K'

—3(1+1)[l] '[I+1] 'K'+' (A10)

where the two-electron integral y& has been defined in
Eq. (6).

The potentials used for the partial-wave functions
P,I(r ) of the incident electron are given in Eqs. (A6) and
(A7) below. Since for rare-gas targets these potentials
contain only interactions with closed subshells, only the
potential for He is presented here as an example:
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In Eq. (Alo), no=2, 3,4, 5 for Ne, Ar, Kr, and Xe, re-
spectively, and interactions with closed subshells are not
listed but are understood to be included. In Eqs.
(A8) —(Alo), 5,. (i = 1,2) represents the effective screening
charge defined in Eq. (4), where the function yo(r ), which
is defined in Eq. (5) and in the text following it, is desig-

nated here by J„ I [cf. Eqs. (6) and (A4)].
Neglecting the screening charge b,;, Eqs. (A9) and

(Alo) define potentials for the E;1 state that are approxi-
mations to a more general formula for electron-impact

41o+2
ionization of a closed subshell nplp derived from Eq.
(A2) with respect to 5P, I (r ), namely,

1 l

V(LS,L'S')=51L 5ss(2[10]—1)J„ i

T

L+L'+LT+12 lp A lp I& 1 I& lp L LT I] L l2' '['0)[')'[ )[ ')'"
o o o o o o

A, &0

2
lp 1, I)

I& l2 L I) l2 L'
~LL, ~ss —

(
—I}'+'2 '[ii )(IL)[L')[S]lS'])'" 'L (Al 1)

For He, Eq. (Al 1) simplifies substantially since lo =0; in
order to obtain Eq. (A9) we simply neglected off-diagonal
terms which couple singlet and triplet states. For the
other rare gases, which have I0=1, we obtained Eq.
(Alo) by only keeping those terms in Eq. (All) which
have the factor 5LL 5zz. .

2. Amplitudes AH, AH„and ARG

R "(a,b;c,d)= J Pb(r)Pd(r)y&(a, c;r)dr,
0

where yi (a, c; r ) is defined in Eq. (6).
For the case of H,

(A12)

These amplitudes, which are used in Eqs. (17)—(19), are
defined in Eq. (15). Expressions for the matrix element in
Eq. (15) will be given as ( V)H, ( V)H„and ( V)Ro for
the cases of H, He, and the other rare gases, respectively.
These matrix elements are expressed in terms of Slater in-
tegrals

I) l2 I
( V&„=(—1)'([l, ][1,])' '

X I [1,] 'R '(s, l»szl2; Is, El )

+(—1) [12] 'R '(sil2, e,l, ; Is, sl)] . (A13)

For the case of He, using ( V)H in Eq. (A13) to denote
terms which are identical in form with those for the case
of H, we have

=( —1)'+'(2 '[S))'"(V) (A14)

When Eqs. (A13) and (A14) as well as the appropriate S„
and ST values for the two cases are substituted into Eq.
(15), the expression for AH, differs in form from that for
A H by only an extra factor of (

—1) + 'v'2.
For the other rare gases, the matrix elements are a spe-

cial case (e.g., the case 10 = 1) of those describing
410+2

electron-impact ionization of a closed subshell npl p
'

( V)ao=(2 '[S][10][1,][1~][L]}'~

I
&

k lp l2 A I I ] l2 L

oooooo 0

I& k I l2 X lp
XR (E,l„e212, nol, E'l )+( 1} p 0 p 0 0 p

I, l2 L
X

1 1 )(
'R (e212, e, l„.nplo sl )

0
(A15)

3. Second-order corrections to T&;

When the second-order term in Eq. (28) is included in the calculation for the case of He targets, the expression for
( V )H, [cf. Eqs. (A13) and (A14)] acquires an additional term v' ' in the curly brackets in Eq. (A13),
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v' '=[l(] R '(Is, E~l~;Al„El)+( —1) [l~] R '(Is, a, l(, Al~, el)
—5sp2[l] 'I[l, ] 'R'(Is, E~l~;al, Al, )+[1~] 'R'(ls, E,l„EI,Al~)]

+5sp5tp5t t 2[1, ] '(2a» —e, —ez) 'R ( ls, ls; ls, es )R '(e, l» eel„ ls, ls )

In Eq. (A16), the functions P„t (r ) (i = 1,2) are solutions of the inhomogeneous differential equation [44,45]

(2z&, —z; —ht )Pzt (r)=(1—5t p~ ls )( is ~)yt (a;1;,Is;r }P&,(r ),

(A16)

(A17}

where ht is defined in Eq. (Al) and yt (e,.l, , ls; r ) is defined in Eq. (6). All of the terms in Eq. (A16) are due to initial-
l t

state correlations; those terms having 5sp may be identified as capture interactions.
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