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Quantum-noise reduction at frequencies up to 0.5 GHz using pulsed parametric amplification
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Measurements of quantum-noise reduction have been performed over a broad frequency range up to
0.5 GHz using pulses of squeezed light generated by parametric amplification in KTiOPO, crystals.
Both balanced-homodyne and direct-difference photodetection schemes were employed, and 0.5 dB of
noise reduction was routinely obtained. A continuous-mode traveling-wave theory including the effects
of dispersion and loss has been employed to model the experimental results.
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I. INTRODUCTION

The quantum-mechanical description of light predicts
the presence of noise in the optical field that ultimately
limits the sensitivity of optical communication systems
and spectroscopic measurements in general. This “vacu-
um” or ‘“‘shot” noise arises from the noncommutability of
the quadrature-electric-field operators, and it leads to
fundamental fluctuations in the two quadrature-field
components via the uncertainty principle [1]. It is now
well established that certain nonlinear effects, such as
four-wave mixing [2,3] and parametric amplification
[4-7], can be used to decrease (squeeze) the vacuum noise
in one field quadrature at the expense of increased noise
in the other quadrature. Hence, by using squeezed light,
precision measurements below the shot-noise limit have
been demonstrated [8—-10]. Parametric amplification has
been perhaps the most widely used technique to date, and
measurable degrees of squeezing have been obtained in
continuous-wave experiments by enclosing the nonlinear
medium in an optical cavity to enhance the interaction
length [4,8-10] or, alternatively, by using intense pulses
in a traveling-wave amplifier format [5-7]. One advan-
tage of the latter approach is that the frequency band-
width over which squeezing occurs is not limited by the
cavity storage time, and it can therefore be of the order of
the phase-matching bandwidth of the nonlinear crystal,
which may be in the terahertz range. In this work we
have used pulsed parametric amplification in KTiOPO,
(KTP) crystals to investigate both quadrature squeezing
via phase-sensitive homodyne detection, and also “twin-
beam” noise reduction using direct-detection techniques
[11-13]. By an appropriate choice of detector electronics
we were able to measure squeezing up to very high fre-
quencies of ~0.5 GHz with typical noise reductions of
0.5 dB (11%). The modest levels of noise reduction were
sufficient to investigate some of the underlying physics of
the squeezing process, and in order to do this we also car-
ried out a coordinated theoretical study. In particular, a
multimode traveling-wave theory of the parametric
amplifier was developed that included the effects of polar-
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ization, dispersion, and loss. By comparing experiment
and theory, we determined values for the key parameters
such as gain and mode mismatch in the model, and also
investigated the effects of loss on the observed quantum
properties.

II. EXPERIMENTAL DETAILS

The apparatus used for the squeezing experiments is
shown schematically in Fig. 1. The optical source is a
mode-locked neodymium-doped yttrium lithium fluoride
(Nd:YLF) laser which operates at a wavelength of 1053
nm in the near infrared, and produces 50-ps pulses with a
repetition rate of 76 MHz. The output from the laser is
frequency-doubled using a type-II phase-matched KTP
crystal and, after separation from the residual infrared by
means of a prism, this beam is used as an intense green
pump for a second KTP crystal which acts as a
traveling-wave parametric amplifier or “paramp.” A
small fraction of the infrared beam is also split off to pro-
vide a local oscillator for the balanced homodyne detec-
tor and a test or “seed” beam which can be recombined
with the pump for both alignment purposes and for
parametric-gain measurements. Two of the mirrors in
the beam lines are mounted on piezoelectric transducers
(PZTs) so that the pump and local-oscillator phases can
be scanned at frequencies of a few hertz. The pump beam
is polarized vertically relative to the horizontal optic axis
of the KTP paramp crystal, and hence forms an ordinary
wave. Correlated pairs of photons at the fundamental
frequency are generated in the form of an ordinary signal
beam (S) and an extraordinary idler beam (I). The
birefringence of the KTP causes the signal and idler
beams to separate or “walk off” spatially, and we use a
pair of polarizing-beam-splitter cubes to separate and col-
linearly recombine the beams to form the composite
squeezed mode polarized at 45° to the pump [6]. This
squeezed beam is horizontally polarized by means of a
half-wave plate and then passes through a prism to
separate out the pump. The local oscillator, which is also
horizontally polarized, is overlapped both spatially and
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FIG. 1. Experimental setup for squeezing experiments.

temporally with the squeezed beam on a 50:50 beam split-
ter, and the phase-front matching is carefully optimized.

The homodyne detector consists of the 50:50 beam
splitter and a pair of high-quantum-efficiency InGaAs
p-i-n photodiodes. The amplified output from this detec-
tor is observed in the frequency domain using a spectrum
analyzer, and consists of a series of harmonic peaks at
76-MHz intervals with a shot-noise floor in between [14].
The reverse bias for the two photodiodes is of opposite
polarity so that the summed output current is in fact the
difference photocurrent. By equalizing the path lengths
from the beam splitter to the photodiodes it was possible
to achieve 30 dB of balancing for the photocurrent har-
monics between dc and 0.5 GHz. Very little balancing
was observed at frequencies above 1 GHz because of un-
matched resonances in the two P-i-n diodes due to stray
bond-wire inductances. Consequently, a low-pass filter
was used to remove the intense frequency components
above 0.5 GHz in order to prevent amplifier saturation.
The amplifier has an ac input impedance of 50 Q and its
gain begins to roll off at 0.6 GHz, all of which make it
less susceptible to saturation. A prerequisite for the ex-
periments is that the homodyne detector gives shot-
noise-limited performance and, as demonstrated in Sec.
V, this was found to be true for average photocurrents in
the range 0.3—1.0 mA, over the frequency range 0.02-0.5
GHz except within a few megahertz of the harmonic
peaks at 76-MHz intervals. Other experiments were also
carried out with the photodiode pair positioned after the
first polarizing beam splitter, in order to monitor the in-
dividual signal and idler beams.

III. GAIN IN THE PARAMETRIC AMPLIFIER

A. Theory of the traveling-wave paramp

The degree of squeezing in the output quantum noise
of a parametric amplifier depends explicitly on the mag-
nitude of its gain and, in addition, the gain exhibits the
intrinsic phase dependence which is the origin of the
squeezing process. Consequently, the gain is an impor-
tant parameter to investigate. We begin by developing

the traveling-wave theory of the paramp in order to find
expressions for the gain which can then be compared
with experiment. As discussed by other workers [15,16]
the input-output relations for the paramp can be written

@ ou(@)={[coshs —(ik/A)sinhs ]2 ,;,(w)
—(B/A)e’Csinhs a*.mm,, —0)}

Xexplik yz+ikz), (1)
@_, (@)= {[coshs —(ik/A)sinhs J@_; (o)
—(B/X)e'Csinhs 62,“1(&)[, —w))}

Xexplik _z+ikz) , (2)

where 6?,,((0),6“,(@) and 6;,‘((0),60\"((0) are continuous-
mode creation and destruction operators for the input
and output fields,

k=Ak/2=(k,~k_—k,)/2, (3)
s=Az, A2=B>—«k? (for B>k) . 4)

Here, k is the phase-mismatch parameter which arises
from dispersion in the medium [i.e., kK =n(w)w/c, where
n(w) is the frequency-dependent refractive index], B is
the gain parameter, z is the length of the paramp, © is the
pump phase, and the subscripts p, + and —, denote the
pump and the orthogonally polarized signal and idler
modes, respectively. We represent the infrared seed
beam at frequency w, /2 as a narrow-band coherent state
with phase ¢,,, polarized at angle ¥;, to the pump polar-
ization direction, and the input signal and idler modes are
then excited in continuous-mode coherent states with
complex amplitude functions [17]

@ 4 (@)= 20F;) e P cosy 8o —(0,/2)],  (5)
a_in(@)=27F;,)" % "sing, 8lo—(w,/2)],  (6)

where F;, is the total input flux. The total output flux is
givenby F ,=F . +F_.., where the signal flux is

—i¢

F o =F;| [coshs +(ik/A)sinhs ]e "cosy;,

—(B/Ae 0% inginhs singy, |2

+(1/2m) [ do(B/A)sinh’s &)

and the idler flux F__,, is given by a similar expression,
but with siny;; and cosy;, interchanged. Hence the out-
put fluxes can be written as

Fiouw=G+(2¢i,—6,¢,)F,

+(1/2m) [ do(B/M)sinh’s (8)

F—ou! =G_ (2¢in_e7¢in)Fin
+(1/2m) [ dex(B/A)sinh’s ©)

where after some expansion we obtain the gains for gen-
eral phase and polarization angles
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G, (®,¥)=cos’y+(B/A)*sinh’s
—2(B/\)sinhs siny cosy
X [coshs cos® + (k /A)sinhs sind ] , (10)

and a similar expression for G _ with siny and cosy inter-
changed. It can be seen from Egs. (8)-(10) that the mag-
nitudes of the gains vary with the input polarization an-
gle v, and they are periodic in the relative pump-seed
phase ®=(2¢,,—O), except when the input polarization
is parallel or perpendicular to the pump (i.e., ¥;,=0° or
90°). These equations are identical to those obtained us-
ing a classical coupled-mode formalism [18], except for
the integral terms in Egs. (8) and (9) which represent the
flux of the spontaneously emitted light or, equivalently,
the amplified vacuum noise. However, for the purposes
of this section we shall ignore these terms since, as shown
below, they correspond to nanowatt average power levels
in the experiments, while the G, F;, terms correspond to
the seed power, which is in the milliwatt regime. The ex-
tremal values of the gain determined by differentiation of
(10) occur at relative phase angles such that

tan®=(x /A )tanhs (11)
and the maximum and minimum gains are
G 4 (D, ), min
=cos?p+(B/A?)sinhs
X [Bsinhs +(B2cosh?s —k?)'/%sin2¢] , (12)

with cos’y replaced by sin?y in the expression for G _.
The difference between maximum and minimum gains is
clearly largest when ¢y=45°.

B. Experimental results and discussion

Measurements of parametric gain were carried out by
injecting a seed beam at the fundamental frequency
codirectionally with the pump. The seed polarization
could be varied by means of a half-wave plate, and the
relative gains of the signal and idler components were
measured using photodiodes placed immediately after the
first polarizing beam splitter shown in Fig. 1. The rela-
tive pump-seed phase was scanned at a few hertz using
the PZT-mounted pump mirror. Figure 2 shows the
phase-dependent variation in the average idler photo-
current obtained for an input polarization angle y;, =45°.
The photocurrent exhibits a periodic oscillation above
and below the dc level (dashed line) measured with the
pump off. Identical behavior is found for the signal pho-
tocurrent at this polarization. This phase-dependent al-
ternation of the gain between amplification and
deamplification is well known, and it is a signature of the
phenomenon that produces squeezing in the composite
signal and idler mode polarized at 45° to the pump. It
will be shown in Sec. V that the degree of squeezing de-
pends on the gain parameter 3, and this is usually es-
timated by applying the gain equations (8)-(10) to the
gain measured experimentally for one value of ¢,,. How-
ever, we find that this procedure does not in general give

Photocurrent (mA)

04F
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FIG. 2. Average idler photocurrent for input polarization an-
gle ¢¥;,,=45° as a function of pump phase.

the correct result. For example, in Fig. 3 we plot the
maximum and minimum values of the phase-dependent
idler gain as a function of input polarization, along with
theoretical curves obtained using Eq. (12), with k~0 (see
Sec. IV), z=5X10"? m which is the length of the KTP
crystal, and $=30 m ', which is chosen to match the ex-
perimental values at ¢, =0°. It is evident from the figure
that the theory is inadequate at values of ¥;,7-0°. In par-
ticular, the theory predicts that the minimum gain ap-
proaches zero for y;,(rad) ~ Bz, whereas the experimental
data show only a shallow minimum at this point. The
reason for this discrepancy is that the theory assumes
perfect spatial and temporal overlap between the pump
and the seed pulses, which is not the case in practice.
The effects of imperfect overlap can be described approxi-
mately by means of an overlap factor m defined such that
only a fraction m of the seed pulse intensity experiences
the gains given by (10), with the remaining fraction 1 —m
experiencing no amplification. The effective gain values
are consequently changed to
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FIG. 3. The points show the maximum and minimum values
of idler gain G_ measured as a function of input polarization.
The dashed lines show the theoretical variation obtained by as-
suming perfect pump-seed overlap.
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G, +=mG , +(1—m)cos’y;, , (13)
G, _=mG_+(1—m)sin’y;, , (14)

where the plus and minus subscripts denote signal and
idler as previously. Figure 4 shows a fit to the data ob-
tained using the revised gain expressions, where the opti-
mized 8 and m values are 54 and 0.29 m™ ! respectively.
Although this process involves two parameters, we do ob-
tain a well-defined best fit with a unique pair of S and m
values and find, in addition, that a change in 8 of £15%
is enough to make the fit noticeably poor for all values of
m. A further justification of the procedure is that if the
seed and pump beams are deliberately misaligned so that
the experimentally measured gains are further reduced,
the fit to the data gives a 8 value in the same range but
with a lower m value. For comparison, using the mea-
sured pump intensity of ~40 MW /cm? and the nonlinear
susceptibility of KTP [19], we predict [18] a value of
B=70 m~!, which is in reasonable agreement with the
experimental result. The overlap factor is probably limit-
ed by the effects of birefringent walkoff in the doubling
and the paramp crystals, and by imperfect pump and seed
beam collimations which lead to nonideal focusing condi-
tions. In summary we find B~A=54 m™!, s=XAz=0.27,
and we calculate the minimum total gain (G, +G_) for
an input polarization of 45° to be 0.58 or —2.3 dB. The
magnitude of the calculated gain thus lies below the value
of 3 dB that marks the onset of the spatial distortion
effects considered by La Porta and Slusher [20].

IV. PHASE MATCHING
AND SPONTANEOUS FLUORESCENCE

A. Phase matching

In a practical KTP parametric amplifier, phase
mismatch between the coupled pump, signal, and idler
waves arises from dispersion in the crystal and limits the
frequency range over which gain can occur. In Sec. III,
we developed a plane-wave theory to describe the
amplification process for monochromatic pump and seed
beam. However, in practice, both pump and seed beams
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FIG. 4. The points are the experimental data for the idler
gain from Fig. 3. The dashed lines are a fit to the data using the
theory with imperfect pump-seed overlap.

are pulsed and therefore nonmonochromatic, and they
take the form of focused Gaussian beams rather than
infinite plane waves. Therefore it is important to esti-
mate whether the plane-wave theory is applicable, and if
so, what value of phase mismatch parameter is appropri-
ate for the calculations. Some insight into this problem
can be obtained by calculating the phase-matching condi-
tions for parametric amplification from the published
refractive-index data for KTP [19]. KTP is biaxially
birefringent, and the propagation direction for type-II
phase matching is in the x —y plane perpendicular to the
primary optic axis which lies in the z direction (see inset
to Fig. 5). The pump and signal waves are polarized
parallel to the x —y plane (ordinary) and have wave vec-
tors whose magnitudes vary with the propagation direc-
tion which is defined by the angle y. In contrast, the
idler wave is polarized parallel to the z axis (extraordi-
nary) and has a wave vector whose magnitude is indepen-
dent of y. The difference between the n, and n, indices
is sufficiently large to allow phase matching over a wide
range of wavelengths by varying y. However, since n, is
significantly larger than n, and n, KTP can be treated as
effectively uniaxial, and the terms, ordinary and extraor-
dinary are used to define the polarization directions.
Phase matching occurs when ¥ is chosen such that pump,
signal, and idler indices satisfy

2n,(y)=n,(y)+n_, (15)

where n(y) is given by the index ellipsoid
n(y)~*=(cos’y)/n}+(sin’y)/n} . (16)

Using the wavelength-dependent Sellmeier equations de-
rived by Fan et al. [19] for the refractive-index com-
ponents n.,n,, and n, in KTP, we calculate y =32.95°
for degenerate phase matching (i.e., pump wavelength
equal to 526.5 nm, signal and idler wavelengths equal to
1053 nm). In order to investigate the effect of a finite
spread in frequencies for the signal and idler waves, we
write the phase-mismatch parameter as

200
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FIG. 5. Calculated variation in phase-mismatch parameter
Ak with wave number. Results are shown for (1) y =32.95° and
(2) y=33.51°, where y defines the propagation direction, as
shown in the inset to the figure. The vertical dotted line indi-
cates the position of the degeneracy frequency.
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Ak=k,(@,)—k(0,/2+€)—k_(0,/2—€), (17)

where the signal and idler frequencies are displaced by an
amount € on either side of the degeneracy frequency
w,/2 [16]. Using the refractive-index data for KTP, we
calculate numerically the Ak given by Eq. (17). The re-
sults of these calculations are shown in Fig. 5, plotted
against wave number. Note that although Ak can be ei-
ther positive or negative, we are only concerned with the
magnitude of Ak, and in what follows we drop the
modulus signs for simplicity. The results can now be
compared with the experimental case of seeded paramet-
ric amplification, where we assume transform-limited 50-
ps seed pulses which leads to a full width at half max-
imum (FWHM) spread in wavelength of 2.3X 1072 nm
or, alternatively, to a wave-number spread of 21 m- L It
can be seen from curve 1 in Fig. 5 that this spread leads
to only very small values of phase mismatch, i.e.,
Ak~0.8 m~! at the FWHM points. This is negligible
compared with the value for the gain parameter f=>54
m ™!, which was obtained from experiment. Although we
have only considered the spread in seed frequencies up to
this point, the spread in pump frequencies similarly leads
to negligible levels of phase mismatch.

In contrast, focusing the Gaussian pump and seed
beams does lead to large values of phase mismatch in the
experiment. This can be illustrated by considering pump,
signal, and idler waves propagating at some angle, &, to
the direction for degenerate phase matching (y =32.95°).
If £ is chosen as the diffraction angle appropriate for the
degree of focusing present in the experiment, then this
represents the most strongly divergent part of the focused
beams. In this case

E=p/mwn , (18)

where p and n are the wavelength and index appropriate
for the seed beam, and w=19 um is the radius of the
beam waist measured at the focal point of the seed beam.
This leads to a value of £=0.56°. We then use Egs. (16)
and (17) to calculate the phase mismatch as a function of
wave number for a propagation angle (£+7y)=33.51".
The results are shown as curve 2 in Fig. 5. It can be seen
that Ak is ~750 m ™! at the seed frequency which is now
much larger than the gain parameter 8=54 m ™!,

Despite this previous finding, we argue that the Ak
that appears in the plane-wave theory should in fact be
small. The deduction follows from the theory of para-
metric interactions of focused Gaussian beams developed
by Boyd and Kleinman [21]. For example, in the case of
second-harmonic generation by focused beams, the max-
imum conversion efficiency is always obtained with
Ak >0 for the on-axis beam. For comparison, for a KTP
crystal of length 5X 1073 m, this theory predicts an op-
timum Ak value of 620 m ™!, which is similar to the value
obtained above. Most importantly, under such optimum
focusing conditions, the conversion process is formally
equivalent to the case of perfectly phase-matched plane
waves. This is a consequence of the fact that, if Ak >0
for wave vectors parallel to the axis of the diverging
beam, phase matching is nevertheless possible with other
non-axial wave vectors. Such noncollinear mixing pro-

cesses are not possible for Ak =0. Consequently, despite
the large Ak values produced by focusing in the experi-
ment, we are justified in taking the approximation
Ak <<B, in our equivalent plane-wave theory, and in fact
in Sec. IIT B we took the limit k=Ak /2=0.

We find that the gain calculated from our plane-wave
theory is relatively insensitive to the Ak value unless
Ak >>p. This is evident if we consider the theory of Sec.
III A, now with Ak =B. The hyperbolic terms such as
sinh%s in the expression for the gain given by Eq. (10) are
then replaced by periodic terms such as sin’. This
means that for large values of s no sustained growth of
the signal and idler waves is possible along the length of
the crystal and the gain is consequently reduced. Howev-
er, since the crystal is relatively short in this experiment,
ie, z=5X10"2 m, s is small even for values of Ak
significantly larger than B, and the gain is approximately
the same as in the Ak =0 limit. This can be seen from
Fig. 6, where we plot the gain calculated using Eq. (10)
and its Ak =2 f form, versus k=Ak /2. The gain is ap-
proximately constant up to Ak values of order 58, at
which point s ~#/4. This further shows that our as-
sumption of k=Ak /2=0 in Sec. III B is justified, since
Ak has only a small effect on the calculated gain.

B. Spontaneous parametric fluorescence

We have already seen from Egs. (8) and (9) that the
paramp also generates output flux even when there is no
seed input. This spontaneous parametric fluorescence
can be viewed as arising from amplification of the vacu-
um or quantum fluctuations. Since the quantum noise,
unlike the seed beam, is ultrabroad band in nature, the
paramp could in principle produce spontaneous output
flux over a correspondingly broad frequency range, as
long as the correlated photon pairs in the signal and idler
modes satisfy conservation of energy, i.e., 0,=w_+w,.
However, as discussed above, this frequency bandwidth is
ultimately limited by phase mismatch.

In order to investigate this process, the spectrum of the
spontaneous parametric fluoresence was measured using
a scanning monochromator and a germanium photo-
diode. These were positioned after the paramp output
lens, which was then adjusted to focus the spontaneous
light onto the input slit of the monochromator. The

0 100 200 300 400 500
Kk (m™1)

FIG. 6. Maximum value of the total paramp gain calculated
as a function of the phase-matching parameter k= Ak /2.
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pump beam was mechanically chopped, and synchronous
detection was used to measure the spontaneous signal at
each wavelength. Since the spontaneous process is only
phase matched for the ordinary polarization of the pump,
spectra were obtained for both ordinary and extraordi-
nary polarizations and subtracted in order to remove
unwanted background signal arising from filter fluores-
cence etc. The spectra were then normalized for detector
response and monochromator throughput using a cali-
brated white-light source. The results of this procedure
are shown in Fig. 7, plotted against wave number. The
sharp spike at the degeneracy point is an experimental ar-
tifact that arises from a very small amount of residual
scattered infrared radiation which is focused onto the
slits of the monochromator by the paramp output lens.
Apart from this artifact, the spectrum is very broad with
a FWHM of about 1.2X 10> m ™!, which corresponds to a
frequency spread of about 36 THz. Measurements were
also performed using a calibrated power meter and with
the monochromator removed in order to measure the to-
tal emitted power. The was found to be of the order of 6
nW for an average pump power of 0.8 W.

As discussed in the following section, the intrinsic
phase dependence of the paramp produces quadrature
squeezing in the amplified quantum noise, and the spec-
tral measurements above show that this can extend over
many terahertz. However, this huge frequency range will
J

not all be accessible experimentally, since, as discussed by
Huttner, Serulnik, and Ben-Aryeh [16] away from the de-
generacy point the phase of the squeezed quadrature
varies with frequency, and therefore cannot be observed
for a single local-oscillator-phase setting. In addition,
since phase matching causes different frequencies to be
emitted at different angles, the experiment acts as a spa-
tial filter, and only those frequency components that have
the same spatial mode as the local oscillator contribute
efficiently to the measured noise reduction. This effect is
accentuated by dispersion in the output lens, which
means that only those frequencies close to the degeneracy
frequency in the output beam can be collimated
effectively and mixed with the local oscillator.

V. VACUUM-NOISE SQUEEZING

A. Theory

We now consider theoretically the case discussed in
Sec. IV B above, that is to say the parametric amplifier
with the seed beam removed (F;, =0), so that the output
consists only of the amplified vacuum input noise. Mea-
surements of the output noise by balanced-homodyne
detection are represented by the dimensionless field
operator [17,22].

E¢)=aT)™ [Tt [dofial,(@explito—w, /20t +id, | —i@gy(@expl —ilw—w, /2t —i¢ ]}, (19

where T is the integration time, with the period of detec-
tion extending from time 7 to time 7+ 7T, ¢; is the phase
of the local oscillator, and the frequency of the local os-
cillator is one half of the pump frequency w,. It is essen-
tial for the observation of phase-dependent noise that the
homodyne detector receives contributions from both the
signal and idler (plus and minus) modes of the paramp.
The output operator in (19) is given by

8o (@)= 4 oy (@)cosy +8 _ oy (@)sinyg, , (20)

Photon Flux (arb. units)

T T

T
0.9 1.0 1.1x106

(Wavelength)~! (m-1)

FIG. 7. The measured spontaneous-parametric-fluorescence
spectrum.

when the signal and idler modes are overlapped (spatially
and temporally) to form a composite mode linearly polar-
ized at angle ¥, to the signal mode polarization direc-
tion. The expression (19) is valid only for detection band-
widths that are small compared to w, /2.

The mean and the variance of the homodyne field are
now obtained straightforwardly by substitution of (1) and
(2) into (20), and (20) into (19). The results are thus ex-
pressed in terms of expectation values of the input opera-
tors. For a vacuum input

(E(¢,))=0 21

and

([AE(@)P) =G (m—2¢, +O,¥,,,)
+G_(m—2¢, +6,¢y,) , 22)

where the plus and minus mode gains are defined in (10).
In the absence of the parametric amplifier, (22) reduces to

([AE(¢;)1P)=1 (ie., for s=0), (23)

and this represents the standard quantum limit or shot
noise that ordinarily occurs in homodyne detection. Any
squeezing produced by the presence of the parametric
amplifier is characterized by a variance smaller than uni-
ty. According to (11), the minimum variance occurs for
local oscillator phase angles ¢; such that
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tan(2¢, —O)= —(k/A)tanhs (24)
and for 45° output polarization, when (12) gives
([AE(L)T ) min
=1-+(2B/A%)sinhs[Bsinhs — (B*cosh?s —«?)!/2] .
(25)

The homodyne variances calculated above are intrinsic
values that could in principle be observed in a lossless
system with ideal detectors. The effects of loss and detec-
tor quantum efficiencies smaller than unity can be incor-
porated in the theory by replacing the output operators
defined in (1) and (2) by detector operators [23]

d, (=92, (0)+i(1—9 )", (), (26)
d_(0)=n"a_,,(0)+i(1—7_ )" _(0), QN

where 1, and 7_ are loss factors, whose natures are dis-
cussed in Sec. V B, and the D operators represent vacuum
fields that are coupled into the detected light beams by
the loss processes. For a perfectly balanced detection sys-
tem 1, =mn_=m, and the measured homodyne variance
is proportional to

([AE(¢))) ea=n([AE( )Y +1—7 , (28)

where the constant of proportionality is the mean number
of detected local-oscillator photons in time 7.

B. Experimental results and discussion

In order to observe squeezing effects it is necessary to
ensure that the homodyne detector gives shot-noise-
limited performance when there is no input to its signal
port. As a first step, with the local oscillator off, we
check that the gain of the electronic amplifier is
sufficiently high to bring the detector’s thermal output
noise several decibels above the spectrum analyzer noise
floor. When the local oscillator power is increased, the
total noise level rises above the thermal noise due to the
contribution of broadband shot noise. The shot noise is
expected to vary linearly with average photodiode
current [14] i,, and this behavior is well illustrated in
Fig. 8, where we plot the noise power measured at 440
MHz against i,, (the spectrum-analyzer-resolution band-
width was 100 kHz, and the measured thermal noise of
—102 dBm was subtracted). This linear dependence of
the shot noise can be contrasted with the behavior of the
partially balanced photocurrent harmonics at 76-MHz in-
tervals. The peak power of these harmonics varies as i2,
as illustrated in Fig. 8 for the 456-MHz peak. This
confirms that the noise measured at 440 MHz is Poissoni-
an in nature, and does not arise from a harmonic side
band, for example. However, the main tests that the
noise level is indeed due to shot noise are that it is within
a few percent of the theoretical value and, in addition, is
truly broadband, since as the local oscillator power is in-
creased the noise floor between the photocurrent har-
monics is observed to increase uniformly across the entire
accessible frequency range of 0.02-0.5 GHz. It was also
found that for photocurrents above 1 mA the noise in-
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FIG. 8. Variation of shot-noise power (open circles) and har-
monic power (solid circles) with average photodiode current.
Thermal noise of 6.3X 10~ '* W was subtracted from the total
measured noise to obtain the shot-noise contribution. Typical
error bars are represented by the size of the circles.

creased rapidly and nonlinearly due to saturation of both
the photodiode response and the electronic amplifier,
consequently i,, was always kept below this limit.

When the output from the parametric amplifier is
directed into the signal port of the homodyne detector
the noise level between photocurrent harmonics becomes
a function of local oscillator phase, as shown in Fig. 9 for
a frequency of 440 MHz. The noise maxima and minima
are approximately 0.7 dB (17.5%) above and 0.5 dB
(11%) below the combined shot noise and thermal noise
level measured with the paramp output blocked. The
average photocurrent is 0.66 mA, and the combined noise
level is —97.2 dBm, which is 4.8 dB above the thermal
noise. Taking into account the contribution of the
thermal noise, we find that measured shot-noise reduction
due to squeezing is ~0.8 dB or 17%. Since losses in the
experiment add uncorrelated noise which degrades the
degree of squeezing, this value is smaller than the max-
imum level of noise reduction achieved by the paramp.
As shown by Eq. (25), this is given by the minimum gain
value for polarization angle ¥=45°, which in Sec. III B
was found to be equal to 0.58. This predicts 2.3 dB or
42% of squeezing in an ideal lossless experiment. The
measured and minimum levels of squeezing are related by
Eq. (28), in which 7, the total loss, is the product of
several components given by

N=NaMoNh - (29)

Here, 1,=0.89 is the detector quantum efficiency,
1, =0.82 is due to reflection and absorption loss in the
optical path after the paramp, and 7, is the homodyne
mode-matching efficiency for the squeezed beam and the
local oscillator. The parameter 7, is difficult to measure
experimentally, but the upper limit is about 0.8 since,
even with perfect temporal overlap, there are spatial
differences in the modes due to the nonlinear generation
mechanism for the squeezed beam [5,7]. Consequently,
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FIG. 9. Homodyne detector noise measured as a function of
local oscillator phase. The two traces show the phase-
independence noise level obtained with the paramp output off
and the phase-dependent noise obtained with the paramp output
on. The maximum noise reduction due to squeezing is about 0.5
dB.

we take the approach of using Eq. (28) to estimate the to-
tal loss parameter 7, and then check that this gives an ac-
ceptable value for 7, using Eq. (29). This process leads
to estimates of 7=0.39 and 7, =0.53. In order to see
whether this low value for 7, is reasonable, an experi-
ment was carried out to measure the mode-matching
efficiency of the seed beam with the local oscillator. In an
ideal experiment this mode-matching efficiency should be
unity since the two beams are derived from the same
source. The measurement is straightforward, since the
seed power can be made comparable to the local oscilla-
tor power, so that when the phase of the local oscillator is
scanned, the strong interference between the two beams
produces large swings in the average photodiode
currents. The depth of this modulation can be directly
related to the seed-local oscillator mode-matching
efficiency, denoted as 7}, and we obtain a maximum
value of 17;, =0.65. This value is less than unity because,
although the seed and local oscillator are generated from
the same laser, there are many optical components in the
optical paths which can produce phase front distortions
and slightly different divergences for the beams. Now, by
comparison, we see that the low value of 7, =0.53 ob-
tained for the mode-matching efficiency of the squeezed
vacuum and the local oscillator is reasonable. Moreover,
since the ratio (7,/7,)=0.81, the mode-matching
efficiency is in fact close to the optimum value discussed
above. In conclusion, we also note that if the overlap fac-
tor m had not been included in the gain calculation in
Sec. III B, we would have obtained the smaller value for
the gain parameter 8 of 30 m™!, which leads to the far-
too-large estimate of 7, =0.89.

V1. INTENSITY NOISE REDUCTION
IN DIFFERENCE PHOTODETECTION

A. Theory

In addition to quadrature squeezing of the vacuum
noise, another aspect of the nonclassical behavior of the

paramp is that the difference in the intensity fluctuations
between the signal and idler also exhibits squeezing
[8,11-13). This occurs because the signal and idler pho-
tons are created pairwise and hence the intensity fluctua-
tions are strongly correlated. As has been pointed out
previously [11], this can be seen from the equality of the
operators that represent the difference output flux
F .—F_,, and the difference input flux F ;, —F_,; .
The input and output difference fluxes thus have the same
noise characteristics, and these can be studied by direct
detection of the two output modes. With the coherent in-
put seed beam at frequency w, /2 described by (5) and (6)
now restored, the difference in output fluxes is readily ob-
tained from (8) and (9). However, it is necessary to re-
work the calculation replacing the output operators (1)
and (2) by the detector operators (26) and (27) to allow for
loss and imperfect quantum efficiencies, as in (29). If the
total loss factors for the two output modes are both equal
to 1, the mean measured difference in output fluxes for a
detector integration time T is

<ﬁout )= 7][G+ (2¢in_e’¢in)
_Gg(2¢in_ey¢‘m)]FinT
=nF,,T cos2yy, . (30)

The mean vanishes for an input polarization angle of 45°,
and in this case the variance in the measured difference in
output fluxes is

((AD,, ))=n(1—9)[G . (26,,—O,7/4)
+G_(2¢,,—©,7/4)|F,,T
+9’F, T, (31

where we omit the negligible amplified-vacuum-noise
term [see Egs. (8) and (9)]. From Eq. (10) the sum of the
gains is

G, +G_ =1+2(8/A)%*inh% —(2B/A)sinhs
X[ coshs cos(2¢,,—O)
+(x/A)sinhs sin(2¢,,—0)] . (32)

It can be seen from (31) and (32) that in a lossless experi-
ment (n=1), although the individual signal and idler
photocurrents vary with pump phase O, the difference-
photocurrent noise is phase independent and, as dis-
cussed above, is the same as that obtained with the pump
off. In contrast, if the signal and idler were totally un-
correlated, the quantum noise on the difference photo-
current would simply be the sum of the noises on the in-
dividual signal and idler photocurrents, and therefore
would have the same phase dependence. Hence the
paramp either amplifies the signal and idler modes by
adding pairs of strongly correlated photons, which do not
increase the difference-intensity noise, or deamplifies the
signal and idler modes by removing photons pairwise,
which maintains the difference-intensity noise at its input
value. In Sec. VIB, we investigate experimentally the
transition between the correlated and uncorrelated be-
havior by introducing excess loss into the system.
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B. Experimental results and discussion

Difference-photocurrent measurements were per-
formed by placing the photodiodes in the signal and idler
beams directly after the first polarizing beam splitter
shown in Fig. 1. Brewster-angled glass filters were used
to remove the pump from the paramp output, and the
seed power was set so that the signal and idler photo-
currents were both equal to 0.54 mA when the pump was
off. Under these conditions, the noise measured on the
spectrum analyzer was shot-noise dominated, and the
maximum photocurrent levels obtained in the experiment
were below the detector saturation level. When the pump
was turned on, and its phase scanned, the signal and idler
photocurrents varied as shown in Fig. 2, and the max-
imum and minimum values of paramp gain were as illus-
trated in Fig. 3 for ¢,,=45°. Figure 10(a) shows the total
noise measured at 440 MHz under these conditions as a
function of pump phase. We find a residual phase depen-
dence which is consistent with the unavoidable loss in the
experiment. This is due the transmission of the filters
(0.96) and the quantum efficiency of the photodiodes
(0.89) which give a total loss coefficient 7=0.85. The
loss in the experiment was then increased by placing ab-
sorbing filters after the paramp. In each case the seed
power was increased so that the signal and idler photo-
currents remained the same in order to ensure that the
ratio of the shot noise to the thermal noise remained con-
stant. The results are shown in Figs. 10(b) and 10(c) for
loss coefficient values of 0.43 and 0.16, respectively. We
find progressively more phase dependence in the output
noise as the correlations in the paramp output are des-
troyed by the increased loss, and the results are well
modeled by Eq. (31). From a comparison of Figs. 10(a)
and 10(c) it can be seen that the experiment produces
about 0.6 dB of total noise reduction in the lowest loss
situation.

VII. SUMMARY AND CONCLUSION

In conclusion, we have used pulsed parametric
amplification in KTP to investigate both quadrature
squeezing via phase-sensitive homodyne detection, and
also “twin-beam” noise reduction using direct-detection
techniques. The quadrature squeezing experiment pro-
duced total noise reductions ~0.5 dB (11%), correspond-
ing to ~0.8 dB (17%) of quantum-noise reduction, at fre-
quencies up to 0.5 GHz. These results were modeled us-
ing a multimode traveling-wave theory, and consistent
values of the parameters describing gain, loss, and mode
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FIG. 10. Ratio of the difference-photocurrent noise obtained
with the pump on to that obtained with the pump off, measured
as a function of pump phase. The output loss increases from (a)
to (c).

mismatch were determined. In the twin-beam experi-
ment, the transition between correlated and uncorrelated
behavior of the paramp was investigated by the introduc-
tion of excess loss and modeled using the traveling-wave
theory.
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