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Within many-body perturbation theory (MBPT), the correlated decay of an inner-shell vacancy, name-
ly, the double Auger effect, is considered. Expressions for the amplitude and probabilities are obtained
in the lowest order of MBPT. The approximate formulas, in particular the “shakeoff”” model, are dis-
cussed. The calculations are performed for the 1s ~!—2s 22p ~!+g, +g¢, transition in Ne. It is shown
that the angular distribution of electrons ejected in the double Auger decay of an s hole is asymmetric,
depending strongly on the angle of their relative motion.

PACS number(s): 32.80.Hd

I. INTRODUCTION

In the normal Auger process, filling of a vacancy in an
inner shell by an outer-shell electron leads to the emission
of a second outer electron. However, if we have a vacan-
cy in a deep inner shell, the transition of the outer elec-
tron can cause ejection of two electrons simultaneously,
the so-called double Auger (DA) process, Fig. 1. The DA
decay was observed for the first time in [1]. Recently,
evidence for the analogous resonant process was reported
by Becker et al. [2]. Unlike the experiment of Carlson
and Krause, here they excited the electron from an inner
shell to an unoccupied discrete level. Then this excited
state with one excited electron and one core hole decayed
via ejection of two electrons.

From the analysis of Carlson and Krause [1], it follows
that the portion of the triple ions, Ne** being produced
after the DA decay is 8%. The first attempt to calculate
the probability of the DA process has been done by Carl-
son and Krause [1]. Using the “shake-off” model, they
determined that the portion of Ne** ions produced can
only be 0.5%, which of course is small compared to the
8% observed in the experiment. One of the possible
reasons for such a discrepancy may be the neglect of the
shakeoff model to accurately account for electron correla-
tions in the calculation of the DA decay probability.

In this paper we report calculations of the probability
of the DA decay within many-body perturbation theory.
We also report our investigation of the angular distribu-
tion of electrons ejected in the DA process. Section II
contains the general formulas for the amplitude of the
DA decay in the many-body perturbation theory (MBPT)
[3]. In Sec. III the approximate formulas for the ampli-
tude and the probability of the DA decay are presented.
Section IV is devoted to the investigation of the energy
distribution between two outgoing electrons. The calcu-
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lation of the angular distribution of electrons is discussed
in Secs. V and VI. The results of the numerical calcula-
tions in Ne are presented in Sec. VII.

II. AMPLITUDE OF DOUBLE AUGER DECAY

In the independent-particle model (the “frozen-core”
approximation), the amplitude of the DA decay has to be
zero since the initial ¥; and the final ¥, wave functions
differ by more than two single-electron states. In this
case, as is well known [4], the matrix element
(‘I/f]?=l/r12|\lf,»), determining the amplitude of the
DA decay, is zero. Therefore, for the calculation of the
DA probability it is necessary to take the many-electron
correlations into account. In our work we employ the
many-body perturbation theory [3] for the calculation of
the DA amplitude.

The initial state in the DA process has only one hole in
its electron configuration, while the final state has three
vacancies and two electrons in the continuum. Let the
lines with the arrows to the left and to the right denote
vacancies and electrons, respectively. In this case in the

/0P

FIG. 1. Schematic representation of the double Auger decay;
i is an inner-shell hole.
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lowest order of perturbation theory on the interelectron
interaction, the amplitude M of the DA decay will be
defined by the diagrams shown in Fig. 2. The corre-
sponding analytical expressions are presented as follows:

9
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M= (iqzlglfsk )i:q1|_U|f3f1) ,
k i 9, fz Ek
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where
(pq|Ulrs)={pq|Vlrs)—pq|V|sr) &)

is the difference of the “direct” and the “exchange” ma-
trix elements of the Coulomb interaction; i is the initial
hole and f,f,,f; are the final vacancies; ¢, and g, are
the Auger electrons; and € is the one-particle Hartree-
Fock energy. The summation over k in (2) implies the
summation over the hole and the discrete electron levels
and the integration over the continuous spectrum. In the
general case, the amplitude M of the DA process has to
depend on the total orbital and spin momenta of the ini-
tial and final states. The derivation of such an expression
is given in the Appendix.
The transition energy in the DA

E.=E;—E;, 4)
where E; and E are the energies of the initial and final
states, respectively, and is continuously distributed be-
tween the two emitted electrons. Therefore, the total

probability of the DA process (or its partial width) is
determined by the expression

EO
rPA= fo “v(E,)E, , (5)

where y(E ) is the probability that the first electron (for
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FIG. 2. Brueckner-Goldstone diagrams for the partial ampli-
tudes M, M,, and M,. Other amplitudes (M, and M;, M5 and
Mg, and Mg and M,) can be obtained out of amplitudes M,,
M,, and M, by the cyclic replacement of the electrons f, f>,
and f, respectively. Lines with arrows to the left and to the
right denote holes and particles, respectively.

example, g,) has the energy E,. The expression for
v(E,) is given [5] by

y(E,)=2m|M|*. (6)

Atomic units are used throughout this paper, while the
energy is in rydbergs.

III. FORMULAS DERIVED IN MODEL APPROACHES

In this section we present the approximate formulas for
the amplitude M and the probability of the DA decay.

A. Virtual inelastic scattering

Let us assume that in some cases the following condi-
tions are fulfilled:

IM,|>>|M,|, i#4 (7a)
|[ImM,| >>|ReM,| . (7b)

This means that the diagram presented in Fig. 3, namely
its imaginary part, dominates in the total amplitude. In
this case, the total amplitude of the DA process can be
approximately presented as

|M|z‘ImM‘;"i<koi|U|f2f3)<‘11Qz‘U‘f1k0) , (8)

where e,=k2 satisfies the energy conservation law
g0=¢y, T €, —¢,;. Substituting (8) into expression (6), we
find that

FPA:FFszhkOUkO ’ &)
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FIG. 3. Diagram describing the inelastic mechanism of the
double Auger decay. At the first step the initial vacancy i de-
cays via the normal Auger decay i '— f5 ;! +k,, the emit-
ted electron k scatters inelastically on the shell f,. As the re-
sult of such inelastic scattering, two double Auger electrons g,
and g, are ejected.

where '/, 7af3ko is the probability (width) of the normal
Auger decay of the initial hole i and o ko is the cross sec-

tion of the inelastic scattering of the “intermediate”
Auger electron k, upon the electron shell f,. Here the
energy distribution of two outgoing electrons is deter-
mined by the inelastic scattering process of the k, Auger

electron and if g, is high enough €g, >>Eg .

B. Cascade mechanism

The initial hole i can decay via the normal Auger tran-
sition, producing a vacancy in one of the intermediate
shells. This intermediate vacancy, in turn, can decay via
another Auger transition.

This mechanism of the DA transition is given symboli-
cally by the diagram shown in Fig. 4. The corresponding
probability T'P* is obtained from the expression

FPA:F'A—’fqulr.;qﬁfzf3q2rj : ’ (10)
where I'; is the total width of the intermediate hole j.
The energy spectrum of &g, and €, has two lines centered

ate, =g, +&;—¢; and sq2=ef2+sf3—ej.

C. “Shake-off”” model

In this subsection, we will show that MBPT contains
the shake-off model as well. In fact, if one restricts one-
self in the sum (1) by the terms M|, , M2|k=f1’ and

M9|k:,-,i.e.,

M=Ml_; +M,l—p +Mol;; , (1n

FIG. 4. Auger cascade mechanism of the DA decay. At the
first stage the initial hole i decays via the normal
i"'—f5'j7'"+4q, Auger process. The the intermediate hole j
in turn decays via another Auger transition, j '— f3 ;' +g¢,.
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then
M ={ig,|U\f [, q,i|Ulf3i) =g, f1|UIf3f1)

—<‘12f2|U|f3f2>](5q2_8f3)_1

=g, |UIf £ )(FO=F/ ' —F) (e, —e, )"

(12)
In (12), the expression

1) fy)

FY—F F (13)

is the alteration of the self-consistent Hartree-Fock field
of the atom caused by the normal i '—f'f; ! +gq,
Auger transition. Further, one can easily show, e.g., by
applying the perturbation theory in matrix elements in U,
that

_ S )
(q,|F"—F F

€q,_%q,

If3)

(14)

is the overlap integral between two one-electron wave
functions @ 7,(r) and @, (r) determined in the field of the

initial hole i and in the field of vacancies f, and f,, re-
spectively [6]. Consequently, the probability of the DA
decay will be defined by the equation

FPAzrxiflfqu|<q2lf3>|2‘ (15)

Here (g,| and |f;) stand for the wave functions @ fs(r)
and @, (r), respectively. Thus expression (12) corre-

sponds to the shake-off model [1]. In our case the ‘“shak-
ing” of the atomic field is caused by the normal Auger
transition i ~'— £ 'f; ' +¢,. Finally it should be noted
that one can obtain formulas similar to the expression
(15) containing other overlap integrals, such as

(@IF), @), @lfD), @lf), G@lf) .
(16)

In this case the energy &, and &, distribution is strongly
asymmetric, having one fast and one slow electron.

IV. ENERGY DISTRIBUTION BETWEEN TWO
AUGER ELECTRONS

In the DA process, as mentioned above, the transition
energy E,,=E,—E, is continuously distributed between
the two outgoing electrons, i.e., each of the electrons may
have a kinetic energy between O and E,,,. We will show
below that the most probable situation is the asymmetric
partitioning case, where one of the ejected electrons car-
ries away almost the whole energy, while the other elec-
tron has only a very small part of it. Therefore in an ex-
periment the observation of a slow and a fast electron
would be most probable. It means also, that rather prob-
able is the process with the slow electron captured to a
discrete level in the ion state with three vacancies

f1>f2’f3‘

Let us start with the case when the energies of both
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Auger electrons are relatively high and approximately
equal, €,=e,. In this case, in order to evaluate the
Coulomb matrix elements containing the wave functions
(pql(r) and q)qz(r) of electrons g, and gq,, one may replace

q.r ikg,r
“ande %, re-

(pql(r) and <pq2(r) by the plane waves e
spectively; then the Coulomb matrix elements prove to be

of the order of (qu)_ﬂ, where qu=(8qi)1/2, i=12 [7].

The corresponding amplitudes will be of the order of
EBY (B>1). (17

The magnitude S depends on the angular momentum
transferred via the Coulomb interaction.
Now let us consider another case, when sqle,

€g,~E - Here we cannot replace the wave function of

the slow electron by the plane wave. However, at least for
estimation of the Coulomb matrix elements, we can use
the Coulombic wave function of the electron having zero
energy [8],

Rplp—o~VrIy(V38r). (18)

Here I;(r) is the Bessel function. Substituting (18) into
the Coulomb matrix elements, one obtains

M,~E_P? . (19)

Comparing (17) and (19) we see that in the second case,
when the transition energy is distributed asymmetrically
(g;>>¢,), the partial amplitudes and consequently the
probability may in principle exceed those of the sym-
metric distribution (g;=¢,). These qualitative arguments
are corroborated by the numerical calculations given
below.

The expressions (17) and (19) also help to explain the
behavior of the DA decay probability when passing from
the 1s-hole decay in Ne to that of the 3d vacancy in Kr.
Carlson and Krause [9] observed that in Kr the yield of
the triple ions is 31%, while in Ne it is only 8%. Accord-
ing to the expressions (16) and (18) the amplitude of the
DA decay in Kr can be larger than in Ne, since in the
1

ekq(1,1)= >
kf,qf.ko»Q()

where
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former case the transition energy is smaller. Therefore, if
the incidental cancellation of the “partial” amplitudes M;
(i=1,2,...,9) in the total amplitude M =3 ;M; does
not take place, then one should expect that in Kr, where
the excess energy is much less than in the decay of the 1s
hole in Ne, the probability of the DA decay of the 3d
hole will be larger than one of the 1s hole decay in Ne.

V. ANGULAR DISTRIBUTION

Within the framework of the statistical tensor formal-
ism [10], the probability W of emitting two electrons in
directions n; and n, can be written as

dw

m: S MUyj 10 prg(L D)

kq1,,1}
1iyslysds

X e (LDM*(1j1,155%) ,  (20)

where py,(1,1) is the statistical tensor of the initial state,
I is the total angular momentum of the initial ion,
€x,(L,1) is the efficiency tensor, M (lj,,l,j,) is the DA
amplitude; /;j; (i =1,2) are the orbital and total momen-
ta of the electrons, and €, is the energy of one of the elec-
trons ejected, for example the first one.

The expressions for the amplitude M (1,j,,/,j,) of the
DA decay are presented in Sec. II and the Appendix. It
is only necessary to take into account that in calculations
of the angular distribution we choose the following cou-
pling scheme:

V,=|1;,j,15j)0:I) Q1
that is, the pair of ejected Auger electrons is character-
ized by the total momentum 1.

Let us consider the efficiency tensor €11 ). Accord-
ing to the common rules we can construct skq(I,I ) using
the tensors equf(I 3 f) of the final ion and the tensor
ekoqo(l 1»11) responsible for the pair of outgoing electrons
(10],

(LD (DI L (DT e ML T (Ko):k Mk pq kogol kg ek g (T pad e g (T 11 (22)

(23)

is the recoupling coefficient and (aabp|cy) is the Clebsch-Gordan coefficient. Further, we consider the case when the
final ion is not observed. Then the efficiency tensor of the final ion is determined by the equation [10]

€0, 71y )=5kf05qf0? i

Here T=(2I +1)!/2. In this case

(LI (DI Dk | TI (ke T (g )ik Y =T 21 71(—1)

Substituting (24) and (25) into (22) we get

L I I

€ (LD=12 72—y Tk l

I I,l k lfkq(II;III) .

(24)

I+I+I +kg I I I )
IANE (25)

(26)
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The tensor €,,(I,1]) describing the pair of the Auger electrons, can be constructed from the tensors of individual elec-

trons, that is, from €k q,(J1,J'1) and €k,q,(J2:J"2), respectively,

v I
€1, 11)= LIk Ky gy Jy T {(kigikagalkg)er o Groder g, (sdh) -
k1:4ykg.4y k, k, k

Finally, we get

’ 1 AN A A, I ’
'5"4”1”1):@121,2111 (= 1) L AT Ak +14]] +j)
155t aan k]flfikl js iy ks
X > " I ’

b, IRACRVALRTFIE TR NI S 1, PR | TR

jl jz 11

X (1,0110lk,0)1,0150(k,0) { ji j5 I

ky k, k

X(klfhkzqz‘kq)Yqul(nl)Ykzqz(nz) .

Substituting (28) into (20) we find

dW 1 Y- SED VI I+ I'+k+1
= T,0(—1) (=1
deidnn, 167 %I Iy hIy ) (=1 'I 1 Iflpk‘l(l’n
N NN N N A ey jl j’l kl
X > LDy 1l 57 5= 1)11+12 AT S
Jol il iy tysy ki ok, ora
o I
X (1,0170]k,0)(1,0150|k,0) {1\ j5 I
ki k, k
X Yol 2ny,m )M (1 jiy 1) M1, 173
where
kK,
Yy, Mnpn))= 3 (kiq,kyq,1kq)Y, 4 (n))Y; 24, (ny) .

919

The expression (29) defines the angular distribution of electrons ejected in the DA decay of any vacancy.

For the case of the unpolarized holes (the isotropic system) when [10]
kq :BkOSqu -,
the expression (29) is simplified,

W(elz)zN 1+ 2 ak(El,Ez)Pk(Coselz) ’
k>0

where a, (g,,€,) is given by

J2 Ja
I I

alene)=N"" 3 LT 5T5 50— 17 0140 k,0)(1,00501k,0)
Lo 104
PPN
Jv Jv k| i J2 kilin J2 Ty ]M(l LM 1
X ’ ' .1 .t j ’ j j , T 5
I % I 1, % iy gtk 1J1542]2 1J15t272

N= 3

IM (1)1, 14217

Lydvlyds

=

(28)

(33)
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P, (cosO,,) is the Legendre polynomial, and ©, is the an-
gle between directions n; and n,.

Thus the angular distribution of electrons emitted in
the double Auger decay of unpolarized vacancies, for ex-
ample s holes, depends, as it should only on the angle be-
tween the two outgoing electrons. In this case, it is ex-
pedient to introduce the angular correlation function
F(©,,) [10],

F(912)=1+ 2 ak(El,EZ)Pk(Coselz) s (34)
k>0

which is normalized in the following way:

T6iﬂ—2—fF<en)dnld92=1 . (35)

VI. LS (J) APPROXIMATION

Very often it is supposed that the initial and the final
states in Auger processes can be characterized by quan-
tum numbers L, S, and J (see, for example [11]). The
purpose of this section is the derivation of the formulas in
the LS (J) coupling scheme. The transformation of the
amplitude of the DA decay into the LS representation is
carried out, as well as for the normal Auger process ac-
cording to the known expression [11]. In our case, we get

M(I1fl»12fz)=fff1£1§1f§f1}2

Lot oL, os o
XL 5 jpiLy Sp I

Ll Sl Jl L S J
XM(LS;,(L1,)L,S,) . (36)

|

ai(e,e)=(N)"1 3 LT,

1,0,,10,15

(—1) 11IZT'IT'z(1101'10|k0)(120130|k0)[

The amplitudes M(L S, (I,I,)LS;) will not depend on
the momenta j, and j, if we neglect by the spin-orbital
interaction among Auger electrons. Then substituting
(36) into (33) we can perform the summation over

Jvitsias and j5,

k+L A A~

aple,6)=N"'3 (—1)  '11,T751,0010/k0)

LI
I, 1, LI]

X (1,010]k0) [1,2 -

Ly S Iy
XTiP3L28%iL, s, I,
L S J

XM(LIShllIZ)M(LISI’I,Ilé)’ (37)

Ly S Iy
N= 3 T313L282{L, 8, I, {IM(L,S,,1,1,)].
fvh L S J

(38)

Finally, let us consider the case when both in the final ion
and in the continuum, we can neglect the fine structure.
We may then perform the summation over I, and I;. In
this case a; (g,,€,) is defined by the expression

LI, L,
Lok

XM(L,S,1,1,)M*(L,S,,I\l5), N'=3 |[M(L,S,,l,I,)*. (39)

VII. RESULTS OF CONCRETE CALCULATIONS
AND DISCUSSION

A. Decay probability

We have calculated the probability for the
1s 7 '(28)—2s ~%(!S)2p " '(®P)+q, +q, transition in Ne.
For the calculations of the Coulomb matrix elements, the
Hartree-Fock wave functions were employed. The wave
functions of the Auger electrons were defined in the field
of the three holes (2s ~22p ~!). That allows us to take
into account some many-electron correlations [6].

In the DA, the selection rules permit the emission of
electrons with the following momenta: lq‘=0, Iq2=1,

then lq1 =1, qu =2, and so on. However, the calculations

show that with increasing values of orbital momenta the
contribution of such pairs of electrons is rapidly reduced.
For example, in the case under investigation, the contri-

1.1,

f

bution of the electron pair with lq1 =2, lq2=3 is negligi-

ble. Therefore we limited ourselves by the calculation of
the channel l‘h =0, qu =1. The probability of the other

channel Iql=l, lq2=2 has been estimated using the

“shake-off”” formula (15). The excess energy in the transi-
tion considered is 50.512 Ry. The same values of the
“partial” amplitudes M; are presented in Tables I and II.
The behavior of y(E,) is presented in Fig. 5. The curve
is symmetric since both electrons g, and g, can have the
same energy and orbital momenta. The calculations
show that the DA process is favored if one of the elec-
trons is slow (low energy) and the other electron is fast
(high energy), in accordance with the estimations present-
ed above.

From Tables I and II one can see that the imaginary
part [Im(M;)] in the asymmetric distribution is less than
the real part [(Re (M;)]. Here the main contribution to
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TABLE 1.

The partial (M;, i=1,2,...,9) and the

total M amplitudes (in units of 10°) for the transition

1s7'—>2s722p " (*P)q,s('P)q,p(3S) in Ne. E, is the energy of the “first” Auger electron in rydbergs. The total energy of the given

transition is 50.512 Ry.

E,=0.010 E,=1.000 E,=25.256 E, =49.512 E,=50.502
M, —0.540 —0.413 —0.020 0.468 0.857
M, —0.540 —0.413 —0.020 0.468 0.857
M, —0.0005 —0.000 —0.005 0.015 0.033
M, —0.008+:0.083 —0.004+i0.065 —0.008+:0.024 —0.003+i0.017 —0.005+i0.019
M —0.010+:0.079 —0.006+:0.063 —0.010+i0.025 —0.006+:0.020 —0.007+i0.022
M, 0.003+:0.0075 —0.013+1:0.020 —0.029+i0.025 —0.019+:0.105 —0.025+:i0.206
M, 0.140 0.115 0.013 0.001 0.0005
Mg 0.140 0.115 0.013 0.001 0.0005
M, 0.362 0.279 —0.107 —1.469 —2.656
M —0.458+1:0.169 —0.344+i0.148 —0.172+i0.074 —0.545+i0.142 —0.947+i0.247

Yi(Ey) 1.441 0.837 0.220 1.988 6.060

(units

of 10°)

the total amplitude is given by the shake-off mechanism.
The “‘shaking” of the slow electron is more probable than
that of the fast electron since the overlap integral be-
tween the outgoing electron and the core electron de-
creases very rapidly with increasing electron energy (16).
Thus, the fast electron is ejected in the “virtual” Auger
decay, while the slow electron results in the shake-off
process.

If we sum up the probabilities of the transitions
1s 71(2S)—2s ~%('S)2p "1 (?P)q,s('P)q,p(%S) and
1s71(2S)—2s "%('5)2p "1 (?P)q,s(3P)q,p(*S), then we
get the value 0.34X 1072 eV or 1.5% of the total width
(0.23 eV) of the 1s hole [12]. It should be noted that the
result of the shakeoff calculations according to expression
(15) will be three times less. This implies that it is neces-
sary to take into account all mechanisms in the DA pro-
cess.

There are also the transitions with the other electron

configuration in the final state to consider, namely the
Is ' 52s72p " 4+q,+¢q, and 1s"'52p 7 3+q,+q,
transitions. In these transitions the excess energy will not
differ considerably from the first case. Therefore we may
assume, in accordance with expressions (17) and (19), that
the total probability of these two transitions can be equal
to (0.5-0.6)X 1072 eV. Then the total “double Auger”
width of the 1s hole will be ~0.9X 1072 eV or 4.0% of
the total width of the 1s vacancy. This value agrees
reasonably well with the experimental result of Carlson
and Krause [1]; however, for a more detailed comparison,
more comprehensive calculations are necessary.

B. Angular distribution

Numerical calculations have also been carried out for
the 1s "' —2s ~22p ~!+¢, +¢, transition in Ne. Here also
the Auger spectrum can be described in the LS(J) ap-

TABLE II. The partial (M;, i=1,2,...,9) and the total M amplitudes (in units of 10°) for the transition
1s ' 25 22p " '(2P)q,s(3P)q,p(%S) in Ne. Notation is the same as in Table L.

E,=0.010 E;=1.000 E,=25.256 E|;=49.512 E,=50.502
M, —0.332 —0.242 —0.005 0.900 1.052
M, —0.332 —0.242 —0.005 0.900 1.052
M, —0.025 —0.024 —0.006 0.138 0.146
M, —0.044+10.035 —0.018+:0.010 —0.056+:0.007 —0.044+:0.003 —0.041+i0.007
M —0.047+i0.036 —0.017+i0.010 —0.061+i0.008 —0.047+i0.006 —0.044+i0.006
Mg —0.007+:i0.023 —0.035+1:0.049 —0.037+i0.054 —0.028+1:0.280 —0.032+1i0.377
M, 0.042 0.040 0.019 0.023 0.022
Mg 0.043 0.040 0.019 0.023 0.022
M, 0.210 +0.133 —0.070 —2.728 —3.264
M —0.491+:0.093 —0.0365+i0.068 —0.200+:0.069 —0.861+:0.289 —1.087+1:0.390
Yi(E}) 1.569 0.864 0.283 5.176 8.371
(units

of 10°)
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TABLE III. Contributions of electron pairs with different or-
bital momenta [/, =0, I,=1 is the (s,p) channel, and so on]; W
is the total probability (i) “shake-off”’ results obtained using the
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TABLE IV. The angular distribution parameters a;(g,,€,):
The shake-off results using the diagrams of Fig. 7, MBPT data,
and MBPT results without (d, f) channel.

diagrams of Fig. 7, and (ii) MBPT data.

€556 €176

(1,,1,) Shake off MBPT MBPT
(s,p) 0.80 0.51 0.72
(p,d) 0.20 0.47 0.22
(d,f) 0.00 0.02 0.06
W(e,,¢,) 2.13 2.36 0.15

(units of 107%)

proximation, since the spin-orbital interaction is small,
and besides the 1s hole is unpolarized. Hence, we can
employ expression (39) for the description of the angular
distribution of the electrons emitted in the DA decay.

We have considered only the following two cases: (i)
€, >>¢,, namely, £,=49.512 Ry and &,=1 Ry, and (ii)
€,=€,=25.256 Ry. The results of calculations are
presented in Tables III and IV. In Table III, total proba-
bilities (integrated over ©;,) are given. One can see that
the contribution of the (d,f) pair is negligible. There-
fore, to obtain good results, we can only take into ac-
count the (s,p) and (d,p) pairs.

The angular distribution coefficients a; (¢,,€,) are given
in Table IV. For the case €, >>¢, we have investigated
the influence of the (d, f) pair on the angular distribution.

€1>>€,y €17§&
k Shake off MBPT MBPT* MBPT MBPT?
1 0.72 0.35 0.52 —1.67 —1.57
2 0.05 0.18 0.21 1.16 0.76
3 0.00 0.29 0.28 —0.39 —0.03
4 0.00 0.05 0.00 0.08 0.00
5 0.00 0.01 0.00 0.02 0.00

*Without the (d, f) channel.

This contribution proved to be small and we can neglect
it. In Fig. 6 the function F(O) is presented. One can see
that there is a dependence of the angle correlation func-
tion F(O) on the partitioning of the total energy E be-
tween two outgoing electrons. In the first case (g, >>¢,),
F(O) decreases with increasing angle ©,. In contrast, in
the second case (¢;=¢,), we observe a corresponding in-
crease.

It is interesting to compare the MBPT and shake-off
results. In Fig. 7 the diagrams that are responsible for
the shake-off mechanism in the 1s ! —2s "22p ~!+¢,+¢,
case are presented. One can see that the total probability
(after the integration over ©,,) is close to the MBPT re-
sult (~90%), while the angular distribution differs con-
siderably.

x108 12 T : : . 12 =108

1of 410
8 48

= |
=~ 6} 46
4t i

;
2F & * 42

. ;
0 1 i 1 0
0 10 20 30 40 50
E; (Ry)

FIG. 5. Dependence of the probability of the DA decay on
the distribution of the total energy E,, between two outgoing
electrons, the transition 1s '—2s 22p !4+g¢,+q,(3S). The
curve is symmetrical as we have taken into account that both
electrons g; and g, may have the same energy and orbital mo-
menta.
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FIG. 6. Angle correlation function F(0,,): The solid curves

1 and 2 correspond to the cases €, >>¢, and €, =¢,, respectively;
the dashed curves represent the same results where, however,
the Iq] =2, qu=3 channel is not taken into account; the dash-

dotted curve represents the “shake-off” result.
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FIG. 7. Diagrams illustrate “shake-off”” contribution to the
total amplitude for the 1s 7' —2s " 22p “!'4+¢, +¢q, case.

VIII. CONCLUSION

Employing the MBPT, we have obtained expressions
for the amplitude of the DA decay of an inner-shell va-
cancy. The relationship between many-body theory and
other theoretical approaches is shown. The obtained for-
mulas are useful for the estimation of the DA probabili-
ties in molecules and solid states. According to our qual-
itative arguments, two features of the behavior of the DA
decay are revealed. First, the asymmetric distribution of
the total energy between two outgoing electrons is more
probable than the symmetric one. Hence in the experi-
ment, slow and fast electrons will mainly be observed.
Second, in passing from the decay of the 1s hole in Ne to
the 2p vacancy in Ar and finally to the 3d hole in Kr, the
probabilities and consequently, the portion of the triple
|

- 5 &5 1S 5 1L25, t 1L3S;s
v, =[[l[a, Xa;, ]MLIMSI Xay, ]ML2Ms2><a a ]ML3MS3

where the state |®,) has neither holes nor electrons—
the ‘“vacuum” state, and [@;Xa; 155, denotes the
double-tensor operator product. The difference of the
“direct” ({ij|V|pg)) and “exchange” ({ij|Vigp))
Coulomb matrix elements can be presented as [6]

L1 ]

(ij|¥Vlgp)y= S (=)™ *mitm

ILm

X

L1 zq]

—mj m mq

(I ()
X (Vijpg@ T Wiquau,-uqau,u,,) ’

(A3)

xa!
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ions, will increase.

We have also investigated the angular distribution of
the electrons ejected in the DA decay. The simplest case
has been considered, namely, the decay of the s holes. In
this case, the following were proved:

(i) Unlike the normal Auger decay of s vacancies in
atoms, the DA of unpolarized holes leads to an asym-
metric distribution of the emitted electrons.

(ii) The angular distribution is more sensitive to the ap-
proximation used in the calculation of the amplitudes
than is the total probability.
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APPENDIX

Here we present the calculation of the spin and the an-
gular parts of the partial amplitudes M; for the DA pro-
cess. Let us recall that the operators of creation
a }‘=6 and annihilation @; =6,,‘_ lys;mu, of electrons
are the double spherical tensors of rank /; (with respect to
the orbital momentum /;) and rank s; (w1th respect to the
spin) [13]. For the creation (a;) and annihilation (@ ; )
operators of holes it is necessary to introduce the so-
called modified operators @; defined as

nlisimp

gi Egnilfsimiy’l =(=1 )I T #ia"i[isi_mi_“i : (AD)
These are double spherical tensors as well. Using this
fact, we can construct the wave functions ¥, for the final
states in the DA process. The final state has three holes
f1,f2,f3 in the core and two electrons g,,q, in the con-
tinuum. According to the rules of tensor algebra [13,14]
V¥, can be written as

9, ]MLMS X|®o) ,

[

where

SO 1777 5 1 lp lj I lq

ijpg — “i*q'p'a |0 O O 00O
r(”

x [ “dridr;Pi(r)P;(r')—gy ST PP () (A

is the direct and

i bl ("
(D =72 _ +1I
u/lqu l E( 1 lj ll I V

ijpq

(AS)

is the exchange reduced matrix elements, respectively.
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Here £ =(2L +1)!/2 and the curly brackets enclosing the
six terms denote the 6 Wigner symbol, (85) is the 3;j
coefficient, and P;(r) is the radial part of the wave func-

tions. |

LtLy+lp +h+l, +h+y

Let us substitute the expressions (A1)-(A5) into the
“partial” amplitudes M; (i =1,2,...,9). After the sum-
mation over the projections Mmi,Myg Mg Mg My m,

Mg My, and Bistr s g, sty sBq st skg, s Hi We obtain

M1= 2 (_1) t1E2E3£_
e lolpl,
x’y
L Iy x|(x I, yV|Y Iy, Ls| (L 1, L1, y
“New onog [, Lo L 1, [ Ls L[ x L,
(1,) (l,) ) (l ) (I ) _ Sl (I ) (11)
[Aquzzfzngiq:flk‘i-(—l) YAV g Wig p e T (1) TIBWG o Vigr ik
=S, er (L) () -
+(—1) 1CWk‘l2f2f3Wiq:flk]Ek42f2f3 ’
I, +1, +1, 1 +1 +1
My= 3 (=1 R P EE 2%
nk,Ik,Il,l2
X,y
L lfl x x 1‘11 Y (y L, I, x I, Ly L Ifl x’
ol | PR R P R T A I, L Ly[|L, I, I, Ly I,

(1) (1) (l ) ()

X [Bqu2f3f1 qu fz

S (1) 1 2
“CVig, 1o Wigy ok 1) AW Vi AW p g,

() () Uy
Wig .k Ekayz.7, »

L 1, 1
Lytlp bly Fly b Ly I, &
M3: 2 ("— LlE2L3£ I l L3 Lz Iq
I,1,,1 fr "2 1 !
Mol
X,y lqz Ll Ik
+1-8, () (1) -s () (1) ()
XU=1)" "'CVig 1,7, Vig,rse +(=1) ]Bquzf £, Wia 1k —CWigy 11, Via £k
() ()
TBWig 1.1, Wiar £,k B, £, 5
L+Ly+1, +1+x+y ~ A~
M4: 2 (—1) : 1 ! L1E2L3L —15?2?2
nk,lk,ll,l2
X,y
L x L | » |, y L)(x 1, L)L x I
X
lfz lz lf3 lqz ll lq1 qu lql y Lz lf‘ If2 Ll If3

1-5 (1) ()
X[(—1) 1CV,(,fzfsv

9,9, 1k
+Bw.e  w'  qp-
oy S Waa, 1,k Ekif,r,
LALy+Ly+l, +1, +1,+1
1‘15= 2 (_1) 2 1
mes sy
x,y

CVk‘f2f3 ququ k +(

'fELENE -

() () )

Sl
1) AWk’fzfj, q]qul

lfl y lk lf3 y L lfl Ll lf2 L3 lql L2 Ifl 12 L
X
qu Il X lqz L3 X Iql ll Ll If3 X lf3 y lk
( ) —S (1) (1) (l ) (1)
X[A k’}gfqull‘Igfzk+(_l) 1BVk’f3f1 qqufz CWk’f}fqulquzk
1-S (1) (1) -1
=D T Wipr Wo o, Biifyr,
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Ltl+l, +1, Ly Iy Ly} (L I, Ly)[(L I L
M= 3 (=1 o f1L1L2L3L*11 L, | ly Ly I |
mes bl 9; 3 1 3 g, lfl lf2 I
X,y
(1} Sl (1) (1 (1)
X[BV,}! SV e T TTAVE o ququ3k+( -1 2 Vara,7 5k
(1) (1
+ AW W, - EG) Sy
Ly+Ly+Ly+1, +1, 41 +L+1 +y
M,= 3 (-1 7S rre e pEE 1R
”k'lk'll’lz
X,y
Loy Ly, v Laj(L 1, )|y Ly, I ||lg, » L
X
lf3 l, x ly, Ly x Ifz L x ||l lq2 x lq2 L, L,
() =S, () (p (1) (p (1y) ()
[Bqu|f2f3quzflk+( U BV 1, r Wik —CWag 1,1 Vayirk T AWig 1 p Wo ip i By 5.

L+! +1 +1 +y/\ -~ _
k 2E3L 1/\ 252

My= 3 (-1 2%
nk,lk,ll,l2
xy

L, I, x)(x I, y y L L, L Lk

X y x I

Ly, Lo Ly | Ve, oy I | |Es 1y, 1, 2

IR T I, S ) g
X[(—1) CVk‘infsfl V"‘szsk +(—1) AVk‘llf3f| qul,}zk
_ I (11) -1

+(=1) Bqulfs thz’fzk +BW’“1 3/ quifzk ]Ek‘llfsfl ’

Lyl ¥hty o o

M= 3 (-1 2 L\L,EF 7'2%?
Mol 101
X,y

le I, x lf2 L, x ||L, Iq1 x qu L x ||y L

L y I, I, 'y lfl L lq2 Ly||L, L, lf3 I 1,
9

(1y) (1) (1) _ -5, 1 ()
X[Aqulf szqzlf3 Cqulf fQqu’f3k+( 1) Aqulflszqzif3k

PR w'h)
+( 1) Cqulflfz l,f}’k] kq,f f2 .

Spin factors 4, B, and C in (A6) are determined by the expressions

. S +8,+53-128 & & 6 -1 St 2 S
A—(_l) N SISZS3S 53 _;_ SZ SSS'SMSMS, ’
S, +S,—1/24 a _
B=(—1)"' " S, 185153855'81”31"’5' ’
S,~1/25 A & A 7 53 S
c=(—1?* '§,8§,5,8§ ! S, s, L BssBmgmy -

The graphic technique of angular momentum [15,16] is used for the derivation of expression (A6). The summation over
n; in (A6) denotes the summation over the core levels including the discrete excited states and the integration over the

continuum spectra.
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