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Resonances by complex nonsimilarity transformations of the Hamiltonian

N. Lipkin, R. Lefebvre, * and N. Moiseyev
Department of Chemistry, Technion Is—rael Institute of Technology, Haifa 32000, Israel

(Received 13 August 1991)

A set of complex scaling schemes which enable one to calculate resonance positions and widths is in-

troduced. Although these scaling procedures are not equivalent to the complex-coordinate method, they
change the asymptotic behavior of resonance wave functions from exponentially diverging to square in-

tegrable. Coupled to a Pade-approximation-extrapolation procedure, these nonsimilarity transforma-
tions enable one to obtain the complex resonance energies of the original Hamiltonian. A study of these
scaling schemes, their inhuence on the spectrum, and the limitations of the method is presented. The use
of some of these procedures, especially a kinetic-energy-scaling scheme where fi~fie ~, is most attrac-
tive from the computational point of view, and permits the use of currently existing programs for the cal-
culation of potential-energy matrix elements.

PACS number(s): 34.10.+x

I. INTRQDUCTION

Metastable resonance states are of primary importance
in many areas of chemistry and physics. Resonances are
associated with complex eigen values of the time-
independent Schrodinger equation, where the corre-
sponding eigenfunctions have the asymptotical behavior
of divergent outgoing plane waves.

Several methods have been used in order to obtain
these complex eigenvalues. The most well known is the
complex-coordinate method (CCM) [1—5], which is
equivalent to a similarity transformation [5] of the Ham-
iltonian which causes the resonance wave functions to be-
come square integrable. In the CCM the similarity trans-
forrnation is the complex scaling operator, which
amounts to rotating the internal coordinates of the Ham-
iltonian into the complex plane, according to x —+xe' .
The CCM is based on rigorous mathematical
foundations —the Balslev-Combes theorem [6—8] and the
works of Aguilar, Combes, and Simon [6—10]. The
theory states that under the scaling transformation the ei-
genvalues associated with bound states remain on the real
axis of the complex energy plane, at the positions that
they occupied before scaling. The eigenvalues that are
associated with metastable resonance states appear as
complex eigenvalues unrelated to the scaling angle —0
used, when it is larger than a critical angle, and eigenval-
ues that are associated with continuum states appear as
complex eigenvalues which are dependent on the scaling
angle in the form

where E,,„,are the eigenvalues representing the continu-
um prior to scaling.

The eigenfunctions representing the bound states
remain square integrable under complex rotation, and the
continuum eigenfunctions retain their bounded asymptot-
ic behavior. The eigenfunctions associated with reso-
nances, however, change their asymptotic behavior under
scaling, from an exponentially divergent behavior before

scaling, to square integrable after the transformation.
The CCM, as developed by Aguilar, Balsev, Combes, and
Simon, requires the complex rotation of all coordinates
into the complex plane, and is applicable, in principle,
only to dilation-analytic Hamiltonians. (In practice it
works well for nondilation-analytic cases as well. ) Apart
from the CCM, other procedures are also used in order to
obtain the complex resonance energies. Some of these
procedures are expansions of the CCM to cases which the
original analytical dilation theory does not treat. Such
procedures include the widely used method of scaling
only the reaction coordinate [11—15]; a procedure in
which the Hamiltonian matrix elements are analytically
continued into the complex plane, after they have been
formulated for a nonrotated Hamiltonian and a real basis
set [11,12]; the complex stabilization technique [16,17], in
which nonlinear parameters in the basis set are scaled
while the Hamiltonian operator is kept real; and the exte-
rior scaling method [18,19], in which only the asymptotic
part of coordinate space is scaled. Also used is the Junk-
er stabilization method [20], which involves the inclusion
of a few complex basis functions in the basis set, without
imposing explicitly any boundary conditions. The Siegert
method [21—23] does explicitly impose boundary condi-
tions. In this method the resonance wave function con-
tains terms which describe an exponentially outgoing
wave in the open channels. A relatively novel procedure
is the use of the optical-potential method [24—27], in or-
der to calculate resonance positions and widths. In this
method an imaginary potential is added in the physically
asymptotic region in order to induce localization in the
resonance wave functions and expose the complex nature
of resonance eigenvalues and eigenfunctions. When ap-
plying the optical-potential method, care must be taken
in order to make sure that the optical potential does not
a6'ect the physically significant region of coordinate space
and is smooth enough to preserve the outgoing character
of the wave function.

Thus, all methods described above enable us to obtain
the complex resonance energies by imposing, explicitly or
not explicitly, specific boundary conditions on resonance
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wave functions; resonances are associated with wave
functions that are exponentially divergent prior to scaling
(or otherwise perturbing the system) and become square
integrable as a result of scaling (or as a result of the per-
turbation we introduce). In all cases, the energy spec-
trum we get remains the spectrum of the physical prob-
lem under investigation.

Some time ago, Lefebvre and Garcia-Sucre [28] made
the observation that an optical potential applied abruptly
[say, V, ,(r)= i—A for ro ~r] outside the range of the
physical potential induces a large perturbation in the
eigenenergies associated with the localizable wave func-
tions. However, if such calculations are repeated for a
number of values of the parameter A, it is possible to
build a Pade approximant E ( A ) giving the energy as an
analytic function of A. This approximant can be used to
extrapolate E ( A ) to E (0), that is, for a situation where
no optical potential is present, while the energy E(0) is
that of a resonance state. This can be interpreted as a
procedure to access the non-Hermitian domain of the
Hamiltonian. A similar idea was used to calculate photo-
ionization or photodissociation cross-sections by using
complex photon frequencies. A Pade approximant is
used to extrapolate to real photon frequencies [29]. Such
ideas are somewhat related to the use of imaginary
electric-Geld intensities in the description of Stark ioniza-
tion in order to circumvent the difBculties related to the
divergent character of the Rayleigh-Schrodinger pertur-
bation expansion [30,31].

In this work we further investigate the possibilities and
limitations of procedures similar to the one suggested by
Lefebvre and Garcia-Sucre. We will try to find out which
transformations can be carried out, and why, and look at
the influence of these transformations on the bound and
continuous spectrum. The transformations we study, in
contrast to previously used transformations, consist of
scaling parameters that influence the kinetic energy of
the system, such as A, and mass p, and the threshold en-

ergy E,h, and not potential parameters. It is therefore
easy to examine their influence on the asymptotic behav-
ior of resonance wave functions.

II. RESONANCES BY NONSIMILARITY
TRANSFORMATIONS OF THE HAMILTONIAN

scaling the coordinate x does so in the CCM (we denote
by 8 the CCM scaling angle and by P the scaling angle of
the non similarity transformations presented in this pa-
per). We shall see later that scaling closed-channel pa-
rameters may also cause some localization, through cou-
pling to the open channels. Scaling of these parameters,
though, affects not only the asymptotic region, but also
those regions of space which contain physical informa-
tion. We therefore expect the energies of bound and reso-
nance states to be shifted in comparison to the energies of
the physical Hamiltonian.

However, if we repeat the calculation with a set of P
values, fit a Fade approximant to the function E(P), and
use this approximant to Gnd the limit of the function as
the perturbation goes to zero, we expect to obtain the
complex energies of the unperturbed Hamiltonian which
are associated with localizable wave functions —the reso-
nance energies lim& oE($)~E„,.

It is worthwhile noting that unlike in the CCM, the en-
ergies of the bound and resonance states obtained by the
scaling procedures described above are intrinsically P
dependent, since the scaling constitutes a perturbation of
the Hamiltonian. In actual CCM calculations, on the
other hand, the dependence of the bound and resonance
energies on the scaling angle results from the truncation
of the basis sets used.

The effect of the transformations on eigenvalues
describing the continuum can be deduced by an examina-
tion of the asymptotic form of continuum wave functions.
For V„„~E,„,

f„""'„—+ A (E)exp
i&2i (E Eth)—

+8 (E)exp

for complex p, A, or E,h, and real energy E, one of these
exponentials diverges. In order to retain the boundedness
of the continuum wave functions, the energies must be-
come complex in a manner that cancels the imaginary
part of the perturbation:

(E„„,—E,h)~(E„„,—E,h)e '~ for fi~fie

(E,o„f
—E,h)~(E.og,

—E,h)e '~ «» p~pe'
For a potential that decays to a constant in the asymp-

totic regions of coordinate space,
E„„,~E„„, i sin(2$—)E,„ for E,h ~E,he

2i(ti

V~Eth as x

the asymptotic form of resonance wave functions in the
open channel is of the Siegert outgoing type,

i +2p(E —E,h)g"" „~A (E)exp X

It is easy to see that scaling either p, A, or E h

(@~pe '~%~Pie '~ or E,„~E,„e '~) in the open chan-
nels changes the asymptotic behavior of the wave func-
tions and causes localization, in the same manner that

Thus, the scaling of either A or p causes rotation of the
continuum into the complex plane by an angle of 2P, just
as is the case in the CCM, and for the same reasons,
whereas scaling the threshold energy causes a translation
of continuum energies into the complex plane by an
amount sin(2$)E, h. This expectation is fulfilled by our
results, which are presented in Fig. 1.

III. METHODS AND MODELS

We applied our method to several model systems, using
either a basis-set method or a matching method [32]. In
the basis-set method, the Hamiltonian matrix is built of
basis functions y,-, representing all of the system coordi-
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FIG. 1. The shape of the spectrum (real and imaginary parts of the eigenvalues) of the van der Waals rotational predissociation
model for a set of scaling transformations. All calculations were performed with the basis-set method, for scaling angles of /=0. 2,
0.225, 0.25 rad. (a) Complex-coordinate scaling x ~xe'~; (b) scaling of the kinetic energy in all channels A'~Re ~; (c) scaling of the
kinetic energy in the open channel only; (d) scaling of the kinetic energy in the closed channel only; (e) scaling of the kinetic-energy
term and the centrifugal barrier JM~pe '~; (f) scaling of the threshold B„,~B„,e '~; and (g) scaling of the centrifugal barrier only.
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nates, in the form

where the operator H is scaled in an appropriate way.
After being formulated, the Hamiltonian matrix is diago-
nalized to obtain the system eivenvalues.

In the matching method, U (r) and U'(r) are matrices
with columns representing N independent solutions of X
coupled equations, which fulfill given boundary condi-
tions at small r and large r. In the Fox-Goodwin method
[33] one builds the two matrices

P (r +h) =U (r)U (r +h)

and

P'(r —h) =U'(r)U'(r —h )

transformation causes large shifts in the position and
width of resonance eigenvalues. This phenomenon can be
observed, for a model describing van der Waals rotational
predissociation resonances, in Fig. 1. After the Pade ap-
proximant is fit to the resonance eigenvalues, the function
is evaluated at /=0 to obtain the eigenvalue of the un-
perturbed Hamiltonian.

We have used two of the point Pade methods described
by Schlessinger [34]. One of the methods [let us call it
method (a)] is a direct fit of the input values of a function
f (z) to a ratio of two polynomials:

P (z, )

f(z; )=
1

with

which are obtained from two propagation formulas,

p =[2p(r) —a(r —h)p (r)] 'a(r+h),
p'(r —h)=[2p(r) a(r+—h)p'(r)] 'a(r —h) .

and a(r) and P(r) are the Numerov matrices

and

m2

P (z )= g pkz;"
k=1

Q (z, )=1+ g qlz

h2

12
a(r)=h 1+ [El—V(r)]

sh'
P(r) = 1 — [E1 —V(r) ]

h is the propagation step; and V(r) is the potential ma-
trix. The matching relation, which is a quantization con-
dition for the energy, is

[P'(r )
—[P (r +, )] ']=0.

r is the matching point and r +& is r +h.
The boundary condition on both ends —

r& and r of
the integration range are for a bound-state wave function,
or a resonance wave function localized by the scaling

P (r& +h)= U(r&)U (r&+h) '=0,
P'(r —h) —U'(r )U'(r —h) '=0 .

With the matching method we applied a procedure in
which only the kinetic energy of the system was scaled.
This is done by defining the Numerov matrices

h2
a'(r) =h le '~+ [El—V(r)]

12

The z,. 's are the input values of the variable. The number
of unknown coefficients pk and qk being m, +m 2+ 1, one
needs this number of input values f (z; ) to determine
them. Relations (1) lead to a set of inhomogeneous linear
equations with a solution requiring a matrix inversion.

Another method [method (b)] consists of using a trun-
cated continued fraction of the form

C~(z) = f(z, )

a)(z —z, )

+ 2 2a(z —z)

a„(z —z„)
The coefficients a, are chosen such that

C~(z;)=f(z, ), i =1,2, . . . ,N .

Expressions for the a s are given by Schlessinger. In
both methods it is usful to examine the convergence of
the extrapolated function

P (z, )

f(z, )= or C~(z, )
m 2

1

P'(r) =h le '~+ [E1—V(r)]
sh'
12

After performing the calculation with a certain scaling
scheme for a number of scaling angles P, we fit a Pade ap-
proximant to the 1 values which correspond to the reso-
nance eigenvalue at each angle. The identification of
these eigenvalues does not pose a problem since, just as in
spectra which appear in the CCM, the eigenvalues associ-
ated with resonances behave in an entirely different
manner than eigenvalues associated with the continuum.
This observation holds even in cases where the scaling

calculated for z, outside the input range of the z, 's, when
the numbers m

&
+m 2+ 1 or 1V are increased. This

amounts to taking into account an increasing number of
input data. As discussed in several textbooks (see, for ex-
ample, Stoer [35],better results are obtained when the de-
grees of the polynominals in the numerator and denomi-
nator of expression (1) are close to one another. In
method (b) this is automatically ensured, since the trun-
cated continued fraction is equivalent to a ratio of poly-
nomials with either m

&

=m2 (with an even number of a, 's

or m
&
=m2+1 (with an odd number of a,.'s). In method

(a) we have imposed this rule on the two numbers m, and
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m2. The approximation is very sensitive to the exact
values of the input data, and it is important to apply the
Pade procedure to data which are accurately determined.
It is our experience that increasing the orders of the poly-
nornials beyond values around 5 or 6 decreases the accu-
racy of the Pade approximation. This can be easily
detected in method (a), where a matrix inversion is re-
quired. One finds that trying to recover the original ma-
trix as [( A ) '] ' gives poor results for high orders.

A. van der Waals rotational predissociation resonances

A model Hamiltonian describing rotational predissoci-
ation resonances in van der Waals molecules was suggest-
ed by Levine, Johnson, Muckerman, and Bernstein [36]
and is often used as a testing ground for the study of new
methods and approaches [13—15]. The model consists of
a rigid rotor BC, and a structureless atom A. The pa-
rameters are chosen to fit the He-H2 system.

The system Hamiltonian is

basis functions with box size of 28 a.u. for R —the dis-
tance between A and the center of mass of BC—and two
Legendre polynomials Po and P2 for the angular coordi-
nate y.

With the basis-set method, various scaling schemes
were tried: scaling the kinetic-energy term by scaling fi
(fi~Ae ~), scaling the kinetic energy and the centrifu-
gal barrier by scaling p, (JM~pe '~), scaling of the centri-
fugal barrier only, scaling the threshold by scaling B„,to
B„,e '~, and scaling the kinetic energy in the closed
channel only, or in the open channel only. With the
matching method we used scaling of the kinetic-energy
term, by scaling A. For each scaling scheme 10 or 11 cal-
culations, with different scaling angles, were carried out,
with angles in the range of / =0.2—0.25 rad.

B. 1D shape-type resonances

The second model we investigated was the one-
dimensional Bardsley potential [37,38] with Hamiltonian

H(R, X)= 1

2p

8 l(R)
BR R

d2
H(R)= — +15r e

dr

+B„,j (r)+ V(R, y),
where p is the reduced mass of the complex, B„,is the
rotational constant of the diatom, l is the orbital angular
momentum of BC and A about each other, j is the rota-
tional angular momentum of the diatom, R is the dis-
tance between A and the center of mass of BC, r is the
distance between B and C (fixed in this model at the equi-
librium distance), and y is the angle between the vectorsA
R and r cosy =r R. The potential is expressed as a sum
of two Legendre polynomials [36]:

V( V, y) = Vo(R)+ V2(R)P2(cosy),
'12 6

V (R)=4E
R

2

V (R)=0.6sL

The system was studied by the matching technique with
6000 grid points, with a grid step of 0.005 a.u. For this
system scaling of the kinetic energy was carried out.

C. Helium autoionization resonances

The third case studied was that of the autoionization
resonances of the helium atom [39]. The Schrodinger
equation for this system was solved by a basis-set method,
using 36 Hylleraas-type basis functions of the form

PI „(~,b)=(l+P»)rIr2 r»exp( —«& —br2),
where a =b =2.0 P&2 permutes the particle labels, r&

and r2 are the scalar distances from the nucleus, r, 2 is the
interelectronic distance, and 0 ~ [I,m ] ~ 2 and 0 ~ n ~ 5.

The resonance studied is positioned at -0.777 hartree.
For this system also, only scaling of the kinetic-energy
term was carried out.

With the parameters o. =3.0 A c.=384.097 cm
B„,=60.967 cm ', and p=1.34015 a.u. , the system has
three bound states for the lowest channel, j=0, which
become three resonance states in each even j )0 channel
as a result of the coupling with the continua of the lower
even channels. (The odd channels are not coupled to the
even ones due to the symmetry of the potential and hence
are ignored. ) We investigated the effect of the nonsimi-
larity transformations on the lowest resonance, located at
—114 crn ' and describing a state localized in the j =2
channel and dissociating into the j =0 channel.

The eigenvalues of the system were obtained both by
the matching method, with 2000 grid points, with a step
of 0.006 in reduced units R such that

(j2 ()2

2phc &R2 ()R2
'

and by a basis-set method, using 150 particle-in-a-box

IV. RESULTS AND DISCUSSION

A. van der Waals rotational predissociation model

Figure 1 shows the shape of the spectrum (real and
imaginary parts of the eigenvalues) for a range of scaling
angles for the various scaling schemes. The correspond-
ing wave-function components in the open channel are
plotted as a function of R, the distance between the atom
and the diatom, in Fig. 2 the functions were drawn for
/=0. 2.

The corresponding extrapolations of the Pade approxi-
mations to /=0 are summarized in Table I. In all cases
but the one denoted by an asterisk, the results are those
given by method (a) for the highest-order Fade approxi-
mation derived from 11 points ( m, =5, m2 =5) (as can be
seen from Table II, both methods give practically the
same results, and the results were usually stable with
respect to increase in m, and m2). In the case of scaling
the kinetic energy in the closed channel only, the results
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FIG. 2. The shape of the resonance wave function component in the open channel (j =0) of the van der Waals rotational predisso-
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for a scaling angle of / =0.2 rad.
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of various order Pade approximations fluctuate, and the
result cited is that of the m, =2, m2 = 5 approximation.

The sign of the imaginary part of the energy is devoid
of physical meaning and depends on the sign of the scal-
ing angles used. Changing the form of scaling from e'~ to

e '~ causes the solution to converge to a pole in either
the upper or lower halves of the complex energy plane.
In Table II the dependence of the results on the order of
the polynomials used —m

&
and m2 —is given for both

Pade methods. This table is taken from calculations done

TABLE I. Extrapolation of the Pade approximants to / =0, for the lowest bound state and lowest resonance, of the van der Waals
rotational predissociation model, for a variety of scaling transformations. The Pade approximants were constructed from a set of ei-
genvalues of Hamiltonians scaled by angles of /=0. 2-0.25 rad. All the results were obtained by the basis-set method, except the one
denoted by two asterisks, which was obtained by the matching method. Pade approximants were constructed with method (a). The
result denoted by one asterisk was not very stable with respect to the order of the Pade approximant used.

Extrapolation of the Pade approximant to /=0
Scaling transformation

Scaling the kinetic-energy term in both
open and closed channels (fi—+Re '~)

First bound state

—273.238 +0.158X 10 i
—273.239 +0.105 X 10 i**

First resonance

114.527 —0.972i
114.529 —0.970i **

Scaling the kinetic-energy term
in the open channel only —273.238 —0. 122 X 10 i 114.530 —0.970i

Scaling the kinetic-energy term
in the closed channel only —273.238 —0.715X 10 i 114.151 —0.789i

Scaling both the kinetic energy and the
centrifugal barrier (@~pe '~)

Scaling the threshold (B„,~B,«e '~)

Scaling the centrigfugal barrier only

Complex-coordinate Method (x ~xe' )

No scaling

—273.238 +0.124X 10 i

—273.238 +0.510X 10 i

—273.238 +0.408 X 10 i

—273.238 —0.645 X 10 i

—273.238 +0.0i

114.524 —0.974i

114.530 —0.969i

114.550 +0.475i

114.530 —0.970i

114.552 +0.0i
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Resonance estimate method (b)m&

1

2
2
3

3
4
4
5

114.51826—1.036 302 4i
114.527 09—0.968 411 94i
114.529 75 —0.97001071i
114.529 80—0.970 387 09i
114.529 43 —0.970 208 69i
114.529 81 —0.970 360 12i
114.529 83—0.970 435 89i
114.529 81—0.970 356 74i

114.518 26 —1.036 302 4i
114.527 09—0.968 411 94i
114.529 75 —0.970 01071i
114.529 80—0.970 387 12i
114.529 43 —0.970 211 03i
114.529 81—0.970 360 12i
114.529 83—0.970 426 68i
114.529 81 —0.970 324 04i

TABLE II. Estimates of the lowest resonance energy of the van der Waals rotational predissociation model obtained by extrapo-
lating the Pade approximation constructed from the kinetic-energy scaling procedure, with angles /=0. 2—0.25 rad to /=0. Esti-
mates are presented for both methods of construction of the Pade approximants [(a) and (b)] and for different polynomial orders used
for the fit. Calculations were done by the matching method.

Order of
Pade polynomials

m2 Resonance estimate method (a)

Exact value: 114.529 86—0.970 41i.

with the matching method. As can be seen from Table I
and from looking at Fig. 2, all transformations which
cause strong localization in the open-channel wave func-
tion produced fine estimates for resonance position and
width. Scaling of the kinetic-energy term in the closed
channel causes weak localization in the open-channel
wave function, through the coupling between the chan-
nels, and gives a much worse estimate for the resonance
position and width. This result, denoted by an asterisk in
Table I, was, as mentioned before, not very stable with
respect to the order of Pade approximations. Scaling of
the centrifugal barrier only does not cause localization in
the open-channel wave function, and the extrapolation to
zero perturbation of the Pade approximation of E(P)
yields exactly the result we obtain with no scaling what-
soever. It seems evident from these results that the ade-
quacy of a transformation in yielding the correct complex
resonance energy rests on its ability to cause localization
in resonance wave functions in the open channels.

The asymptotic behavior of the bound-state wave func-
tions is una6'ected by the transformations we perform,
and the extrapolation of the Pade approximations of
E(P) to /=0 yields the correct bound-state energy (the
small imaginary part of the bound-state energies is main-
ly due to the size of the basis set used, and to numerical
errors in the Pade extrapolation).

Note that the Fade approximations give good results
even when the perturbed values deviate very much from
the correct resonance energy (in the case of scaling the
threshold, for example, we base the Pade approximation
on values as far o6'as 70—175i crn ' and yet extrapolate
back to the correct result).

The dependence of the results on the range of scaling
angles used was checked for the kinetic-energy scaling
procedure, and is presented in Table III. For each calcu-
lation, 11 t() values in the given range were used to con-
struct the Pade approximant. As can be seen from Table
V, it is crucial to choose P large enough to cause
sufficient localization of the resonance wave function.
For a large range of P values (0.2—0.6), the results of the
extrapolation to /=0 are little dependent on the range of
P values used to construct the Pade approximant; these
results were also stable with respect to the order of the

TABLE III. Estimates of the lowest resonance energy of the
van der Waals rotational predissociation model obtained by ex-
trapolating the Pade approximations to /=0, as a function of
the range of angles P used to construct the Pade approximants.
The entry denoted by an asterisk was not stable with respect to
the order of Pade approximant used.

Range of scaling angles

0.02 —0.12
0.13—0.23
0.24—0.34
0.35—0.45
0.46—0.56
0.57—0.67
0.68—0.78
0.79—0.89
0.2-0.5
0.3-0.5

Resonance estimate

114.55 +0.05i*
114.5 —0.9i
114.529 —0.968i
114.530 —0.969i
114.529 —0.967i
114.527 —0.96i
114.53 —0.95i
114.5 —0.9i
114.53 —0.97i
114.531 —0.9704i

Pade approximants used. For very large P values, we ex-
trapolate back a long way, and the results become less ac-
curate and also less stable with respect to the order of the
Pade approxirnants used. As can be seen from the last
two entries of Table III, increasing the span of angles
considered in the calculation, while restricting oneself to
the range of angles which give stable results, increases the
accuracy, probably due to the fact that we are giving a
more loyal description of the function E(P)

It is interesting to examine the shape of the spectra ob-
tained for the various transformations (Fig. 1). For all
transformations we can see that, as in spectra obtained
with the CCM, it is easy to distinguish between bound or
resonance states and continuum states. In contrast to the
case in the CCM, however, the bound states also move
into the complex plane under these transforrnations; also,
the resonance states might appear with imaginary parts
either smaller or larger than the continuum energies.
The dependence of continuum energies on the form of
scaling and on the scaling angle follows the expectations
discussed in Sec. II: rotation into the complex plane by
an angle of 2((), for scaling of either )tt or t)1, and transla-
tion by an amount sin2$ for scaling the threshold energy.
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then, the Fade extrapolation to 0=0 serves to minimize
the perturbation while retaining asymptotic behavior,
and improves the estimate. For large basis sets, this
effect is negligible. Note that with N=60 we find a
sharp cusp at the CCM 0 trajectory. For this case only,
the stationary point obtained from the Pade extrapolation
deviates slightly from the CCM stationary point, and the
energy estimate obtained by extrapolation to 0=0 is
slightly morse than the stationary-point estimate. We
found this phenomenon to occur also in the case of the
Hamiltonian of helium autoionization, which also has a
shar'p cusp, and it seems to indicate the inability of the
Fade approximation to represent adequately a function
demonstrating such a nonsmooth behavior.

In the case of scaling p or A, the continuum is rotated not
about the real threshold energy, but about a slightly shift-
ed complex energy "threshold. " The exact origin of this
shift is not yet completely understood.

An interesting side remark is that when we form a
Pade approximation of the CCM E(8) results for large
enough scaling angles 8 (since we use a finite basis set, the
CCM results are 8 dependent) and extrapolate to 8=0,
we get, in most cases, better estimates for the resonance
position and width than we got from the stationary point
in the plot of E(8) for a given basis set. Figure 3 depicts
the 0 trajectory plots for the van der Waals rotation
predissociation model —114-cm resonance, for a set of
basis-set sizes N=40, 50, 60, 70. In Fig. 4 we show the
same trajectories extrapolated from 11 0 values in the
range 8=0.3 —0.4 rad (namely a Pade approximation was
fit to the 11 0-values in the range 0=0.3—0.4 rad, then
extrapolated to 8=0, 0.001, 0.002, ..., 0.4 rad). It can be
seen from Fig. 4 that the extrapolated trajectories follow
the CCM trajectories very closely, and accurately
represent the stationary points. Then, at 0=0, they con-
verge to a better value than the one obtained from the
stationary point. The difference between the two values
decreases rapidly with the increase in basis-set size.

This phenomenon can be easily understood if we recall
that for a small basis set, complex scaling can be regarded
as a perturbation and it is a well-documented fact that
large basis sets are needed when using the CCM, unless
nonlinear basis-set parameters are adequately optimized
[17,40]. Just as in the case of other transformations,

B. 1D shape-resonance model

The results obtained by applying the kinetic-energy
scaling procedure to the Bardsley model Hamiltonian de-
scribed in Sec. III are given in Table IV. Those results
were calculated using the matching method. As can be
seen from Table IV, accurate results are obtained by this
method for this model also. The results are very close for
both Pade methods, and are stable with respect to an in-
crease in the order of the polynomials used for construct-
ing the Pade approxirnants.

As for the previous model, we also tried carrying the
Fade-approximation-extrapolation procedure for the
CCM results of this model. In the matching method,
complex resonance energies can be obtained in two
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FIG. 4. The Pade-approximant E(0) fit to the eigenvalues of the lowest resonance of the van der Waals model. The approximants
were constructed from a fit to eigenvalues calculated with scaling angles 8=0.3—0.4 rad and for a varying number of basis functions
(a) N=40, (b) 50, (c) 60, (d) 70.
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TABLE IV. Estimates of the resonance energy of the 1D shape-resonance model obtained by extrapolating the Pade approxima-
tion constructed from the kinetic-energy scaling procedure, with angles /=0. 2—0.25 rad to /=0. Estimates are presented for both
methods of construction of the Fade approximants [(a) and (b)] and for different polynomial orders used for the expansion. Calcula-
tions were done by the matching method.

Order of
Pade polynomials

ml m2 Resonance estimate method (a)

6.953 099 4—0.067 976 679i
6.842 839 2 —0.037 337 698i
6.856 254 2 —0.018948 584i
6.852 243 8 —0.026 431 957i
6.852 504 1 —0.025 076 761i
6.852 707 6—0.025 706 763i
6.852 744 7—0.025 547 433i
6.852 861 0—0.025 683 349i

Resonance estimate method (b)

6.953 099 4—0.067 976 679i
6.842 839 2 —0.037 337 698i
6.856 254 2 —0.018 948 584i
6.852 243 8 —0.026 431 957i
6.852 504 1 —0.025 076 701i
6.852 707 6—0.025 706 768i
6.852 744 7—0.025 547 522i
6.852 860 9—0.025 683 36i

'Reference [38].

Exact value: 6.85278062 —0.02554976i. '

ways —one can either scale the coordinate and look for
solutions with asymptotic square-integrable behavior (a
CCM procedure) or leave the Hamiltonian unscaled and
look for solutions with Siegert-type boundary conditions.

In Table V we compare the resonance estimates ob-
tained by the CCM stationary point, by the direct re-
quirement of outgoing asymptotic behavior, and by the
procedure of fitting a Pade approximant to a series of
CCM energies calculated for large 8, and extrapolating to
0=-0, for calculations with a varying number of grid
points. It can be seen from Table V that the results ob-
tained by the latter method are closer to the resonance es-
timates obtained by a direct requirement of Siegert-type
asymptotic behavior and to the exact value than the esti-
mates obtained from CCM stationary points. As we in-
crease the number of grid points, the difference between
the estimated values becomes smaller. These observa-
tions further consolidate the conclusion that for not very
accurate integration schemes (few grid points, few basis
functions), the resonance estimates obtained from the sta-
tionary points in a CCM calculation can be improved us-
ing the Fade-approximation-extrapolation procedure.

By carrying out the Fade-approximation-extrapolation

procedure on CCM results obtained by integrating along
the complex contour, we get the results that have been
obtained with the same number of grid points by in-
tegrating along the real axis and requiring divergent
boundary behavior. These results are better than the esti-
mates obtained from the CCM stationary points, since
the integration along a complex contour requires a more
exact calculation (more grid points in our case). This is
in harmony with the experience gathered during calcula-
tions done within the framework of the finite basis-set ap-
proximation.

C. Autoionization resonances of helium

For Coulombic potentials it is easy to find analytically
the connection between CCM eigenvalues obtained by
scaling the whole Hamiltonian and eigenvalues obtained
by scaling the kinetic energy only, due to the simple form
of the ratio between the factor by which the kinetic and
potential energies are scaled.

If the Hamiltonian is

P(R)=1+vc,„, ,

then

TABLE V. Estimates of the resonance energy of the 1D shape-resonance model, obtained by various methods (the CCM station-
ary point, extrapolation of the Pade approximation of the CCM scaling results to 0=0, and a direct requirement of Siegert-type
asymptotic behavior) as a function of the number of grid points used in the matching calculation.

Number of
gl1d

points

50
75

100
500

1000

CCM stationary point

6.853 —0.0327i
6.8527 —0.026 93i
6.852 77 —0.025 989i
6.852 780 6 —0.025 549 67i
6.852 780 62 —0.025 549 006i

Resonance estimates obtained by
Extrapolating to 0=0

the Pade approximants
constructed from 0=0.4—0.5

6.847 —0.0253i
6.8514 —0.025 47i
6.852 34 —0.025 522i
6.852 780 6—0.025 549i
6.852 7806 —0.025 548 9i

0=0 calculation
with Siegert-type

asymptotic behavior

6 847 —0 025 24i
6.8514 —0.025 48i
6.852 34 —0.025 527i
6.852 779 9 —0.025 549i
6.852 780 6 —0.025 548 9i

Exact value: 6.852 780 62 —0.025 549 76i.
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mates which are far from being correct, and are also un-

stable with respect to the order of the Pade approxima-
tion used. Fitting the Fade approximation to the CCM
energies themselves and extrapolating to 0=0 also gives

poor and unstable results (the stationary point can, how-

ever, be easily reproduced by extrapolating to the cusp
angle). As in the case of N =60 for the Hz-He model, we

trace the problem to the existence of a very sharp cusp
(Fig. 5) in the 8 trajectory of the problem, a fact which
makes the Fade approximation of the function much
more diScult.

Re E (Hartree)

FIG. 5. The complex-coordinate 8 trajectory calculation for
the He autoionization ——0.777-hartree resonance, with 36
Hylleraas-type basis functions. 8 is given in radians.

where

and the Schrodinger equation is

Multiplying by g, we obtain

which is exactly the form of a kinetic-energy-scaled Ham-
iltonian, with scaling angle / =8/2.

This is, therefore, a case where the spectrum of the
nonsimilarity transformed Hamiltonian can be related to
the spectrum of the similarity transformed CCM Hamil-
tonian in a simple manner. The resonance energy of a
kinetic-energy-scaled Hamiltonian is the energy of a
CCM Hamiltonian scaled by an angle twice as large, mul-

tiplied by ~rlo~e '~. It seems reasonable to expect then
that no problems would be encountered by applying the
scaling-extrapolation procedure described at the begin-
ning of this section to the helium Hamiltonian. When ac-
tually applying the procedure, we find that we get esti-

V. CONCLUDING REMARKS

We have presented in this paper a set of complex scal-
ing nonsimilarity transformations which have the proper-
ty of changing the asymptotical behavior of resonance
wave functions into a square-integrable behavior. These
scaling procedures enable one to add resonance energies
to the spectrum of energies which can be obtained by
standard techniques which were originally developed for
bound systems, and hence require square-integrable
boundary behavior of the solution. The perturbation
which these scaling procedures cause in the physical
spectrum is eliminated by extrapolating the function
describing the energy as a function of the perturbation to
zero perturbation.

This procedure illustrates that the essential require-
ment from any scaling transformation is that it causes lo-
calization in resonance wave functions. The numerical
application of these procedures, especially of the pro-
cedure involving scaling the kinetic-energy term only, is
very simple; one needs only to divide kinetic-energy ma-
trix elements by a constant, while potential-energy matrix
elements are left untouched. This enables the straightfor-
ward application of the method of existing computer
codes. Care must be taken, though, in cases where sharp
cusps occur in the graph of E(8), since the existence of
such cusps severely hampers the use of the Fade extrapo-
lation.
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