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Statistical Suctuations in the yield of ionization due to protons or a particles

Mitio Inokuti, Ken-ichi Kowari, * and Mineo Kimura
Argonne National Laboratory, Argonne, Illinois 60439

(Received 17 June 1991;revised manuscript received 12 November 1991)

An analytic method is presented for the calculation of various indices that characterize statistical Auc-

tuations in ionization yields, specifically for the incidence of an ion such as a proton or a particle at a
high speed. A general expression for the Fano factor for ion incidence is derived, and the relation to the
Fano factor for electron incidence is clarified. For an illustration, the theory is applied to protons in-

cident on argon. The resulting Fano factor for protons of energies between 0.1 and 2 MeV is nearly the
same as that for electrons at the same speeds, and it js considerably lower than the values measured with
a particles.

PACS number(s): 34.50.Fa, 82.50.Gw, 87.50.6i, 87.52.Ck

I. INTRODUCTION

Statistical fluctuations in the total ionization caused by
the absorption of ionizing radiation in matter were first
discussed by Fano [1]. He showed that the variance D in
the number of ions produced is given as

D =F1V,

where N is the mean number of the ions and F is a con-
stant, generally less than unity, for radiation of
suSciently high energies. The quantity F, called the
Fano factor, represents the theoretical limit of precision
in the energy determination through ionization measure-
ments.

Knipp et al. [2] gave an analytic method for evaluat-
ing the statistical fluctuations in the ionization yield re-
sulting from the incidence of an electron of a fixed energy.
Rau, Inokuti, and Douthat [3] showed that the Fano fac-
tor and other indices characterizing the fluctuations can
be expressed more transparently as an integral involving
the electron degradation spectrum. An application of the
method to molecular hydrogen was presented by Inokuti,
Douthat, and Rau [4].

The method is now extended to treat the incidence of
an ion without electronic structure such as a proton or an
a particle. For such an event, the ionization is produced

either directly by the incident ion or indirectly by secon-
dary electrons. Therefore the yield and the fluctuations
receive contributions from these two sources.

The present work was stimulated by recent results on
argon, both experimental [5—7] and theoretical [8—10],
which are shown in Table I. In summary, the Fano fac-
tor is about 0.15 for electron incidence and about 0.2 for
a-particle incidence. As a step toward understanding the
difference between electron incidence and a-particle in-
cidence, we developed the analysis described below.

II. THEORY

A. Basic equation for the probability distribution
of ionization

Let us first consider the incidence of a simple ion, such
as a proton, an alpha particle, or any charged particle
that carries no electron, at a high speed. Let the medium
be composed of a single species of molecules having a sin-
gle ionization threshold I, for simplicity of discussion.
(This assumption is nonessential; it can be readily re-
moved without causing serious complications. We use
the term molecule for the simplicity of discussion; when
the medium is condensed matter, we refer to a structural
unit appropriate for a specific discussion. )

TABLE I. Summary of current data on the Fano factor of argon.

Incident radiation

a particles

a particles
Electrons

Energy

5.3 MeV

5.68 MeV
0.26 keV

and 2.82 keV

Experiment

0 20 +Oo01
—0.02

0.19+0.01
0.14+0.02

The Fano factor Authors

Kase et al. [5]

Alkhazov et ttl. [6]
Neumann [7]

Electrons
Electrons
Electrons

~2.5 keV
~5 keV
~2 keV

Theory
0.16
0.15
0.16

Alkhazov [8]
Grosswendt [9]
Kowari et ttl. [10]
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Let P( Tj ) be the probability that the incidence of an
ion of kinetic energy T produces precisely j ion pairs in
the medium. (Throughout the present paper, we put a
tilde over every symbol that refers to the ion as opposed
to an electron. ) Following Knipp et al. [2], we will write
an equation for P(Tj) T.o do so, we must start with
cross sections for individual collisions of the ion with
molecules. Several possibilities exist. First, the ion may
collide with a molecule, transfer energy E to it, and ion-
ize it, and cause the production of a secondary electron
having kinetic energy E —I. Let the differential cross
section for this ionization process be do;(T, E)IdE.
Second, the ion may collide with a molecule and transfer
energy E, to it, without causing ionization, ' most often,
the molecule is excited to a discrete level allowing disso-
ciation. Another kind of nonionizing collision leads to
energy transfer to the translational, vibrational, or rota-
tional motion of the molecule, such collisions are impor-
tant at low particle energies [11,12]. Let the cross section
for the energy transfer E, be cr, ( T). (We use the discrete
index s again for simplicity of discussion. Energy

transfer to the translational motion is certainly not
discrete but depends continuously on the scattering an-
gle. ) We call the sum of all the cross sections the total
cross section o „,( T),

o.„,(T)= ger, (T)+o,(T), (2)

where o.
, ( T) is the total ionization cross section,

do; (T,E)
0.;(T)=f dE

dE
(3)

For simplicity we restrict our treatment to the in-
cidence of an ion of sufficiently high energies so that most
of the energy loss is due to electronic excitation or ioniza-
tion [13] as opposed to nuclear motion of atoms or mole-
cules in the medium. Therefore we neglect ionization by
recoil ions, which is important at lower incident energies
and has indeed been discussed by Lindhard and co-
workers [11,12].

The equation for P ( Tj ) is then

d cr, ( T,E ) J'

o„,(T)P(Tj )=go, (T)P(T E„j)+—f dE g P(T E,k)P(—E Ij —k ——1) .
S k=0

(4)

The right-hand side of Eq. (4) enumerates all possible
contributions to cr„,( T)P( Tj ) classified by alternative re-
sults of a collision of an ion at energy T. If the collision
is nonionizing and results in energy loss E, of the ion, the
contribution is o, (T)P(T E„j) Th—e sum . of all such
contributions is the first term. If the collision is ionizing
and results in the energy loss E of the ion and in the pro-
duction of a secondary electron of energy E —I, the ion
(now with energy T E) may lead—to k ion pairs, and the
secondary electron may lead to j —k —1 ion pairs. The
contribution of this chain of events is

[der, ( T, E)IdE]P( T E,k)P (E I—j —k —1) .—

The last factor has no tilde, because it refers to an elec-
tron. More precisely, P(E Ij —k —1) represe—nts the
probability that a secondary electron of kinetic energy
E —I produces j —k —1 ions. This quantity has been
fully treated in Refs. [3,4]. We here regard it as known.
The total of all such contributions is the second term on
the right-hand side of Eq. (4).

The function satisfies not only Eq. (4) but also the con-
dition that

P(Tj)=o o (5)

for T & I, which means that no ion pair is produced by an
ion at energies lower than the ionization threshold. Be-
ginning with Eq. (5) and ascending in T, one solves Eq. (4)
to determine P(Tj). This procedure is straightforward
in principle, and the result is unique.

The integral over E in the second term on the right-
hand side of Eq. (3) or (4) extends over all possible values
of E, i.e., I & E & T. However, the upper limit is in prac-
tice much smaller than T, about 2mv =4(mIM)T,

where v is the speed of the ion, M is the mass of the ion,
and m is the electron mass. This limit implies when the
binding energy of the electron to be struck out is negligi-
ble; energy transfer E greater than the above value indeed
occurs upon inner-shell ionization but at a small proba-
bility. (See Sec. 2.2 of Inokuti [13] for a fuller discussion
of this point. ) In the following discussion, we will use the
abbreviated notation do r(E) for dE [do; ( T,E)IdE].

Equation (4) is effectively the same as Eq. (3.8) of
Lindhard et al. , [12] who also gave an extensive discus-
sion of the yield of ionization and other related quanti-
ties. The main contribution of Rau, Inokuti, and
Douthat [3] and of the present work is to relate the treat-
ment with the Spencer-Fano theory [14] of slowing-down
spectra and thus to make the analytic and numerical pro-
cedure more effective. Recent generalizations of the
Spencer-Fano theory, including time-dependent cases
[15—17], show the effectiveness of our approach.

B. Moments

Let us consider the moment M(T, p) of the probability
distribution P( T,j), viz. ,

M(T, p)= g j"P(Tj) .
j=0

(6)

According to Eq. (5), the moment is subject to the bound-
ary condition that

M( T,p) =6„o

for T(I. Multiplying both sides of Eq. (4) by j" and
summing the result over j gives the following equation
for the moment:
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p v po„,(T)M(T,p)= g o, (T)M(T E—„p)+ g g ~ f do r(E)M(T E—, v A—)M(E —I,A, ),
S .=0.=.

where the last factor without tilde, M(E —I,A, ), represents the moment of the ionization probability distribution due to
an electron of kinetic energy E —I,

M(E —I,A, )= g j P(E Ij—) .
j=0

(9)

The derivation of Eq. (8) is similar to the treatment of Sec. IV of Rau, Inokuti and Douthat [3), concerning the electron
incidence. In the present work, we presume that the electron problem has been solved; thus we treat M(E —I, A, ) as
known.

Equation (8) is solvable starting with p =0 and ascending in p. To see this clearly, one may recast Eq. (8) as

o „,(T)M(T p) go—,(T)M(T E„p—) f do—r(E)M(T E,p—)

p v

fdcrr(E)M(T E,v A—)M(E——I,A), (10)

where g'„gz denotes the summation as in Eq. (8), but the
single term with v=du, A. =O is subtracted. (This term ap-
pears as the last term on the left-hand side. )

The right-hand side of Eq. (10) contains the moments
M(T, IJ, ) of orders lower than p and the electron moments
M(T, p), all of which are presumed to be known. Thus
Eq. (10) is an inhomogeneous linear equation for M( T,p).
It is convenient to write the equation in the compact
form

+2M(E I, l)+1] . —(14)

QrM(T p)=R(T p) .

Here QrM(T, p) represents the left-hand side of Eq. (10)
and R(T,p) the right-hand side. We may call Qr the
Fowler operator for the ion. It is similar to the Fowler
operator Qz- for the electron treated by Rau, Inokuti, and
Douthat [3], but QrM(T, p) lacks the secondary-electron
term involving M(E —I, A, ), which is now incorporated
into the inhomogeneous term R ( T,p).

Let us examine the first three moments. For p=O, we
have R (T,O) =0. Starting with Eq. (7) and ascending in
T, we obtain

M(T, O) =1

for any T, which means that the total probability is con-
served, as it should be. For p= 1, we have

R(T, 1)=o,(T)+f der&(E)M(E I, 1) . (1—3)

Here M(T, 1) is the mean number of ionization, which
we will denote simply by N(T). Equation (11) with p = 1

is the Fowler equation for the mean ionization yield due
to the ion. The inhomogeneous term R(T, 1) consists of
two terms, the first representing direct ionization by the
ion and the second representing ionization by secondary
electrons.

For p=2, we have

R(T, 2)= fdcrr(E)[2M(T I, 1)M(E I,1)— —

+M(E —I,2)+2M( T E,1)—

For simplicity, we will write

M(T E, 1)=N—(T E), — (15)

which means the mean number of ionization caused by an
ion of energy T —E. Likewise,

M(E I, 1)=N(E —I)— (16)

is the mean number of ionization caused by an electron of
energy E —I.

The Fano factor F(E I) for an —electron of energy
E —I is defined as

F(E I)N(E I)=—M(E —I—, 2) —[N(E —I)] (17)

By use of Eqs. (15)—(17), one may recast Eq. (14) as

R(T,2)= fd(rr(E)[2N(T E)N(E I—)+2N(T —E)—
+ [N(E I)+I]—
+F(E I)N(E —I)J —. (18)

C. Variance

QrD( T) =p; ( T),
where

p, ( T)=R ( T, 2) —Qz. [N ( T) ]

(20)

(21)

as we readily see by combining Eq. (11)with Eq. (19).
It is possible to rewrite the expression for p, (T) in a

much more transparent form, viz. ,

The variance of the ionization yield is the most impor-
tant of many indices characterizing the statistical Auctua-
tions. Perhaps the most effective indices are the cumu-
lants treated by Inokuti, Douthat, and Rau [4]. In the
present article we limit our treatment to the variance,

D(T)=g[j N(T)] P(Tj ) =M—(T 2)—[N(T)] . (19)
J

This variance also satisfies the Fowler-type equation



4502 MITIO INOKUTI, KEN-ICHI KOWARI, AND MINEO KIMURA 45

p;(T)=g cr, (T)[N(T) N—(T E—, )] +fdcrr(E)[N(T) N—(T E—) N—(E I—)
—1]

+ fdo r(E)F(E I—)N(E I—) . (22)

In this equation, the first term represents the mean-
squared deviation due to nonionizing collisions of the ion,
the second term the mean-squared deviation due to ioniz-
ing collisions, and the last term the contributions due to
succeeding collisions of secondary electrons, where
F (E I) —represents the Fano factor for an electron of ki-
netic energy E I. T—he derivation of Eq. (22) from Eq.
(21) is in the Appendix.

D. Evaluation of the moments and variance
by use of the slowing-down spectrum

Equation (11) for the moment and Eq. (20) for the vari-
ance can be solved by ascending in T from the initial con-
dition, Eq. (7). However, it is much more effective to
solve the equation by use of the slowing-down spectrum,
as first shown by Rau, Inokuti, and Douthat [3]. The key
concept is the adjoint. We multiply Eq. (11) by a func-
tion y ( T), integrate over T, and obtain

f dT y( T}Q&M(T p) = f dT y(T}R(Tp) . (23)

We then rewrite the left-hand side as

fdTy(T)flrM(T p)= fdT[Qry(T)]M(T p) . (24)

where n is the density of molecules in the medium. Com-
bining Eqs. (23)—(25), we obtain

T
M(To, p) =n f dTy(To, T)R(T,p) . (26)

I
This represents the solution of Eq. (11);in other words,

when y ( To, T) is known, M ( To,p ) can be calculated as
the integral on the right-hand side of Eq. (26). Likewise,
the solution of Eq. (20) is written as

T
D(To)=n f d?y(TO, T)p;(T) .

I
In other words, the variance is the average of p;( T) with
the weighty(TO, T).

Parenthetically, y(To, T) is most often readily evalu-

(27)

We have thus introduced the adjoint operator Q~,
which acts on y(T) and leaves the integral unchanged.
The existence of an adjoint operator is well established
for a wide class of operators in a wide class of function
spaces. As Rau, Inokuti and Douthat [3] showed, the
function y(T} appropriate for use here is the slowing-
down spectrum. In the present problem of the ion in-
cidence, y( T) is the slowing-down spectrum of the ion. If
the ion has the initial energy To, we may write the
slowing-down spectrum as y(TO, T). Physically,
y(TO, T)dT represents the total path length of the ion
during the slowing from T+dT to T, when the ion had
kinetic energy To. According to the Spencer-Fano
theory, y ( To, T) obeys the equation

Qry ( To, T)=6( T —To) ln, (25)

ated. When To and T greatly exceed most of the possible
values of energy transfer (E, and E), it is sensible to use
the continuous-slowing-down approximation; then
y ( To, T) is the reciprocal of the stopping power no „(T),
where 0 „(T) is the stopping cross section

cr„(T}=QE,o, (T}+f do r(E)E . (28}

Consequently, one arrives at the following expression
for the Fano factor for the incidence of an ion of energy
To o

D(TO)
F(TO) =-

N( To)

f dTy(TO, T)p;(T)

dTy To
I

(29)

where R(T, 1) is given by Eq. (13) and p;(T) by Eq. (22).
A consequence of this result is noteworthy. According to
the second mean-value theorem of integral calculus [18],
the right-hand side of Eq. (29) is equal to the value P( T )

of the function

P(T) =p;(T)/R(T, 1) (30)

III. APPLICATION TO ARGON

A. Method of calculation

Calculations for proton incidence on argon were per-
formed according to the theory described in Sec. IID.
The following data were used as input.

The stopping cross section o „(T) was evaluated from
the analytic expressions that Andersen and Ziegler [19]
determined from a survey of experimental data. Using
the continuous-slowing-down approximation, we set
y( To, T)= [no „(T)]

The ionization cross sections of many gases for proton
impact have been extensively reviewed by Rudd and co-
workers [20—22]. Rudd [21] gave an especially detailed
analysis for argon including the contribution of each shell
to both the differential and total ionization cross sections.
We used the analytic expressions given by Rudd [21].

No comparably thorough knowledge of the discrete-
excitation cross section cr, (T) of argon for proton impact
appears to be available. For the present work, we adopt-

evaluated at T, a value of the ion kinetic energy T
somewhere in the interval of integration. In other words,
for some value T, F(TO)=P(T ) and I &T & To. If
P(T) varies slowly with T, the precise value of T is im-
material, and we immediately obtain an estimate of
F( To ) from P( T) alone. Only if P( T) is sensitive to T
over a large interval of T, we need the slowing-down
spectrum to determine F( To).

The above discussion represents the major general con-
clusions of the present theory.
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ed an estimate, based on the assumption that the stopping
cross section of Ref. [19] is reliable. The estimate is
simplified because discrete excitation accounts for a
minor part of the stopping cross section cr„(T) as given

by Eq. (28). Thus we can replace the sum over s in Eq.
(28) with a single term and write

o.„(T)=E,„o,„(T)+f der r(E)E, (31)

where 0,„(T) is an effective discrete-excitation cross sec-
tion and E,„ is an effective excitation energy. The second
term on the right-hand side of Eq. (31) is calculable from
the differential ionization cross section given by Rudd
[21]. Using the stopping cross section 0 „(T) given by
Andersen and Ziegler [19],we determined the first term,
E,„o,„(T), by subtraction. In numerical calculations of
the Fano factor, we also replace the first term on the
right-hand of Eq. (22) with cr,„(T)[N(T) N(T —E,„)]—.
We chose E,„=13.4 eV so that E,„/I =0.86, which is
reasonable on the basis of electron-collision and
oscillator-strength data [23]. (We also examined the sen-
sitivity of our results to the value of E,„. Variations of
E,„ofa few tenths of an eV cause no appreciable changes
in our results. }

As for the degradation of secondary electrons, we used
the results of Kowari, Kimura, and Inoktui [10]. for
N(E I) and F—(E I) to eva—luate p;(T) of Eq. (22) and
R ( T, 1) of Eq. (13).

To evaluate the mean yield of ionization N(TO) for
proton incidence, we basically used Eq. (26) for @=1.
However, we extended Eq. (26) to account for shellwise
contributions and Auger effect contributions. For the
latter we used the schematization of Kowari, Kimura,
and Inokuti [10], in which a 200-eV electron is ejected
after L-shell ionization.

B. Results on the 8'value

The mean yield of total ionization is customarily ex-
pressed in terms of the W value, 8 ( To) = To/N(TO) in
our present notation. With the use of the ionization cross
sections of Ref. [21],we obtained 31.1 eV for protons of 1

MeV, for instance, as shown in Table II. This result is
considerably higher than the literature values of 26.66 eV
for protons and 26.40 eV for a particles of high energies
[24]. It is generally believed [24] that the mean yield of
ionization is nearly the same for electrons, protons, and a
particles at comparable high speeds.

A probable reason for the high W value we obtained is
that the ionization cross sections of Ref. [21] might be
too small. We also note that Ref. [21] cites uncertainties
of about 10%. We have therefore repeated the calcula-
tions by using values of the ionization cross sections that
are enhanced by 5% and 10%%uo over the values of Ref.
[21]. (Results are shown in Table II.) However, the
lowest W value of 28.3 eV we thus obtained is still higher
than the literature values by 6%. There is a limit to the
enhancement of the ionization cross sections: values of
the ionization cross section that are too large would
render the excitation cross section cr,„(T) negative, for
the fixed value of the stopping cross section.

TABLE II. Results of calculations for protons of 1 MeV.

Ionization cross
sections

Values in Ref. [21]
5% greater
10% greater

JY
(eV)

31.1
29.6
28.3

0.236
0.184
0.157

Thus we consider that the comparison of the present
results with experimental data is less than conclusive.
This finding is in contrast with our work on the W value
for electron incidence, for which our earlier results [10]
were reasonably consistent with experiment.

C. Results on the Fano factor

TABLE III. Results of calculations for various incident ener-
gies.

Incident proton
energy Tp (MeV)

2.00
1.50
1.000
0.750
0.500
0.250
0.125

rV(Tp)
(eV)

28.5
28.4
28.3
28.4
29.0
31.7
36.1

F(Tp)

0.163
0.157
0.157
0.160
0.172
0.216
0.291

Fp( Tp)

0.096
0.089
0.086
0.088
0.098
0.144
0.225

Table II shows also the values of the Fano factor for
the three calculations. As the value of the ionization
cross section increases, both the W value and the Fano
factor decrease monotonically and smoothly. The
present finding is reminiscent of the correlations between
the Fano factor and the W value seen in other contexts.
Kimura et al. [25] evaluated the Fano factor for Ar-H2
mixtures over the entire range of composition for elec-
tron incidence and found that the Fano factor and the W
value not only change together with varying composition
but even show an almost linear relation. Krajcar-Bronic
[26] surveyed experimental data for various gases and
also found remarkable correlations between the Fano fac-
tors and the W values.

As we stated in Sec. II B, the 10% enhancement of the
ionization cross sections led to a W value close to experi-
ment. Thus it is probably appropriate to consider the
values of the Fano factor resulting from the same ioniza-
tion cross-section values.

Table III shows the energy dependence of the results.
The third column gives the Fano factor as defined by Eq.
(29), and the fourth column gives a new quantity F~(TO),
which represents the direct contribution of the proton.
The quantity is defined by

f dTy(TO, T)[p;(T)]~
Fp(T) = (32)

f dTy(TO, T)R(T, 1)
I
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par ic es and electrons as bein g attributable to
'ge as ic nuclear collisions

ar an ielsen [11. To clari
include th ff
and re

e ee ectsofnuclearcolli'
cariyt isissue, wecan

isions in our formalism
repeat our calculations. A first ste t

ionization and oth
n is e ort seems todefinitive result in th' ff oo be reevaluation of

n an ot er cross sections so that a sati
W value is obtained Thene . e energy losses to nu

suc ower energies, the inAuence oof electron capture and

y e incident ion ma ay also have to be consider d)
n is connection, the new m

e .

uc i, and Doke [28], on helium are extremx remely intriguing.
o s u y elium in the future.

In conclusion, we present a suggestion to ex eri-
menters. Measurements of the F

experi-
e ano factors of molecular
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hydrogen for protons or a particles will be valuable for
clarifying the role of nuclear elastic collisions and result-
ing recoil particles. In particular, comparison between
Hz and D2 will be most informative because of the mass
ratio of about 2.

manuscript. Those remarks helped us to present our
work more effectively. This work was supported in part
by the U.S. Department of Energy, OSce of Energy
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APPENDIX: THE DERIVATION OF EQ. (22)

First, it is necessary to rewrite QT[N( T) ] as follows:

QT[N(T)]—:cr„,(T)[N(T)] —g o, (T)[N(T E, )]——fdoE[N(T —E)]

=o„,(T)[N(T)] —g o, (T)[N(T) N(T —E, )] ——2N(T) g cr, (T)N(T E, )+ [N—(T)] g o, (T)

—f do T(E)[N(T) N(T ——E)]'—2N(T) f dtrT(E)N(T E)+ [—N(T)]' fdoT(E).
= —g cr, (T)[N(T) N(T E—, )] ——f do T(E)[N(T) N(T ——E)]

+2N( T) —g o, ( T)N( T E, ) —f—d o E ( T)N( T E)+o „—,( T)N( T) (A 1)

The terms within the large parentheses are equal to o;(T)+fdrrr(E)N(E I), accor—ding to the Fowler equation for

N( T), i.e., Eq. (11)with p = 1. Thus one may write

QT[N(T)) = —g tr, (T)[N(T) N(T E,—)] —f—doT(E)[N('T) N(T —E—)] +2cr;(T)N(T)

+2N(T) f drr T(E)N(E I) . —

Inserting this into Eq. (21), one obtains

p;(T)= g o, [N(T) N(T E, )—] +fdcrT(—E)[N(T) N(T —E)]—

+fdo T(E) [
—2N( T) —2N( T)N(E I)+2N( T —E)N(E I—)+2N( T E)+ [—N(E —I)+1]—
+F(E I)N(E —I)]—.

It is elementary to see that this is equivalent to Eq. (22).

(A2)

(A3)

'Present address: Department of Chemistry, The Universi-

ty of British Columbia, Vancouver, British Columbia,
Canada V6T 1Y6.
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