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The effect of electronic state mixing on tunneling dynamics is studied. To this aim the theoretical
description of the differential photodissociation cross section is extended to include rotational and vibra-
tional couplings. The mixing of bound and quasibound electronic states is reflected in resonance widths.
The anisotropy of the photofragments reflects mixing of dissociative continua. It is shown that inclusion
of these nonadiabatic couplings is required to reproduce the recently reported [Siebbeles, Schins, Los,
and Glass-Maujean, Phys. Rev. A 44, 343 (1991)] differential photodissociation cross section of H, for
excitation around the L'3Hg (v'=S5, N'=1,2) resonances. Nonclassical photofragment anisotropies are
found for coherent excitation of different rotational resonances (v'=35, N'=1, and N'=2) and of
different rovibrational resonances (v'=5, N'=1 and v'=4, N'=2). The latter is strongly connected to
the molecular excitation mechanism and has therefore no parallel in collision experiments.

PACS number(s): 33.80.Gj, 33.10.Lb, 35.20.Jv, 35.20.Pa

I. INTRODUCTION

Recently [1] we reported on the differential cross sec-
tion for photodissociation of H, by tunneling through the
barrier in the electronic potential of the L'3Hg state; see
Fig. 1. The experimental and calculated cross sections in
Ref. [1] exhibit discrepancies. The calculated cross sec-
tions and anisotropy parameters were obtained by an adi-
abatic description, only taking into account the ¢‘3Hg
state. In this paper it is shown that inclusion of rovibron-
ic_couplings of the adiabatic .’II, state to the A2],
y3z; , and , 3Ag Rydberg states not only improves the
description of the resonances mentioned above, but also
leads to new insights in photodissociation by barrier tun-
neling. The resonance width, the photofragment anisot-
ropy, and the resonance intensity are all a strong function
of electronic-state mixing and of coherent excitation of
rotational resonances. The width of a resonance is
affected by the coupling strength and character (bound
versus quasibound) of the admixed state. The photofrag-
ment anisotropy is influenced upon mixing of dissociative
continua. The cross section of a resonance is influenced
not only by the transition moments of the admixed states
but also by interference effects.

From earlier work [2-9] it is known that nonadiabatic
couplings are very important for the n =3 Rydberg levels
in H, below the H(1s)+H(2/) dissociation limit to which
the ¢'3Hg state belongs. Effects of these couplings on dis-
sociation dynamics have been addressed in the work of
Koot et al. [5]. For example, nonadiabatic coupling of
the ,°A, state with the . °II, state is responsible for the
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observation of fluorescence of the ,-state levels to the
repulsive £33 state.

The present investigation introduces couplings among
continuum states and between a bound and a continuum
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FIG. 1. Relevant adiabatic electronic potentials of H,. Note
the interchange of the labels between the two & and 43" state
potential-energy curves with respect to Ref. [1] in accord with
the recommendation of Ref. [7].
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state in a formal treatment. The consequences of the
couplings on the dynamics of photodissociation by bar-
rier tunneling are discussed. The accuracy of the existing
adiabatic potential-energy curves makes molecular hy-
drogen the ideal molecule to study the consequences of
electronic-state mixing. However, all the effects studied
pertain to excited molecular systems of both diatomic
and polyatomic molecules.

In the experiments of Ref. [1], a fast beam of H, in
several rovibrational levels of the metastable ¢ °II, state
is created by charge exchange of H,* on Cs vapor. The
metastable H, is dissociated by photon absorption around
600 nm. With our translational spectroscopy technique
we determine simultaneously both the kinetic-energy
release (KER) and the angle of dissociation with respect
to the polarization vector of the laser. The observed
KER value unambiguously determines the lower rovibra-
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FIG. 2. Experimental and calculated total photodissociation
cross sections. The experimental results are those from Ref. [1],
the calculated results have been obtained by the methods dis-
cussed in the text.
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'FIG. 3. Experimental and calculated anisotropy parameters.
The experimental results are those from Ref. [1], the calculated
results have been obtained by the methods discussed in the text.

tional level of the ¢TI, state. Recording the intensity of
a peak in the KER spectrum as a function of the photon
energy and the dissociation angle thus provides the rela-
tive differential photodissociation cross section of a
specific rovibrational lower state. The experimental total
cross sections and anisotropy parameters, already
presented in Ref. [1], are given by the crosses in Figs. 2
and 3. The solid curves in these figures are the results
from calculations to be discussed below. Inclusion of all
couplings makes it possible to accurately calculate the
differential photodissociation cross section spanning the
complete (quasi-)continuum of the n =3 gerade manifold,
in one calculation.

II. THEORY

In this section a brief outline of the theory used to in-
clude all relevant states is presented. The nonrelativistic
molecular Hamiltonian can be written as [7]
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H=H_+H', (1

with H. the clamped-nuclei (or Born-Oppenheimer)
Hamiltonian and H'=—1/2uA; the nuclear kinetic-
energy operator. To calculate the photodissociation
cross section of a molecule the molecular eigenfunctions
W¥,, which fulfill the Schrodinger equation H¥Y,=E,¥,,
are needed [9]. The functions ¥, have definite spin mul-
tiplicity and electron inversion symmetry. Also, the total
angular momentum exclusive of spin (N) is well defined.
These functions can be written as a superposition of
electronic-rotational wave functions ; according to

\I/II:E%',JI(I-;RJﬁ,e)fm(R) > (2)

where r denotes the coordinates of all electrons, R is the
internuclear distance, and the Euler angles 6 and ¢ define
the orientation of the internuclear axis. 1; are
electronic-rotational wave functions with well-defined
parity and can be written as
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2L | (AR DY (6,6,00"

¥, =2°

+P YA R)[Diy -4 (4,6,00]*) ,
(3)

with ¢ A(r;R)  the electronic wave function,
(DY _A($,6,0)]* a Wigner rotational wave function [10]
describing the rotation of the molecule with M the pro-
jection of N on the laboratory Z axis, and A the com-
ponent along the internuclear axis. p; is the symmetry in-
dex [11], which is zero for = states with A=0, o =1 for
2 states, and o =0 otherwise. Substitution of Eq. (2)
into Eq. (1) gives for a molecule with reduced mass u a
set of coupled equations in R only:

-2 4 A(R)+2B(R)-%-
dR? dR

1
2p

+UR)—E | f(R)=0. (4

I is the identity matrix. The elements of the matrix U are
given by

Uij(R)=(¢i|Hc|¢j>

1

+
2uR?

[N(N+ D+ [L2y;) —2A]8

ij o
(5)

with L the electronic angular momentum. The matrix U
is diagonal if adiabatic electronic states are used in the
wave functions ;. The second term on the right-hand
expression of Eq. (5) is the centrifugal potential [10],
which only contributes to the diagonal elements of U.
Off-diagonal matrix elements of L? are neglected in this
treatment. The elements of the nonadiabatic coupling
matrices A and B are given by
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_2“11{2(¢i|N+L_+N_L+|¢j), (6)
B~(R)=<t/1- 4 ¢-> %)
v “IdR |~

For large internuclear distances the coefficients for the
open channels (i.e., for those electronic states | ) for
which the energy E is in their vibrational continuum) the
coefficients f;, are given by

fin(R— o)=a,;,sin(kR +8,,) , (8)

while the coefficients of the closed channels vanish. The
nuclear kinetic energy for the open channel is given by
e=#%k?/2u and §,, is a phase shift. n, open channels
give n, independent solutions at each energy of E of Eq.
(4); the index n in Eq. (8) runs from 1 to n,.

According to Ref. [9] the probability of the molecule
being photodissociated into the solid angle dQ
=sinf d6d ¢ is equal to

4019.9) -5, tim [1l@@)*R%r, (9a)
M R—

where the integration is performed over the coordinates
of all electrons, denoted by r. For an isotropic initial
state the summation over M is performed with equal
weights and Eq. (9a) will be of the form

400.8) _ g 14 p, (cos0)] ©Ob)

with o is the total cross section, 8 the anisotropy param-
eter, and P, the second Legendre polynomial [10]. For
large internuclear distance R the time-dependent wave
function @ is given by

ikR
DR —0,0)= 3 AV, |Hy, D)) e
N',M',i,n R

(10a)
with

Aj(n)=a,;,exp(id;,) , (10b)
the product of the amplitude and a factor containing the
phase of the wave function in Eq. (8). H;, is the
radiation-matter interaction Hamiltonian [12]. At this
point it is important to note that the matrix element
(V,|H,,,|®,) is a real number, the sign of which is
determined by both the lower and upper states. This sign
is thus not determined by the phase §,, only.

Only the open channels, which contribute to the wave
functions ¥,, contribute to the summation over i in Eq.
(10), since the closed channels have zero amplitude for
large R, i.e., A4 °*d(n)=0. As a consequence the an-
isotropy parameter is dominated by the symmetry of the
open channels. The differential photodissociation cross
section can be calculated from Egs. (9) and (10). In the
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case of only one open channel | A4.(n)| is given by the
energy normalization of the continuum wave function.

III. CALCULATIONS

The adiabatic n =3 gerade electronic Rydberg states
are the ¢ 32;, 432;, a‘3Hg, and/'3Ag states; see Fig. 1.
In the present work photodissociation of only one lower
level is considered, namely the v =5, N=1 level in the
<11 state. In Ref. [1] photon excitation occurs around
resonances identified spectroscopically as the v’'=S5,
N'=1, and N'=2 quasibound L‘3Hg states. Excitation in-
volves a Q and an R transition, respectively. The summa-
tion over N’ in Eq. (10) thus reduces to N'=1 and 2.
Since linearly polarized light is considered, the summa-
tion over M’ reduces to M'=M. Note that the Q and R
transitions occur coherently according to Eq. (10).

The total angular momentum N’ is conserved in in-
tramolecular couplings. So those states reached by a Q
transition are mutually coupled, as are those reached by
an R transition. Selection rules [9] allow a Q transition to
the coupled N'=1g°3; £°3F, and *II] states. At the
energy of interest the Q transition involves one closed (¢)
and two open (4,.1) channels. The R transition occurs
to the coupled N'=2 (I and ,*A; states, of which
the first is an open and the second a closed channel. Thus
two sets of, respectively, three and two coupled states
ought to be treated.

A. The Q transition

To obtain the coupled N'=1 ¢ 32;, 432;, and 4'3H;
states Eq. (4) has to be solved. Numerically this equation
simplifies, if B(R)=0, since then the first derivative in
Eq. (4) disappears. The matrix B(R) contains large off-
diagonal elements for the adiabatic ¢ 32; and the 4 32;
states. A strongly avoided crossing [3] exists between the
adiabatic potential curves of these states near the equilib-
rium nuclear separation as a consequence of this cou-
pling. For the singlet manifold of molecular hydrogen
Senn, Quadrelli, and Dressler [13] have described a trans-
formation of the adiabatic electronic states to eliminate
the nonadiabatic coupling matrix B(R). However, after
this transformation the transformed matrix elements of
A(R) are not known. Therefore we follow the semi-
empirical treatment given by Schins et al. [7], who
looked for a minimum in the transformed matrices A(R)
and B(R) that involved the g 32; and the 432; states.
As a criterion for the transformation, reproduction of the
spectroscopic levels was used. This transformation re-
moves the avoided crossing and yields diabatic states of
nearly pure |3s) and |3d) electronic character, which
cross near their equilibrium separation and are given by

(11a)
(11b)

[3s ) =sin@| g ) +cosO|£) ,
13d ) =cosO|g ) —sinO[£) .

The rotation angle ©(R) depends on the internuclear dis-
tance and at a proper choice of ©(R) small A and B ma-
trix elements for the X states result [7]. The diabatic po-
tentials Uy, and U,,, which are the diagonal matrix ele-
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ments of the matrix U in Eq. (4) for the diabatic states
|3s) and |3d ), are now obtained from the adiabatic po-
tentials of the g32g+ and 432‘.; states [14], Uy and U,
respectively, according to

Uy, =(3s|H,.[3s)=U_sin®©+ U 4,c08’0+ U, 5, , (12a)
Usy=(3d|H,|3d ) =U_cos’0+ U sin®O+ U o 3 -
(12b)
The centrifugal potentials are evaluated according to
U =[N'(N'+1)+L(L +1)—2A%]/2uR?, (13)

with a constant value of L =0 for the |3s) state and
L =2 for the |3d) state, N'=1 and A’=0. The off-
diagonal elements involving the diabatic X states follow
from Egs. (11) and are equal to

(3s|H,[3d)=4(U,—Uy)sin26 . (14)

The small but nonzero matrix elements in A(R) and
B(R) that remain after the transformation are neglected
in the present treatment. As a consequence the accuracy
of 2; level positions is limited to about 30 cm .

The adiabatic potential of the ¢'3Hg state, {c|H,|c), is
provided by Kolos and Rychlewski [15]. The centrifugal
potential, needed to evaluate the matrix element in U for
the 5'3IIg state, is calculated according to Eq. (13) with
L =2, since the L‘3Hg state has mainly 3d character
around the equilibrium internuclear distance. The adia-
batic corrections for the L'3Hg state, which appear in the
matrix A, have recently been calculated by Rychlewski
[16] and are only different from zero near the top of the
barrier.

The adiabatic 2; states and the L'3Hg state are coupled
by rotational coupling. A second advantage of diabatic
2; states is that the L-uncoupling [10,17] matrix element
given by the second term in Eq. (6) is almost zero between
the |3s) and the ¢'3Hg (3d) electronic-rotational states.
If this matrix element is neglected, the only nonzero off-
diagonal elements in A are due to rotational coupling be-
tween the diabatic |3d) state and the adiabatic (’II,
state. With a constant value of L =2 it is, for N'=1 ac-
cording to the second term in Eq. (6), equal to
—V12/2uR? The three coupled equations resulting
from Eq. (4) for the N'=1 states reached by the Q transi-
tion can be solved numerically by using Egs. (11)-(14) for
the matrix elements. Table I provides a summary of
these matrix elements and their origin.

B. The R transition

The N'=2 L‘3Hg" and /‘3Ag_ states are coupled by the
rotational motion only. All diagonal matrix elements in
Eq. (4) involving the L‘3Hg state have been introduced in
Sec. IIT A. The adiabatic potential of the /‘3Ag state have
been given by Rychlewski [16]. No adiabatic corrections
were available for the /‘3Ag state. The centrifugal poten-
tials have been evaluated according to the Eq. (13). The
coupling due to the rotational motion is given by the
second term in Eq. (6) and is equal to —4 /2uR 2. Table I
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TABLE I. Origin (reference or formula) of matrix elements
of A and U in Eq. (4).

l s 3d? 3s®
¢ (AHADY (T Hlp) (HH o |3d ™)
(|H'|)¢
—4
. ~H <ye
ra I2mR? </| Cl/>
—v12
3d|H,|3d)f 3s|H.|3d
M 3 (3d|H,|34)"  (3s|H.|3d)
3s Eq. 14 (3s|H,|3s )"

Adiabatic =, state potentials (g|H,|g) and (£|H,|£) from
Ref. [14], transformation |g#),|4)<«>|3d),|3s) from Egs. (11),
and O(R) from Ref. [7].
PRotational potential is added to the potential curves as in Eq.
(13). Reference [15].
°The matrix is symmetric; upper right gives the matrix element,
lower left the functional form or equation.
dReference [16].
‘Reference [18].
fEquation (12b).
8Equation (14).
"Equation (12a).
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provides a summary of the matrix elements and their ori-
gin.

C. The differential photodissociation cross section

The coupled states |¥,_, ,) for the two open channels
with N'=1 and the state |¥,_;) for the open channel
with N'=2 and the coefficients A}.(n) have been ob-
tained by solving the coupled equations described in Sec.
III A and III B. With i =3d, /7, and <" in Eq. (2) for re-
spectively, the [3d ), *I1;", and . °II; states and

N 1 N
—-M 0 M

b

MNr(n)=<‘P,,|Him|q’o>/

evaluation of Eqgs. (9) and (10), using the properties of the
Wigner functions and 3j coefficients [18] yields

oo~ A¥(D)2+] 45 (DI2]IM,(1))2
+11A¥2)2+ 45 2)12) M, (2)2
+31 45 BPIM,(3))? (15)

and

B=1{[—1A¥D2+1 45 (DM, (D2H[ = 4222+ 457 () P]IM(2)2+ 2] 45 (3)]2M,(3))?
+Re[M,(1)M,(2)* [—2434(1)A¥(2)* + 45 (1) 45" (2)*]
—VISIM (1) A (D+M,(2) 45 (2)IM,(3)* 45 3 [/ A2+ 45 (D2 M, (1))

These (complicated) expressions are made more trans-
parent in Sec. IV where the reduction of Egs. (15) and
(16) is given in the case of one-state calculations. In the
total cross sections the three open channels can be recog-
nized, of which the first two are two linear combinations
of the |3d ) and " channels. Since all states above the
H(2/)+H(1s) dissociation limit are now coupled to the
dissociation continuum, the cross section of Eq. (15) de-
scribes not only the dissociative absorption cross section
but the fotal absorption cross section. The matrix ele-
ments My.(n) are sums of adiabatic transition matrix ele-
ments, which gives rise to strong intensity borrowing
effects as will be shown later. The anisotropy parameter
calculated in Eq. (16) contains the effects of interference
most strongly through the last term in the numerator
(Re[M (1) - - - ]) in which products between the strongly
varying phase factors in Aj.(n) give observable effects.

The cross sections and anisotropy parameters calculat-
ed according to Egs. (15) and (16) are discussed in the fol-
lowing section. The electronic transition moments for ex-
citation from the ¢’II, state to the adiabatic n =3 Ryd-
berg state have been provided by Schins et al. [8]. Note
that the dipole matrix elements for the diabatic |3s) and

+[14¥ )+ 4] 2)21IM, ()12
+3145 (3)2M,(3)%) . (16)

|3d ) states are easily obtained from the adiabatic dipole
moments for the g °3; and the A3E; states by using
Egs. (11).

IV. RESULTS AND DISCUSSION

A. Resonances due to v’=5, N'=1,2 in the c"lIg state

To appreciate the importance of the various couplings
discussed in Sec. III these are not all brought into ac-
count simultaneously. Exclusion of a state in the coupled
equations can be performed by setting the relevant cou-
pling matrix elements in Eq. (4) equal to zero and using a
zero transition dipole moment in Egs. (15) and (16) for
the excluded state. The experimental results from Ref.
[1] are presented together with several calculated results
in Figs. 2 and 3. In Fig. 2 the relative total photodissoci-
ation cross sections are given. The calculated cross sec-
tions have been scaled such that the maxima of the exper-
imental and calculated resonances at the lowest photon
energy coincide. The anisotropy parameters are given in
Fig. 3. The total cross section exhibits two resonances
due to excitation to the quasibound v’'=5, N'=1 and
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v'=5 N'=2/ H states, which are coupled to other
n =3 Rydberg states The anisotropy parameters in Fig.
3 are seen to vary drastically over the resonances, which
is due to quantum interference. As has already been dis-
cussed in Ref. [1], coherent excitation of the N'=1 and 2
resonances in between the resonances gives = —1, due
to the fact that only one resonance has been passed, giv-
J

_1l4 TOPM(DP+2] 45

T(3)PIM,(3) P+ Re{ —VISM (1) A5 (1)[M,(3)]*
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ing a phase shift difference of 7 [see Eq. (18) below].
Figure 2(a) contains the results presented previously
[1]. The cross section has been calculated by use of the
adiabatic potential of the . *Il, state [15], without bring-
ing into account any nonadiabatic term. In this treat-
ment only the continuum of the . *II, state has to be tak-

g
en into account and Eq. (16) reduces to

5 (3)%}

|4 (DM (D245 45

The amplitudes |A‘1'+(1)| =|4% (3)| are equal, due to
the identical energy normalization of the continuum
wave functions for N'=1 and 2. Only the phase factors
in these Ay (n), given by exp(i§;,), can be different.
Equation (17) can now be written as

—V15M(1)M,(3)cos(8 . —5
M (D2 +3|M,(3)12
3M1MZCOS(81 _82)

1+ > (18)
: (M, >+ M, |?

)
+

B=

o=

where the notation of Ref. [1] has been used in the second
equality of Eq. (18). We note that this implies

N 1 N

My (n)= —A 0 A

for n=1,3 and A=A'=1, while N=1, N'=1,2,
8,=8,+, and 8,=8 —,. The total cross section is propor-
tional to |M, |2+ |M,|?, a result already presented in Ref.
[1]. The calculated curve in Fig. 2(a) has been shifted 15
cm "' towards higher photon energy in order to let the
positions of the calculated resonances coincide with the
experimental ones. Apart from the discrepancy in the
positions of the resonances, two other differences between
the experimental and calculated results of Fig. 2(a) can be
observed. The calculated widths of the resonances are
larger than the experimental ones and the calculated in-
tensity of the second resonance is too low. The calculat-
ed anisotropy parameters in Fig. 3(a) are in agreement
with the experimental results around the second (N'=2)
resonance at 15600 cm~!. However, around the first
(N’'=1) resonance and in between the two resonances the
calculated anisotropy parameters are somewhat larger
than the experimental results.

In Figs. 2(b) and 3(b) the calculated results have been
obtained by inclusion of the adiabatic corrections [16] to
the potential of the (3 II, state. The adiabatic corrections
are given by the first term in the right-hand expression of
Eq. (6). Inclusion of the adiabatic corrections makes the
shift by 15 cm ™! superfluous and has narrowed the calcu-
lated resonances, resulting in a better agreement with the
experimental total cross sections. The adiabatic correc-
tions amount about 50 cm ™! on top of the barrier and
vanish at other positions. Since the excitation takes place

(17

(3)?[M,(3)]2

r

only 300 cm ™! below the top of the barrier, inclusion of
these adiabatic corrections significantly decreases the
tunneling probability. Nevertheless, the calculated inten-
sity of the second resonance is still lower than observed
experimentally. As is seen in Fig. 3(b), the calculated an-
isotropy parameters in between the two resonances are in
somewhat better agreement with the experimental values.
In this one-electronic-state description the numerator of
the expression of B in Eq. (16) contains the real part of
the product of the transition moments for excitation to
N’=1 and 2 (see also Ref. [1]). This interference term is
proportional to cos(8;—8,). Going over a resonance
means a change of the corresponding phase §; by 7 re-
sulting in a contribution of the interference term with op-
posite sign. The narrowing of the resonances gives rise to
a faster change of the phase shifts 8, in the continuum
wave functions of Eq. (8) as the photon energy is varied
over the resonances. The anisotropy parameter thus ex-
hibits larger changes as the resonances are more separat-
ed, since then the phase shift difference will get closer to
7. However, around the first resonance the calculated
anisotropy parameters are still larger than the experimen-
tal values.
Inclusion of the rotational coupling of the
SILF(N'=1) state to the g’3](N'=1) and
A 3Z“L(N '=1) states, with the = states mutually coupled
v1brat10nally as discussed in Sec. III A, yields the results
of Figs. 2(c) and 3(c). These results do not differ much
from those of Figs. 2(b) and 3(b). The calculated reso-
nance positions are not changed by the coupling with the
3 states. The width of the first calculated resonance in
Fig. 2(c) is somewhat smaller than the corresponding
width in Fig. 2(b). The reduction of the width reflects the
larger bound character of the N'=1 wave function by in-
clusion of the X states. The increased bound character is
mainly due to the barrier in the potential of the diabatic
(3d)3=] state, which is broader and higher than the bar-
rier in the ‘ 3H state. Coupling with the purely bound
diabatic (3s) 32+ state is hardly noticeable, since this
state only mlxes in indirectly via the (3d )3E+ diabatic
state through the coupling of Eq. (14). The 1nten31ty of
the second resonance has reduced somewhat in compar-
ison to the results of Fig. 2(b). The smaller width of the
first resonance gives rise to a smaller background below
the second one. The calculated anisotropy parameters do
not exhibit a significant change by inclusion of the =
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states. This indicates that the outgoing flux via the =
continuum is small. Section IV B contains an example of
a = dominated resonance in which the fluxes through the
>} and the . °TI;] continua are comparable.

Figures 2(d) and 3(d) contain the calculated results ob-
tained by switching on the coupling with the /'3Ag’ state.
All couplings considered in Sec. III are now brought into
account. The agreement between the calculated and ex-
perimental cross section has improved dramatically. The
calculated intensity of the second resonance has increased
by about a factor of 1.5, bringing the calculated results in
accord with the experimental findings. The large
influence of the ,A; (N'=2) state initially came as a
surprise and can be attributed to a number of effects.

First, there is the large effect of the rotational coupling
of the quasibound Il (v'=5, N'=2) state with the
bound 4 3A (v —4, N'=2) state. It turns out that the

3A (v'= =2) state is positioned only 490 cm !
below the ¢ 3IIg (v'=6, N'=2) resonance. More impor-
tantly, the adiabatic vibrational wave functions have the
same structure at internuclear distances up to about
2.5a,, as is shown in Fig. 4, resulting in a large value of
the L-uncoupling matrix element. This is supported by
the result of a test calculation in which the electronic po-
tential of the ,*A, state had been shifted 0.25a, towards
larger internuclear distances. Due to this shift the vibra-
tional wave functions of the ¢'3II; (v'=5, N'=2) and the

3A (v'=4, N'=2) state are almost orthogonal and the
1nﬂuence of the inclusion of the ,*A, state in the calcula-
tions indeed disappeared. The ¢ 3l'I (v'=S5, N'=2) reso-
nance width decreased by about 10%, reflecting the in-
creased bound character of the excited state.

Second, the large increase in the calculated intensity by
about 50% is partly due to the large excitation probabili-
ty of the , 3Ag state. The transition moment including
the Honl-London factor is about V2.5 times larger for
excitation to the ,3A (N'=2) state than to the

M, (N'=2) state. Due fo the fact that the total photo-
d1ssoc1at10n cross section is determined by the square of

the summed transition moments to the *II, and ,A,
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FIG. 4. Adiabatic vibrational wave functions of the
M, (v'=5, N'=2) state (solid curve) and the ,3A,(v'=
N'=2) state (dashed curve).
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TABLE II. Calculated photon absorption cross section ob-
tained without and with rotational couplings.

Cross section (arb. units)

State Without coupling With coupling
£4,2) 0.15 0.05
(5,2) 0.14 0.21
total 0.29 0.26

states, electronic state mixing can lead to large intensity
shifts. For example, admixture of 10% of the , state
gives, via the increased transition moment and the double
product (from taking the square of a sum), a 50% effect
on the absorption probability. The aspect of effective in-
tensity borrowing in electronic state mixing is shown in
Table II. The sum of the photon absorption cross sec-
tions calculated by bringing into account couplings
should be equal to that obtained without couplings, since
the couplings imply a unitary transformation of the states
involved. The ¢ H (v'=5, N'=2) resonance is indeed
mainly affected by the s 3A (v'=4, N'=2) state. Indeed,
the sums of the absorptlon cross sections calculated
without and with rotational coupling are within 10% the
same. Note the admixture of .- state character to the ,
state (v'=4, N'=2) decreases the intensity of the latter
resonance by a factor of 3.
The present case of coupling for N'=2 concerns the
bound ,*A; (v'=4, N'=2) state in the continuum of the

3II (N'=2) state. Since these two states are coupled
and both carry oscillator strength from the lower state
one might think of treating this system by a Fano formal-
ism [19]. In such an approach the continuum is usually
supposed to have no structure. This implies that the con-
tinuum nuclear wave functions and hence the coupling
matrix elements are independent of energy. In this ap-
proximation the influence of the ,*A; (v'=4, N'=2) res-
onance would be negllglble near the ¢ 3Hg (v'=5,N'=2)
resonance. The ¢ 311g (v'=5, N "2) resonance is about
10* linewidths away from the , A (v'=4, N'=2) reso-
nance. However, near the . 311 (v ——5 N’=2) resonance
the amplitude of its contmuum nuclear wave function
changes dramatically with energy and a treatment with
constant coupling matrix elements is not valid. The
¢‘3Hg_ (v'=5, N'=2) wave function gets bound character
and an estimate of the effect of coupling treating both
states as bound is more reasonable.

Coupling to the /‘3Ag_ (N'=2) state has only a small
influence on the calculated anistropy parameters [Figs.
3(c) and 3(d)]. The calculated B values have become
somewhat smaller around the second resonance. The ex-
perimental error in the experimental 3 values does not al-
low us to decide if the calculated results of Fig. 3(d) are
better than those discussed above.

B. Effects of nonadiabatic couplings on anisotropy
of photofragmentation by barrier tunneling

In Sec. IV A is shown how the experimental differential
photodissociation cross section is well described by in-
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clusion of nonadiabatic couplings. Rotational coupling
of the (I (N'=2) state to the , A 7 (N'=2) state
causes the total cross section to change dramatically. In
this section a number of physical phenomena concerning
coherence effects in the photodissociation by barrier tun-
neling in H, is illustrated. Again photodissociation of the
¢’ (v=5, N=1) state suffices to illustrate these
effects.

In Fig. 5 the photodissociation cross section and the
anisotropy parameters calculated are presented. Figure 5
shows two resonances at 14906 and 15110 cm ™! with a
very small width, which are due to excitation of the
A2 (v'=5 N'=1) state and the ,’A; (v'=4, N'=2)
state, respectively. The /-state resonance energy is 29
cm ™! below the experimental value [4]. The spectroscop-
ic use of the 4 and g-state label is not unambiguous. In
Ref. [4] this resonance is described as g 3E+( '=5,
N'=1) resonance. The discrepancy in the calculated po-
sition is attributed to ignoring the remaining vibrational
interactions between the (not perfect) diabatic 2 states
(see Sec. IIT A) [20]. The resonant energy for excitation
to the » 3Ag" (v'=4, N'=2) state is in perfect agreement
with the experimental value [4].

If the £°2] state would be a pure I state, the pho-
tofragment anisotropy parameter would be equal to
B=—1. The fact that the calculated anisotropy parame-
ter on top of the A3Z+( ‘=5, N'=1) resonance is 0.1 in-
dicates that the rotatlonal coupling of this state with the
¢’TI; state results in a reasonable outgoing flux through
the barrier of the ¢'3Hg state. Koot et al. [5] have mea-
sured for this resonance an anisotropy parameter of
B=0.22, close to the value calculated here. These au-
thors already recognized that the flux through the barrier
of the . °II; state must be considerable for this resonance

[5]. Albeit that the coupling with the < *II; state is weak,
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FIG. 5. Calculated cross sections (upper figure) and anisotro-
py parameters (lower figure) as discussed in the text. The peaks
in the upper figure are due to the £°2](v'=5, N'=1) and the
4 A, (v'=4, N'’=2) resonances.
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tunneling through the barrier of the 3H state is much
faster than through the (broad) barrier of the A 32+ state.
The coefficients A44.(n) show that the calculated flux
through the . 3H channel is twice the flux through the
A 32+ state. Indeed this ratio of the fluxes explains the
calculated anisotropy parameter to be close to zero; the B
parameters are 0.5 and — 1 for dissociation by a pure II
and E+ continuum, respectively.

Another feature in Fig. 5 is worth mentioning, namely
the change in the anisotropy parameter around the reso-
nance at 15110 cm ™', We conclude that this is due to in-
terference between direct excitation to the continuum of
the .1, state and dissociation by excitation to the , A,
state, which is predissociative due to rotational coupling
to the . 3II state. Fano proﬁles of this type are discussed
in Ref. [17] The ,3A (v'=4, N'=2) resonance
influences the anisotropy parameter over a much longer
energy range than its linewidth. Apparently the ampli-
tude of the L‘3Hg quasicontinuum wave functions has be-
come very small at 1000 cm ™! below the barriers and in
between the ¢‘3Hg(u’=4) and (v’'=S5) resonances. Only
at a relatively large energy distance of 70 cm ™! at 15020
cm™! the excitation probability to reach the ,°A, has
decreased enough to make it comparable to that for exci-
tation to the 4'3Hg state and give rise to maximum in-
terference.

Finally, in Fig. 5 the anisotropy parameter is also seen
to change around a photon energy of 14 600 cm ™!, while
there is no resonance being observed. Since there is no
resonance at this photon energy no rapidly varying phase
§; is present, as is the case in between the rotational reso-
nances described in Sec. IV A. Only the . 3l'[ state needs
to be considered near 14600 cm™! because no £ N
state resonances occur near this energy. In between the

=4 and 5 resonances of the ¢'3Hg state the phase shifts
6, and 8, change smoothly with energy and are almost
equal, yielding cos(8;—8,)=1 [Eq. (18)]. The observed
change of the anisotropy parameter coincides with a
minimum of the total cross section in the upper panel of
Fig. 5, and is caused by a change of the sign of the matrix
elements M, and M, in Eq. (18). In the considered ener-
gy region the vibrational quasicontinuum wave function
goes from a v'=4 to a v'=S5-like resonance, and as a
consequence the transition moments M; and M, change
sign. The change occurs at a somewhat lower energy for

=1 than for N'=2. The matrix element M; equals
zero for a photon energy near 14 530 cm ™!, giving 8=0.5
[Eq. (18)]. Above this energy excitation to N'=1 takes
place to the low-energy side of the v’=35 resonance, while
exc1tat1on to N'=2 still involves the high-energy side of
the v'=4 classical values again; see Eq. (18). If
M,=—M,, Bbecomes 3= —1. It should be stressed that
the magnitudes and signs of these transition moments are
determined by the wave function of the lower
¢ (v'=5, N'=1) state. Therefore it is concluded that
this change in the photofragment anisotropy has no
parallel in an atom-atom collision where only the excited
state is of importance. At 14600 cm ™! M, changes sign.
From here both branches reach a v'=35 resonance and
the anisotropy parameter goes up. The presence of the
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A°2f(v'=5, N'=1) resonance prevents B to become
larger than about 0.4.

It should be noted that the described change of the an-
isotropy parameter will be extremely hard to observe,
since at this position in the quasicontinuum the cross sec-
tion displays a minimum.

V. CONCLUSIONS

This paper has been inspired by discrepancies between
a one-state calculation and the experimental result on the
photodissociation of H, through the barrier of the z'3IIg
state. However, this work has provided insights in the
consequences of electronic mixing through rotational and
vibrational coupling on the dynamics of dissociation
through a potential barrier. The effects on the dynamics
are observed by the shape and intensity of absorption res-
onances and by the change of the anisotropy parameter.
In the n =3 system of H, two bound states, the ,>A, and
(3s)g°2; and one quasibound state with a broad barrier,
the (3d)A 32+ state, are mixed in.

The 4 32; (v'=5, N'=1) resonance forms an example
where electronic mixing causes the excited molecules to
dissociate in nearly equal amounts through the .-state
barrier and 4-state barrier as shown by the anisotropy
parameter. Excitation in between the »'=4 and 5 reso-
nance of the ¢ state forms an example of coherent excita-
tion of the v'=5, N'=1 and v'=4, N'=2 resonances.
The change of sign of the Franck-Condon factor between

=4 and 5 causes the occurence of nonclassical anisotro-
py parameters. This change in 8 parameter has no paral-
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lel in an atomic-collision problem. In contrast, the
coherent excitation of the rotational levels ¢'3Hg(v’=5
N’'=1and v'=35, N'=2) also results in nonclassical 3 pa-
rameters now due to phase changes of the continuum
wave functions over the resonances.

The last example has been confronted with the experi-
mental observations. Subsequently, different nonadiabat-
ic effects have been incorporated. Adiabatic corrections
to the potential of the ¢'3Hg state improve the calculated
resonance widths, resonance positions, and anisotropy
parameters. Rotational coupling of the . 3II“L(N '=1)
state to the mutually vibrationally coupled & 3EJ’(N '=1)
and 4 3E*h(N '=1) states does not have a s1gmﬁcant effect
on the calculated results. Rotational coupling of the
M (N'=2) state with the ,3A;(N'=2) greatly
enhances the agreement between theory and experiment.
The coupling with the ,>A; (N'=2) state increases the
relative intensity of the N'=2 resonance by 50% and
brings it into agreement with the experimental results.

ACKNOWLEDGMENTS

Dr. J. Los and Dr. H. G. Muller are gratefully ac-
knowledged for the useful discussions. This work is part
of the research program of the Stichting voor Fundamen-
teel Onderzoek der Materie (Foundation for the Funda-
mental Research on Matter) and was made possible by
the financial support of the Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (Netherlands Organization
for the Advancement of Research).

[1]L. D. A. Siebbeles, J. M. Schins, J. Los, and M. Glass-
Maujean, Phys. Rev. A 44, 343 (1991).

[2] M. L. Ginter, J. Chem. Phys. 46, 3687 (1967).

[3] C. B. Wakefield and E. R. Davidson, J. Chem. Phys. 43,
834 (1965).

[4] W. Koot, J. J. van der Zande, J. Los, S. R. Keiding, and
N. Bjerre, Phys. Rev. A 39, 590 (1989).

[5] W. Koot, P. H. P. Post, W. J. van der Zande, and J. Los,
Z. Phys. D 10, 233 (1988).

[6] S. R. Keiding and N. Bjerre, J. Chem. Phys. 87, 3321
(1987).

[7] 3. M. Schins, L. D. A. Siebbeles, J. Los, and W. J. van der
Zande, Phys. Rev. A 44, 4162 (1991).

[8] J. M. Schins, L. D. A. Siebbeles, W. J. van der Zande, J.
Los, H. Koch, and J. Rychlewski, Phys. Rev. A 44, 4171
(1991).

[91L. D. A. Siebbeles, J. M. Schins, W. J. van der Zande, and
J. A. Beswick, Chem. Phys. Lett. 187, 633 (1991).

[10] R. N. Zare, Angular Momentum (Wiley, New York, 1988).

[11] M. H. Alexander and P. J. Dagdigian, J. Chem. Phys. 80,
4325 (1984).

[12] R. Loudon, The Quantum Theory of Light (Clarendon,
Oxford, 1973), Chap. 11.

[13] P. Senn, P. Quadrelli, and K. Dressler, J. Chem. Phys. 89,
7401 (1988).

[14] W. Kolos and J. Rychlewski, J. Mol. Spectrosc. 143, 212
(1990).

[15] W. Kolos and J. Rychlewski, J. Mol. Spectrosc. 66, 428
(1977).

[16] According to J. Rychlewski (private communication), the
<11, potential must be increased by 56 cm ™' for R =4.0
bohr, 42 cm™! for R =5.0 bohr, 1.5 cm™! for R =6.0
bohr, and 0.1 cm ™! for R =8.0 bohr.

[17]L. D. A. Siebbeles, J. M. Schins, J. Los, and M. Glass-
Maujean, Phys. Rev. A 44, 1584 (1991).

[18] M. Rotenberg, R. Bivins, N. Metropolis, and J. K.
Wooten, Jr., The 3j and 6j Symbols (MIT Press, Cam-
bridge, 1955).

[19] U. Fano, Phys. Rev. 124, 1866 (1961).

[20] J. M. Schins, L. D. A. Siebbeles, W. J. van der Zande, and
J. Los, Chem. Phys. Lett. 182, 69 (1991).



