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Atomic E-shell binding energies of multiply charged neon ions studied by zero-degree
Auger-electron spectroscopy
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In this work we report an improved experimental determination of K-shell binding energies
from Be-like Ne +, B-like Ne'+, and C-like Ne + ground-state multiply charged ions using high-
resolution Ne-K Auger-electron spectroscopy. The derived energy differences, namely,
Ne + E(ls 2s ) 'S—Ne + E(1s2s ) S, Ne'+ E(1s 2s 2p) P'—Ne + E(1s2s 2p) 'P', and
Ne + E(1s 2s 2p ) P—Ne'+ E(1s2s 2p ( P)) P are 1099.1, 1048.5, and 1001.8 eV, respectively. These
energies are accurate to within +0. 1 eV. Theoretically, we have studied relativistic binding energies
of Neq (q =6, 5, and 4) by using the (i) saddle-point technique, (ii) 1/Z method, and (iii)
multiconfiguration Dirac-Fock model. Excellent agreement with experiment is obtained.

PACS number(s): 34.50.Fa, 31.20.Tz, 31.30.Jv, 35.10.Hn

I. INTRODUCTION

K-shell binding energies of free atoms [1]and ions con-
stitute important atomic data relevant to surface physics,
fusion plasmas, x-ray laser design [2], astrophysics, and
sophisticated ion sources such as the electron-cyclotron-
resonance (ECR) source [3] and electron-beam ion trap
(EBIT) [4]. These data are also of fundamental impor-
tance for a better understanding of electron correlation
and relativistic interactions in autoionizing core-excited
states which generally require computationally elaborate
many-body theories [5—13]. Despite the fundamental im-
portance of accurate inner-shell energy values, it was not
until recently that free-atom E-shell binding energies of
Be, B, and C have been studied both experimentally and
theoretically [14—16]. Experimentally Bruch and co-
workers applied the forward-angle (6.5') projectile
Auger-electron-spectroscopy method [14,15] to fast Be+,
B+, and C+ ion beams and Krause and Caldwell [16]
made a study of the K-shell photoionization of atomic
beryllium.

Highly accurate atomic data on binding energies of
multiply charged ions are virtually nonexistent except for
some recent results on the L, M, and N shells of multiply
charged krypton ions by internal-conversion-electron
spectroscopy [17].

Here we report K-shell binding energies for charge
states 4+ (C-like Ne), 5+ (B-like Ne), and 6+ (Be-like
Ne). To our knowledge these measurements represent
the most accurate E-shell binding energies for multiply
charged Ne ions. Furthermore we have calculated pre-
cise Ne K energy values and shifts as a function of the
number of 2p orbitals by using relativistic many-body ap-
proaches. Our theoretical predictions are in excellent

agreement with experimental results and may serve as
benchmark calibration points. The determination of ex-
perimental K-binding energies is discussed in the follow-

ing.

II. EXPERIMENTAL PROCEDURE

Zero-degree projectile Auger-electron spectroscopy
[18—20] in conjunction with multiply charged energetic
ion beams and light targets (Hz, He) has great potential
for studying core-level binding energies, because (i) the
excitation process is highly selective [21], similar to
inner-shell photoionization [22—24], (i.e., mainly one
inner-shell electron is removed), (ii) high-energy resolu-
tion is achieved due to drastic reduction of kinematic line
broadening, and (iii) Auger spectra can be investigated in-

dividually, depending on the incident projectile charge
state [25]. In this work Li-like, Be-like, and B-like core-
excited configurations were selectively produced in 100-
MeV Ne ++He, 100-MeV Ne ++He, and 70-MeV
Ne ++He collisions (see Fig. 1). The experimental ar-
rangement that has been used to study electron emission
from selectively excited K-shell vacancy states of fast Ne
ion beams has been described in detail previously [21]
and will not be discussed here. However, the line assign-
ment and absolute calibration for these Ne K Auger spec-
tra have been considerably improved on the basis of
refined theoretical computations using the saddle-point
technique [26], the I /Z method [13], and the
multiconfiguration Dirac-Fock (MCDF) mode [6].

In particular the line assignment of the boronlike states
[Fig. 1(c)] has been completely revised. Figure 1 presents
the basic results of this experiment. It clearly demon-
strates that discrete selective Auger transitions can be ob-

45 4476 1992 The American Physical Society



45 ATOMIC E-SHELL BINDING ENERGIES OF MULTIPLY. . . 4477

( t1)
100 MeV Ne~ on He

I I I I

100 MeV Ne~ on He
IIo 2—

S

C II
2 &lip

5 q— IIII
4JJ ~i -'~'.

E (eV)

1099.1-—

446.36--

Eps -1099.1
Berylliumlike

+(1S2S )

ger

Ne '(1s )'S

(c)
100 MeV Ne4+ on He 207.27-- '(1s 2s) S

$i
i&

I

X~k'a~I ~
680 700

Electron energy (eV)

720 740

FIG. 1. High-resolution zero-degree electron spectra of neon,
resulting from K-shell ionization following (aj 100-MeV
Ne ++He, 100-MeV Ne'++He, and (c) 70-MeV Ne ++He
collisions. The spectra are displayed after background subtrac-
tion and transformation to the projectile emitter frame.

served in energetic Net+(q=6, 5, and 4)+He collisions.
The majority of the Auger lines which are observed in
Figs. 1(a) and 1(c) originate from Li-like, Be-like and B-
like initial configurations. We have found striking evi-
dence that the pronounced lines [see Figs. 1(a)—1(c)] can
be uniquely identified as the

0-- ) S

The procedure for extracting the berylliumlike, boron-
like, and carbonlike K-shell binding energies is illustrated
schematically in Figs. 2, 3, and 4, respectively. In these
energy-level diagrams EA„g„ is the experimentally deter-
mined Auger transition energy. In this connection we
note that the necessary additional L-shell ionization ener-
gies of the Ne can be deduced with high accuracy from
spectroscopic data [28]. The K-binding energies thus de-
rived are summarized in Table I along with theoretical
calculations which are discussed in the next section.

FIG. 2. Energy-level diagram for establishing the E-shell
binding energy of berylliumike neon.
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Auger transitions. A more detailed line identification
and discussion of the branching ratios is given elsewhere

[271
According to Bisgaard et al. [14] we define the K-shell

binding energies of Ne as the difference between the
lowest-lying multiplet terms of the initial- and final-state
configurations for the E-shell ionization process. For
Be-, Be-, and C-like neon ions, the E-shell binding ener-
gies are therefore given as follows:

E(ls2s ) S—E(ls 2s ) 'S for Ne6+ (4)

381.225

ger
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FIG. 3. Energy-level diagram for establishing the K-shell
binding energy of boronlike neon.
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scheme [33], where the Breit interaction and quantum-
electrodynamic corrections are taken into account. In
addition, the ground-state correlation corrections are also
included [34].

In a third method we have applied the S-matrix for-
malism [13] as developed by Ivanov and Safronova to
the nonrelativistic and relativistic energies of the
Ne +(Is2s 2p} P and Ne +[Is2s 2p ( P}] P states.
This 1/Z expansion yields E-shell binding energies which
are listed in Table I along with the MCDF values.

IV. RESULTS AND DISCUSSIONS

It is interesting to compare the experimental and
theoretical E-binding energies for the different Ne charge
states (see Table I). In the column labeled "Projectile"
we compare our results with earlier beam-foil measure-
ments of Schumann and co-workers [35,36]. It is evident
that we have increased the accuracy of Ne E Auger ener-
gies by one order of magnitude. In this connection we
note that for the Ne + case our projectile energy value
deviates from the corresponding beam-foil result by 2.3
eV.

Complementary E-binding energies resulting from Ne
E-target spectra following bombardment of fast multiply
charged ions on Ne are also included in Table I (see
column "Target" ). The strong Coulomb field induced by
the highly charged ions results in the removal of several
electrons from the Ne L shell whenever a vacancy is pro-
duced in the E shell [37—40]. This causes the production
of recoil charge states which correspond mainly to I.i-,
Be-, B-, and C-like electron configurations. As can be
seen from Table I the E-shell binding energies derived
from the work of Kadar et al. [40] agree within a few
tenths of an eV with our experimental projectile results.

In our MCDF calculations of E-shell binding energies,
the ground-state-correlation corrections which arise from
the broken pairs in the ionization were estimated to be
1.17, 1.23, and 1.27 eV for Ne +, Ne +, and Ne +, re-
spectively, by using the calculated nonrelativistic pair en-
ergies [41]. For Ne +, the present MCDF results differ
slightly with the corresponding value given by
Schumann, Groeneveld, and Nolte [35] due to the use of
optimum-level scheme [33] and the inclusion of the

ground-state-correlation correction in our calculation.
To our knowledge, the best theoretical data for E-shell

binding energies are by Chung and Davis. Indeed, our
experimental values for Ne + and Ne + are in excellent
agreement with the saddle-point calculation. In the case
of Ne + the 1/Z-expansion method predicts E-binding
energies outside our experimental uncertainty, whereas
the saddle-point and MCDF calculations are in perfect
agreement with our experimental value. For Ne + our
MCDF result lies inside the experimental uncertainty
quoted, whereas the I/Z expansion predicts a binding en-

ergy which is slightly higher than our experimental ener-

gy.
There is another interesting point worth mentioning.

It is apparent from Figs. 2-4 and Table I that the E-
binding energies dramatically increase with decreasing
number of 2p electrons. The corresponding binding-
energy shifts derived from Table I are summarized in
Table II. This effect can be explained qualitatively as a
screening effect [22] of the nuclear potential owing to the
2p orb&tais.

V. CONCLUSION

In summary, we have determined accurate E-binding
energies for free neon ions of Be-, B-, and C-like
configurations from high-resolution projectile-Auger-
electron spectra. Our theoretical calculations agree very
well with these data. In particular the present study pro-
vides insight into the role of 2p electron correlation and
screening effects in the inner-shell ionization process of
neon ions. The zero-degree projectile-Auger-electron-
spectroscopy method can be extended to other studies of
E-, L-, and I-shell binding energies along isoelectronic
sequences, depending on the availability of intense fast-
ion beams [42]. On the other hand, multiply charged
inner-hole states can also be populated efficiently in slow
collisions following selective multiple electron capture in
ion-atom, ion-molecule, and ion-surface collisions [43].
The wealth of such Auger spectroscopic information may
not only lead to a better understanding of the relativistic
many-body problem in highly charged ions but may also
help to unravel the complex physics in high-temperature
dense plasmas as they are important for fusion, material
processing, and x-ray laser research.

TABLE II. Ne K-shell binding-energy shifts in eV compared with theoretical calculations.

Charge
state

Experimental
Projecti1e Target

Saddle-point
method

Theory
1/Z

expansion
MCDF
model

5~6

4~5

50.6'
52.2'
46.7'

50.7b

46.1b

50.53'

46.22'

50 79"

46.60'

'Zero-degree projectile electron spectroscopy, this work.
Target electron spectroscopy, Kadar et ol. (Ref. [40]).
Saddle-point technique including relativistic corrections, this work.
Multiconfiguration Dirac-Fock calculation, this work.

'Beam-foil Auger-electron spectroscopy (Ref. [35]).
I /Z-expansion method including relativistic corrections, Ivanov and Safronova (Ref. [13]),this work.
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