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Reconstruction of the sum-rule-constrained classical binary-collision model
for inner-shell ionizations
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Tung has constructed a sum-rule-constrained classical binary-collision model for the estimation of
generalized oscillator strengths (GOS's) of the 1s and 2s subshells of atoms. He applied three sum rules
to determine the momentum-dependent parameters introduced in the GOS function based on the classi-
cal binary-collision model. Several deficiencies have then been found regarding these sum rules that
adopted the less accurate hydrogenic model and included the unwanted contribution from discrete exci-
tations. In the present work, we have reconstructed this model by employing improved sum rules ob-
tained from Hartree-Fock-Slater matrix element calculations. The refined model has been successfully
applied to estimate ionization generalized oscillator strengths of atomic E and L shells.

PACS number(s): 32.70.Cs, 34.50.Fa

I. INTRODUCTION

Studies on the dynamic response of an atom in its in-
elastic interactions with a charged particle stem from the
increasing need for reliable cross sections in such applica-
tions as electron microscopy, radiology, nuclear physics,
solid-state physics, radiation physics, etc. [1,2]. The gen-
eralized oscillator strength (GOS) introduced by Bethe [3]
characterizes this response in terms of the momentum-
and energy-dependent response function. Although the
GOS may be contributed to by excitations and ioniza-
tions, it is the latter contribution that is most important
in determining inelastic cross sections.

Much effort has been made in the past to work out sim-
ple yet reliable methods for the estimation of ionization
GOS's. The classical binary-collision (CBC) model [4—6]
and the local plasma approximation [7—9] (LPA) are the
frequently quoted methods. Unfortunately, they are use-
ful only for the limited range of energy and momentum
transfers. Tung [10] has previously constructed a sum-
rule-constrained CBC model that increased the accuracy
of ionization GOS's of the CBC model. He applied three
sum rules to determine the momentum-dependent param-
eters introduced in the GOS function based on the CBC
model. Several deficiencies have then been found regard-
ing these sum rules that adopted the less accurate hydro-
genic model and included the unwanted contribution
from discrete excitations. Because of these deficiencies,
the sum-rule-constrained model works only fairly for the
1s and 2s subshells but poorly for the 2p subshell. In the
present work, we have reconstructed this model by em-
ploying improved sum rules obtained from Hartree-

I

Fock-Slater (HFS) matrix element calculations [11—13].
The reconstructed model has been successfully applied to
ionization GOS's of the E and L shells. It was found that
the agreement on ionization GOS's between the present
work and the HFS matrix element data was excellent for
all momentum and energy transfers.

II. THEORY

Eo(n, 1 ) = (Z,tt/n '
) R, (2)

where % = 13.6 eV is the Rydberg energy constant and
n *= 1, 2, 3, 3.7, 4, and 4.2 corresponding to n = 1, 2, 3, 4,
5, and 6, respectively. The effective nuclear charge acted
upon electrons in the (n, l) subshell is given by

A. Classical binary-collision model

The ionization GOS's per atom of the CBC model us-
ing a hydrogenic speed distribution for atomic electrons
in the /th subshell is given by [10]

Z, 2 er/ 8( e' e,)—
22 23 (1)

dE . cBc it[(E ii ) + Y/

where ii=irtk/(2mE)'~, F.=%co/E, and e, =fico; /Eo;
are dimensionless variables related to, respectively, the
momentum transfer Ak, the energy transfer %co, and the
binding energy fico; for the ith subshell; Eo; is the mean
kinetic energy of electrons in the ith subshell; Z; is the
number of electrons per atom in the ith subshell; and 0 is
the step function. For a given (n, I) subshell, the mean ki-
netic energy may be estimated by the Slater rule [14] as
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df df
de de cBc

[ A (rj)+eB(ri)+e C(rI)], (4)

where Z is the atomic number, Z, is the number of elec-
trons in the (i,j ) state, and 5, is the Kronecker 5 func-
tion.

It is seen that the GOS in Eq. (1) approaches zero at
the optical end, i.e., g~O. This is a critical deficiency
compared to the finite optical GOS data measured experi-
mentally. To remedy this deficiency, we have retained
the basic form of Eq. (1) but added to it several terms ac-
cording to [10]
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where A, B, and C are the momentum-dependent param-
eters to be determined using the various sum rules of the
ionization GOS moments defined by

S'„(p)=f e" de .
d

1s, 2s

I I I
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Note that we have included in Eq. (4) terms up to e .
Any higher-order terms would result in an unsatisfactori-
ly asymptotic behavior of the GOS at very large e [15].

B. Sum rules

The three sum rules applied by Tung were [16]

S„(—1)=Z, [1—(1+g /4) ]/rj

S„(0)=Z;,
and

(6)

(7)

S„(1)=Z,[rj +~4] .

These sum rules were established under the assumptions
of (a) adopting the less accurate hydrogenic model and (b)
including the contribution from discrete excitations.

To test the validity of the above assumptions and the
accuracy of Eq. (1), we compare in Fig. 1 results of S„(0)
calculated using Eq. (7), Eq. (1), and the HFS matrix ele-
ment method [11]for Is, 2s, and 2p subshells of the oxy-
gen atom. It is shown that all results approach the elec-
tron occupation number Z; at large momentum transfers.
The CBC model of Eq. (1) leads to dashed curves which
underestimate S (0) at very small momentum transfers
but overestimate it at moderate momentum transfers as
compared to the HFS data (solid curves). It will be dis-
cussed later that assumptions behind Eq. (7) lead to a
constant oscillator strength at any momentum transfers
(dot-dash curves). By comparing results of solid and
dot-dash curves, exchange of the oscillator strength pre-
dicted by Eq. (7) from one subshell to another is shown.
Such an exchange, enhanced at small momentum
transfers, tends to remove oscillator strength from the
tightly bound 2s subshell to the loosely bound 2p sub-
shell.

Theoretically, the zero-order sum rule for the ith sub-
shell of an atom is given by the independent-electron
model as [17,18]

S(0)=S„(0)+S„(0)+S„(0)=Z, , (9)

where S(0), S„(0), S (0), and S„(0) are, respectively,

FIG. 1. A plot of the p=0 moment of the ionization GOS's,
defined in Eq. (5), for oxygen 1s, 2s, and 2p subshells as a func-
tion of momentum transfer. The solid, dot-dash, and dashed
curves represent, respectively, results of the HFS matrix ele-
ment method, Eq. (7), and Eq. (1).

the oscillator strength associated with the total (ioniza-
tions and excitations), ionizations, excitations to unoccu-
pied levels, and excitations to occupied levels. Compar-
ing Eq. (9) with Eq. (7), one sees that the ionization sum
rule of Eq. (7) contains the unwanted contribution from
excitations. Such a contribution becomes negligibly small
at large momentum transfers, so that Eq. (7) holds. Note
that excitations to occupied states are not excluded in the
independent-electron model. Those excitations to the
lower and upper occupied states, corresponding to radia-
tion emissions and absorptions, respectively, contribute
to S„(0) negative and positive oscillator strengths [19].
The total contribution by excitations to occupied levels
can be negative for an outer subshell where excitations to
lower occupied states dominate. Although, in reality, ex-
citations to occupied states do not exist due to the ex-
clusion principle, such an exclusion has no net effect on
the total oscillator strength of an atom due to the cancel-
lation of S„(0)after summing over all subshells. The ex-
change of ionization oscillator strength predicted by Eq.
(7) from one subshell to another follows Eq. (9).

Similarly, we compare in Fig. 2 results of S ( —1) us-

ing the various methods for the 2s subshell of a nitrogen
atom. Again, the CBC model of Eq. (1) yields values
(dashed curves) underestimating, overestimating, and ap-
proaching the HFS data (solid curves) at small, moderate,
and large momentum transfers. The application of Eq.
(6), corresponding to the hydrogenic model, leads to re-
sults (dot-dash curves) somewhat larger than the HFS
data at small momentum transfers. Finally, we compare
in Fig. 3 results of S„(1)using the various methods for
the 2p subshell of a carbon atom. In this case, the CBC
model of Eq. (1) (dashed curves) still fails to predict the
correct sum rule at small momentum transfers. The
slight difference between the results of Eq. (8) (dot-dash
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C. Sum-rule-constrained ionization (GOS)

In this work, we apply Eq. (4) by employing three sum
rules, i.e., S„(—1), S„(0), and S„(l), evaluated by the
HFS matrix element method [11]. For analytical manip-
ulations, we fit these sum rules to expressions constructed
with the guidance of Eqs. (6)—(8). Constants introduced
to these expressions are dependent on the subshell and
the atom of interest. It is found that S„(0)is satisfactori-
ly fitted to the expression

SI (0)=Z;[1—A; exp( 8;ri—)], (10}

with A; =0.06+0.007Z, 0.653 —0.023Z, —0.046
—0.011Z and B; =0.562+0.04Z, 0.855+0. 165Z,
—1.01+0.301Z for the i =1s, 2s, and 2p subshell, re-
spectively. Since S„(0)=Z;(1—A; ) for r1=0, it indicates
that A; is the fractional oscillator strength contributed
by discrete excitations. The sum rule for the p= —1 mo-
ment is satisfactorily fitted to

FIG. 2. A plot of the p= —1 moment of the ionization GOS,
defined in Eq. (5), for the nitrogen 2s subshell as a function of
momentum transfer. The solid, dot-dash, and dashed curves
represent, respectively, results of the HFS matrix element
method, Eq. (6), and Eq. (1).

curves) and the HFS data (solid curves) indicates that
those assumptions listed under Eq. (8) are better applic-
able to ionization GOS's at large energy transfers. Based
on these comparisons, we conclude that the CBC model
of Eq. (1) fails to predict the ionization GOS at small
momentum transfers. In addition, Eqs. (6)—(8) are
ineffective in determining the parameters involved in Eq.
(4).

30

20

+S, exp( —0.456' }+T,], (12)

with P; =0, —0.7, 0.15; Q; =0.07+0.015Z, 0.977
—0.548Z, 0.85 —0.06Z; R; =0.498, 0.167,
—7.735+1.6Z; S;=0, 0, —1.1+0.074Z; and T; =1.333,
2.432 —0. 12Z, 1.9—0. 1Z for the i =1s, 2s, and 2p sub-
shells, respectively.

Substituting Eqs. (1) and (4) into Eq. (5) by setting
p= —1, 0, and 1, we obtain three equations containing
three parameters A, B, and C. Combining these equations
with Eqs. (10)—(12), we can solve these parameters with
the aid of the following relations [10]:

S„(—1)=[[1—(I+g /4) ]/vP]

X[S„(0)—C; exp( D;r) )—
+F; exp( —G;g )],

with C;=0.05+0.01Z, 0.2+0.06Z, 0; D; =0.812, 3.01,
0; F; =0, —0.06+0.09Z, 0.0862ZEo, /%; and G, =0,
0.502, 2.013 for the i =1s, 2s, and 2p subshells, respec-
tively. In addition, the best fit to the sum rule for the
p=1 moment is

S„(1)=S„(0)[ri+P;g+Q; exp( —R;rl )
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Scac( —I ) =(ab +3ac +d)/(mg ),
ScBC(0)= [(a +4)b +3ac+d]/m. ,

Scac(1)= I [a (g —4)+ 8' ]b +3a (g +—, )c

+(g +—', )d]ln. ,

SCBC(2 }= I [a (g —12)+4(3q —4) ]b

+ [3a (g +4)+64]c

+(v/+4)d jul /m. ,

and

(13)

(14)

(15)

(16)

FIG. 3. A plot of the p=1 moment of the ionization GOS,
defined in Eq. (5), for the carbon 2p subshell as a function of
momentum transfer. The solid, dot-dash, and dashed curves
represent, respectively, results of the HFS matrix element
method, Eq. (8), and Eq. (1).

SCBC(3}=[[a(g —24' +16)+16' (g —4)]b

+[a(3g +24' —80)+256' ]c

+(g +4) d]g /~, (17)
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where

and

b =16rl /3(a +4g )

c =2'/3(a +4g ),

d = tr /2 —tan '( —a /2t) ) .

The ionization GOS of the sum-rule-constrained CBC
model of Eq. (4) is thus determined.
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III. RESULTS AND DISCUSSION

Figure 4 shows a plot of the ionization GOS for the bo-
ron 1s shell as a function of momentum transfer for two
values of the energy transfer. The solid curves are results
of the present work using the sum-role-constrained CBC
model of Eq. (4) with sum rules given in Eqs. (10)—(12).
For comparison, we plot also corresponding results ob-
tained using the CBC model of Eq. (1) (dashed curves),
the sum-rule-constrained CBC model with sum rules of
Eqs. (6)—(8) (dot-dash curves), and the HFS matrix ele-
ment method [11] (solid circles). It is seen that the CBC
model works poorly at small momentum transfers. The
sum-rule-constrained CBC model works successfully in
predicting the ionization GOS at all momentum
transfers. Since the 1s shell is fairly isolated and the hy-
drogenic model works quite well for that shell [20], Eqs.
(6)—(8) are good approximations. This leads to the minor
difference between GOS's calculated presently and by
Tung [10]. The present results agree almost perfectly

10
0.0 0.5 1.0 1.5 2.0

with the HFS GOS data.
A similar plot for the neon 2s subshell is shown in Fig.

5. The superiority of the sum-rule-constrained CBC
model over the CBC model in predicting the ionization
GOS is quite clear. Results of the sum-rule-constrained
CBC model corresponding to sum rules of Eqs. (10)—(12)

FIG. 5. The ionization GOS of the neon 2s-subshell as a
function of momentum transfer for two values of the energy
transfer. The solid curves, dot-dash curves, dashed curves, and
solid circles represent, respectively, results of the sum-rule-
constrained CBC model using Eqs. (4) and (10)-(12), the same
model using Eqs. (4) and (6)—(8), the CBC model of Eq. (1), and
the HFS matrix element method.
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FIG. 4. The ionization GOS of the boron 1s shell as a func-
tion of momentum transfer for two values of the energy
transfer. The solid curves, dot-dash curves, dashed curves, and
solid circles represent, respectively, results of the sum-rule-
constrained CBC model using Eqs. (4) and (10)—(12), the same
model using Eqs. (4) and (6)—(8), the CBC model of Eq. (1), and
the HFS matrix element method.

FIG. 6. The ionization GOS of the oxygen 2p subshell as a
function of momentum transfer for several values of the energy
transfer. The solid curves, dot-dash curves, dashed curves, and

solid circles represent, respectively, results of the sum-rule-

constrained CBC model using Eqs. (4) and (10)—(12), the same

model using Eqs. (4) and (6)—(8), the CBC model of Eq. (1), and

the HFS matrix element method.
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FIG. 7. The ionization GOS of the fluorine 2p subshell as a
function of momentum transfer for several values of the energy
transfer. The solid curves, dot-dash curves, dashed curves, and
solid circles represent, respectively, results of the sum-rule-

constrained CBC model using Eqs. (4) and (10)-(12), the same
model using Eqs. (4) and (6)-(8), the CBC model of Eq. (1), and
the HFS matrix element method.

are better than those of Eqs. (6)—(8) employed by Tung.
The small deviation in ionization GOS's between the
present work and the HFS matrix element method [11]is
due to the limited number of sum rules applied and the
error associated with analytical fittings adopted in Eqs.
(10)—(12).

A comparison of ionization GOS's calculated using
various methods for the 2p subshell of the oxygen atom is

made in Fig. 6. Note that results for @=0.0357 are mul-

tiplied by 100 in order to distinguish them from other
data in the figure. Here again the CBC model fails to
predict ionization GOS's at small momentum transfers.
The sum-rule-constrained CBC model is inadequate to
predict ionization GOS's at small energy transfers if Eqs.
(6)—(8) are employed. This model, however, is very well

applied if sum rules of Eqs. (10)—(12) are used. A similar
comparison for the 2p subshell of the fluorine atom is
shown in Fig. 7. The same conclusions may be drawn re-
garding the applicability of the various methods. At any
rate, the present results agree quite well with the HFS
data.

IV. CONCLUSIONS

A sum-rule-constrained CBC model has been con-
structed to evaluate ionization GOS's of atomic subshells.
This model was applied previously [10] using sum rules
derived from several approximations. Although such an
application remedied the failure of the CBC model in es-
timating ionization GOS at small momentum transfers, it
worked only fairly for the 1s and 2s subshells and poorly
for the 2p subshell. In the present work, we have recon-
structed the sum-rule-constrained CBC model by employ-
ing improved sum rules obtained from the HFS matrix
element method. The reconstructed model has been suc-
cessfully applied to ionization GOS's of the K and L
shells. The agreement on ionization GOS's between the
present work and the HFS matrix element data was ex-
cellent for all momentum and energy transfers.
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