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Spectroscopic constants of diatomic molecules computed correcting Hartree-Fock
or general-valence-bond potential-energy curves with correlation-energy functionals
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The Kohn-Sham energy with exact exchange [using the exact Hartree-Fock (HF) exchange but an ap-
proximate correlation-energy functional] may be computed very accurately by adding the correlation ob-
tained from the HF density to the total HF energy. Three density functionals are used: local spin densi-

ty (LSD), LSD with self-interaction correction, and LSD with generalized gradient correction. This
scheme has been extended (Lie-Clementi, Colle-Salvetti, and Moscardo —San-Fabian) to be used with
general-valence-bond (GVB) energies and wave functions, so that the extra correlation included in the
GVB energy is not counted again. The effect of all these approximate correlations on HF or GVB spec-
troscopic constants (R„co„and D, ) is studied. Approximate relations showing how correlation affects
them are derived, and may be summarized as follows: (1) the effect on R, and co, depends only on the
correlation derivative at R„and (2) the effect on D, depends mainly on the correlation difference be-
tween quasidissociated and equilibrium geometries. A consequence is that all correlation corrections
tested here give larger co, and D, and shorter R, than the uncorrected HF or GVB values. This trend is
correct for D, for both HF and GVB. For R, and co„ it is correct in most cases for GVB, but it often
fails for the HF cases. A comparison is made with Kohn-Sham calculations with both exchange and
correlation approximated. As a final conclusion, it is found that, within the present scheme, a qualita-
tively correct HF or GVB potential-energy curve, together with a correlation-energy approximation
with correct dissociation behavior, is crucial for obtaining good estimates of spectroscopic constants.

PACS number(s): 31.20.Sy, 31.15.+q, 31.20.Tz

I. INTRODUCTION

The main subject of atomic and molecular physics is,
no doubt, the computation of potential-energy surfaces.
In these last years, some methods from the density-
functional theory (DFT) have become increasingly popu-
lar, combining together a rigorous formalism [1,2] with
efficient schemes for computations [3,4] (some complete
reviews have appeared recently [5—11]). In this context,
diatomic molecules are frequently used as a benchmark
for newly developed functionals, to test their behavior for
predicting potential-energy curves or spectroscopic con-
stants, before applying them to larger systems. The
present work is one such benchmark within the Kohn-
Sham scheme with exact exchange, in which we will
study the effect of some correlation-energy functionals on
Hartree-Fock (HF) or general-valence-bond (GVB) spec-
troscopic constants for first-row hydrides and dimers.

In Sec. II we will review briefly the Khon-Sham equa-
tions with exact exchange, and will present some current-
ly used aproximations for the correlation-energy func-
tional. We will also explain how some special function-
als, depending on the natural orbitals or on the second-
order reduced density matrix, may be used together with
GVB calculations, so that double counting of the correla-
tion energy is avoided. In Sec. III, the technical details
of our calculations will be explained (basis sets used, nu-
merical integration techniques, fitting procedure for com-
puting the spectroscopic constants). In Sec. IV we will
explain the effect of an arbitrary correlation correction
on HF or GVB equilibrium distances, vibrational fre-

quencies, and dissociation energies. In Sec. V we will
study the effect of correlation on our specific molecules,
and will try to find the rationale behind the facts ob-
served. A comparison will be made with Kohn-Sham cal-
culations (from the literature) with both exchange and
correlation approximated. Finally, some concluding re-
marks will be given in Sec. VI.

II. METHOD

The Kohn-Sham [2] version of DFT is the most widely
used in practical calculations. Within this version, the
density of a system with N electron is expressed as the
sum of the densities of a set of N orbitals:

p(r)= g ~g;(r)~'.

The set of N orbitals is obtained solving the system of
monoelectronic equations:

[
—

—,'V +v(r}+y(r)+p„,(r)]f,.(r)=E;1(t;(r), (2)

where v(r) is the external potential, g(r) is the Coulomb
potential

y(r)=f, dr',
/r —r'/

and p„,(r) is the exchange correlation potent-ial This po-.
tential is the functional derivative of the exchange-
correlation energy functio-nal with respect to the density:
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5E„,[p]
p„,(r) =

5p
(4)

The exchange-correlation-energy functional or E„,[p)
was first defined in the paper of Kohn and Sham [2] and
its explicit form remains unknown to date. The whole ex-
pression of E„,[p] is usually split into two parts: an
exchange en-ergy functional E [p] and a correlation
energy functional E,[p]:

E,.l p)=E.[p)+E, [p) .

E„[p] is defined as the exchange energy of a Hartree-
Fock system with density p(r) [2,12]. The remaining part
E, [p] will be called here the Hartree Fock c-orrelation en-

ergy. At this point it is convenient to note that there are
other definitions of the exchange functional [13—16].

Usually, both exchange and correlation functionals are
approximated when solving the Kohn-Sham equations
for a given system. However, in this work, we will ap-
proximate E, [p] only, while E„[p]will be calculated ex-
actly using its definition. The exchange-correlation po-
tential p„,(r) can also be split into two components:

5E„[p] 5E, [p]
p„,(r) = +

5p 5p

but the functional derivative of E„[p]is just the exchange
operator 8 of Hartree-Fock theory (the proof is immedi-
ate as a consequence of the definition given to E„[p]
[2,12]). This allows us to rewrite the Kohn-Sham equa-
tions (2) as

(6)

1 5E, [p)——V +v(r)+y(r)+R+ g;(r)=E;P;(r),

(7)

and recalling the definition of the Fock operator 7 we get

5E, [p]7+ it;(r)=c., li;(r)
5p

(8)

pKs(r) pHF(r) (9)

so that the Kohn-Sham functionals for total energy and

or, expressed in words, when the exact exchange func-
tional is used, the Kohn-Sham equations take the form of
Hartree-Fock equations, but with a perturbative term due
to the correlation energy. These are the Kohn-Sham
equations with exact exchange (also called the Hartree-
Fock —Kohn-Sham equations [11]). They have been used
by several authors [12,17—19] for calculations on atoms
and small molecules.

To obtain the total energy from this form of the
Kohn-Sham equations we wiH use a simple but very accu-
rate approximation. This approach, due to Stoll, Pavli-
dou, and Preuss [20], supposes that the correlation term
is small enough to have a very little effect on the Fock
operator, so that the Kohn-Sham orbitals are nearly
equal to the Hartree-Fock orbitals. As a consequence, if
we designate PKS(r) and PH„(r) to be, respectively, the
Kohn-Sham and Hartree-Fock densities, we have

correlation energy can be approximated by

EKS [PKS) EKS [PHF ) EHF +Ec [PHF )

Ec [PKS)= c [PHF)

(10)

where E~z is the total Hartree-Fock energy. It should be
noted that the Kohn-Sham density and total energy
would be equal to the exact ones only if the unknown ex-
act correlation-energy functional were used. Approxima-
tion (9) has been tested for atoms and small molecules
and it holds quite accurately [21,19,6] for currently used
functionals. Since the total Kohn-Sham energy with ex-
act exchange is found variationally, the error in using ap-
proximation (10) can be expected to be very small, be-
cause it is second order with respect to the error in the
density [21,22]. This has been confirmed for several sys-
tems and functionals [21,19,6,22], with errors always
within a few millihartrees (above). A similar error is
found [6,23] for (11), and, furthermore, it has been seen
that some currently used E, [p] are quite insensitive to
changes in the density (as basis-set improvement [24,23],
or the use of the exact or a more accurate density instead
of the Hartree-Fock one [23,25,26]).

The computational simplicity of this procedure [Eq.
(10)] is one of the reasons why we have chosen to treat ex-
change exactly and to approximate the correlation energy
only. Another reason is that, treating exchange exactly,
we can study the quality of several approximations
currently used for E, [p] in their purest form, that is,
without contamination from an aproximate E„[p]. Ap-
proximating both exchange and correlation together can
give an erroneous measure of their respective quality, be-
cause in some current approximations (for instance, the
local approximation) exchange is underestimated while
correlation is overestimated, which results in a fortuitous
cancellation of errors.

For the correlation-energy functional, we have selected
some widely used expressions. Our first choice has been
the local spin density (LSD) approximation [2,27], which
supposes that the correlation energy of a system of N
electrons with ground-state spin densities p+ (up) and p
(down) is equal to

E, [p+,p ]=J [p+(r)+p (r)]e,(p+,p )dr, (12)

where the function e, (p+,p ) is the correlation energy
per electron of a uniform gas of spin densities p+ and p
To date, the most exact expressions for s, ( ) are those of
Vosko, Wilk, and Nusair [28] and of Perdew and Zunger
[29]. Both of them have been obtained by fitting a suit-
able function to very accurate quantum Monte Carlo
data for the electron gas [30]. The results reported in this
paper have been computed with the Perdew-Zunger for-
mula. By construction, the LSD approximation is exact
for a homogeneous electron gas, but, when applied to sys-
tems with fewer electrons, such as atoms and molecules,
it suffers from one we11-known defect: it severely overes-
timates the correlation energy by approximately a factor
of 2 [31,32,17,29]. Specifically, LSD gives nonzero corre-
lation energies for one-electron systems [33]. To correct
these defects, two different types of approaches have been
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developed: self-interaction corrections (SIC} and general-
ized gradient corrections (GGC}.

The correlation energy is caused by the interaction of
each electron of the system with all the other electrons,
excluding of course interaction with itself or self-
interaction. There is a SIC procedure, developed by
Stoll, Pavlidou, and Preuss [20], based on the reasonable
physical assumption that, although the correlation be-
tween electrons with the same spin is important in an
electron gas, it should be rather small in finite systems
such as atoms and molecules. The corrected functional is

E,"'[p+ S ]=E-," [i+ i ] E-,'"—[i+ o]

ELSD[0 ] (13)

Obviously, this SIC functional fails when applied to a
homogeneous gas, but gives zero correlation energy in
single-electron systems. For atoms and molecules, where
the assumption that is made is reasonable, remarkably
good results are obtained for the correlation energy
[20,34,23]. It should be noted here that there is another
SIC procedure, the orbital related SIC of Perdew and
Zunger [29]. Both of the procedures have been tested
with some atoms and their results are very similar, the
scheme of Stoll, Pavlidou, and Preuss being slightly
better [21,6,35].

Gradient expansion corrections to LSD are used to
take into account the inhomogeneity of the electronic
density in atoms and molecules. They have been in use
since the early days of DFT [2,36], but the results provid-
ed by these corrections when applied to real systems of
interest were disappointing or even disastrous. Langreth,
Perdew, Mehl, and co-workers developed a generalized
gradient correction to LSD for exchange and correlation
[37,38,14,39,40]. This correction was improved later by
Perdew [41], making the natural separation between ex-
change and correlation. As our choice for a GGC, we
have selected Perdew's formula. Its author recommends
that it be used together with the present Kohn-Sham
scheme with exact exchange. The form of this functional
1s

EGGc[ ]
—ELsD[ ]+ y

& ~ (P }I

~PI�

'
d

dp

(14)

where 4, C(p), and d are taken from Perdew's paper
[41]. It should be used together with the Perdew-Zunger
LSD [29]. The gradient term vanishes for a constant den-
sity, so that the functional recovers the LSD behavior
and is still exact for a homogeneous gas. It has been test-
ed for monoelectronic systems and gives a nearly zero
correlation energy [41], so that it is accurately self-
interaction-free for such systems. Furthermore, it gives
good correlation energies for atoms and molecules
[41,23]. Here we will point out that there is another gra-
dient expansion functional, which has been developed by
Becke [42], in a context other than the GGC, that yields
very similar results [42,25]. However, all the results re-
ported here have been computed using Perdew's func-
tional.

Once we have selected some approximations for E, [p]
there is the question of which Hartree-Fock scheme
should be used, a restricted (RHF} or an unrestricted
(UHF} method. For systems such as homogeneous elec-
tron gases, atoms, or many molecules at equilibrium dis-
tance the question is a rather academic one, because
RHF energies and spin densities are very similar or equal
to UHF ones. However, for molecules at large internu-
clear distances, the well known size-consistence problem
appears: energies and total densities of a quasidissociated
molecule —that is, with its atoms far apart a large
distance —computed with a given method, are different
from energies and total densities computed for the isolat-
ed atoms using the same method. This may result in sub-
stantial errors for some spectroscopic constant, like disso-
ciation energies. As is well known, the UHF method is
size-consistent, while the RHF method is not. For this
reason, when it is possible, we have used UHF calcula-
tions for the molecules reported here. Furthermore,
methods like the SIC and GGC selected here have been
recommended by their authors [34,41] for use in an unre-
stricted context.

It should be noted that for a quasidissociated molecule,
the UHF method gives the same energies, the same total
densities, and the same spin densities as those of the iso-
lated atoms. That means that, for the approximations
selected here, the correlation energy of a quasidissociated
molecule is equal to the correlation energy computed
from the isolated atoms, or, in other words, that the
Eohn-Sham energy with exact unrestricted exchange is
size consistent. On the other hand, it also implies that
this scheme yields the wrong spin symmetry.

Despite the previous discussion, there are cases when
neither restricted nor unrestricted treatments are suit-
able; for instance, the potential-energy curve of the
fluorine molecule, in which the RHF curve is not size-
consistent, while UHF calculations give a dissociative
curve without a minimum. Traditionally, quantum
chemistry has solved such problems using more sophisti-
cated wave functions than the single Hartree-Fock deter-
minant description, as, for instance, a general-valence-
bond [43] wave function. It would be highly desirable to
have a similar solution within DFT for treating such
cases as the fluorine molecule, where the Kohn-Sham
equations with exact exchange (both restricted and unre-
stricted) give poor results, because a small correlation
term is unable to correct the wrong Hartree-Fock behav-
ior. This GVB-Kohn-Sham formalism should be started
by splitting the exchange-correlation functional in a
different manner than the way it was done in Eq. (5), now
defining a GVB correlation-energy functional EovB[p] as
the difference between the exact and the GVB energy
functionals:

E, "[t ) =El' ] E "[p) . — (15)

Once the GVB correlation-energy functional has been
defined, it shold be approximated, and then a GVB-
Kohn-Sham formalism with exact GVB exchange can be
developed analogously, as has been done for the Kohn-
Sham formalism with exact HF exchange. Now, there is
the problem of finding reliable approximations for
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E, [p]. It is clear that the previous LSD, SIC, and
GGC approximations for E, [p] cannot work very well
for E, [p] because they have been developed within a
Hartree-Fock correlation-energy definition, yielding an
overestimation of E, [p] or double counting of the
correlation energy: the extra correlation included in the
GVB energy is counted again when computing E, [p].
Furthermore, with these approximations, our description
of molecular systems will no longer be size consistent, be-
caue the GVB method yields correct spin symmetry, and
the spin densities of the quasidissociated molecule are
different from those of the isolated atoms. Despite these
drawbacks, we will test LSD, SIC, and GGC functionals
with GVB wave functions and densities, in the hope of
finding some improvements or new physical insights (a
simple approach to avoid the double counting of these
functionals has been recently proposed [44]).

Over the years, there have been a number of
correlation-energy functionals developed according to the
GVB correlation-energy definition (or analogous
definitions for more complex wave functions); for in-
stance, the works of Lie and Clementi [45,46], Savin
[47,48], Colle and Salvetti [49,50], Gritsenko and co-
workers [51,52], or Moscardo and San-Fabian [53]. Here,
we will report results computed with the methods of Lie
and Clementi, Colle and Salvetti, and Moscardo and
San-Fabian, which we are going to review briefly.

Lie and Clementi take an earlier local-density function-
al from Gombas [54],

1/3
E c[p]=J a, +b1ln(1+b2p' ) pdr, (16}

Q2+P

and then they replace the density p(r) by a modified den-
sity p (r), depending upon natural orbital densities p, (r)
and occupation numbers n;,

—(2—n )~/2
p (r}=gn;e '

p,.(r) . (17)

As a consequence, a single occupied orbital (n;=1)
should not contribute to the total correlation energy as
heavily as a paired electron (n; =2), and so a double
counting of the correlation energy is avoided in some
way. It should be noted that, as this functional does not
depend on spin densities, it is size consistent. Finally, the
constants in Eq. (16) were reparametrized empirically to
the values a1=b, =0.02096, a2=1.2, and b2=2. 39 (re-
sults in a.u.). Lie and Clementi used E, [p ] to correct
multiconfiguration self-consistent field (MCSCF)
potential-energy curves for second-row hydrides [45] and
dimers [46], and then, from the corrected curves, they ob-
tain correlated spectroscopic constants. In this work, we
recompute these spectroscopic constants from UHF and
GVB wave functions, using their method, to compare it
with the other methods tested here.

Colle and Salvetti [49,50] write the exact wave function
of the system as the product of an approximate one 4'o
(better than or equal to the HF determinant O'HF,'for in-
stance, a GVB wave function) multiplied by a correlation
factor. After a great deal of manipulation and some ap-
proximations they got for the correlation energy the fol-
lowing expression (in a.u. ):

I (R,R;R,R) —0.58/P

[p,I,I' ]= 0.375 88&f 1+0.173K dR
(P+0.8)P P

(18)

where K and p are defined as

r r r r
V I R——,R+ —;R——,R+—2' 2' 2' 2

r r r r
I R——,R+ —;R——,R+—2' 2' 2 2

and

a (~1+~2) 0(rl rz'rl r2}
P=q 1+—

I 0(r, , rz, rI, rz)

2 2 ~ I I(~1+~2)I HF(r1 rz'r» rz)

~HF(rl r2 rl r2)
rp=r2

r=0

(20)

and q =2.29 and a =7.0. R is expressed as (r, +r2)/2
and r as r2 —r).

This correlation-energy formula depends on three enti-
ties: the spin-free reduced density matrices of second or-
der from O'HF and 0'o[ I H„(r„rz', r'„r2) and

I o(r„rz', r1, rz), respectively] and the density from 1po or
p(r). When %0 is the Hartree-Fock wave function, p

simplifies to qp', so that the whole functional reduces

to a simpler formula [49] that gives quite good correla-

tion energies for a broad variety of systems

[55—60,24,61—64]. This simplest form has been

reparametrized lately by Carravetta and Clementi

[65,66]; and Lee, Yang, and Parr [67] have modified it to
obtain a true density functional, depending only on the
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EMs"[p, I,]= (N —1)f s, [p, t, p]d r,
where N is the number of electrons,

2 2/3
I ( JV —1)p(r )

r (r)

(21)

(22)

and P is taken as in Eq. (20), but with q = 1.8 and a = l. 5
(there are other options for p [53]). s, [p, t, p] is given
elsewhere [53] and has a form such that, when %0 is the
exact wave function (P=ao), the correlation recovered
from (22) is zero also. Again, we have replaced %zF by
the first determinant from the GVB wave function, so
that this method is not size consistent either. Further-
more, its explicit dependence on N yields a correlation
energy for a quasidissociated system that is different from
the sum of the correlation energies of its isolated constit-
uents. Fortunately, these effects tend to cancel each oth-
er.

III. CALCULATIONS

Potential-energy curves of the following molecules in
their ground states have been studied: H2('Xs ),
LiH( 'X+ ), BH( 'X+ }, FH( 'X+ ), Li~( 'Xs+ ), B2( Xg ),
Cz('Xs }, Nz('Xs+), and F2('Xs }. If possible, we have
calculated both unrestricted Hartree-Fock and general-
valence-bond (perfect-pairing) [43] energies and wave
functions. There are two cases (C2 and Nz), where nei-
ther UHF nor GVB wave functions can describe a pure
ground state, so that we have used a minimal
configuration interaction from the GVB orbitals instead
of the GVB wave function. UHF results for Fz are not
included because this curve does not have a minimum.
Due to its electronic configuration, a GVB (perfect-

spin densities. It is interesting to point out that for
0'0=%'nF, a full optimization of En~+E, [p, I'n„,I n„]
with respect to the Hartree-Fock orbitals has little effect
on the total energy [68], as happens for the others
correlation-energy functionals [approximation (10)]. As
better %o are used, p becomes greater, and Eq. (18) gives
less correlation energy. When %0 is the exact wave func-
tion, Colle and Salvetti show that p has an infinite value
everywhere, so that no correlation energy at all is
recovered. A drawback of this method is the computa-
tional complexity of the expressions for K and p (useful
relations for them have been derived [69]). We have tak-
en %'~F to be the first determinant in the GVB wave func-
tion (this approximation would be exact for a
configuration-interaction expansion). As a consequence,
our results are not size consistent, because the p for the
quasidissociated molecule is not qp', as it should be for
the free atoms. We want to remark that Colle and Salvet-
ti have developed a new formula to be used with MCSCF
wave functions [70].

Finally, the last method to estimate the correlation en-

ergy, which we have used here, is that of Moscardo and
San-Fabian [53], which was derived within the correla-
tion factor method also. It depends on p(r), but, unlike
the Colle-Salvetti method, it depends only on the diago-
nal part of I 0(r„rz, r&, r2}:

pairing) description of the valence electrons of the B2
molecule is not possible (fortunately, the UHF curve has
a correct dissociation behavior).

For these systems, we have built up a series of correlat-
ed potential-energy curves by first calculating the UHF
(or GVB) energy at a given set of internuclear distances,
and then correcting these energies with an estimation of
the correlation energy from UHF (or GVB) densities and
wave functions, according to Eq. (10}[or (15)].

6.311G*'basis sets [71]have been used for all the mol-
ecules. Because of the good quality of these sets, it is ex-
pected that when computing spectroscopic constants, er-
rors due to the basis sets are smaller than the effect of any
correlation approximation. Furthermore, spectroscopic
constants are only dependent on the shape of the
potential-energy curve rather than on its absolute value.
The UHF and GVB energies and wave functions have
been computed with standard quantum-chemistry pack-
ages [72,73].

The correlation energy is computed by numerical in-

tegration following the efficient scheme of Becke [74],
used together with Clenshaw-Curtis quadrature formulas
[75,76) for automatic numerical integration. A more de-
tailed description of the procedure has been given else-
where [77]. Simultaneously, we integrate also the total
charge of the molecules, and take the difference between
this value and the number of electrons as a measure of
the error in the correlation energy. This error is in any
case greater than 0.0001 a.u.

For each molecule, we have computed the energy at
the same set of distances as that used by Lie and Clemen-
ti [45,46], because these authors give also estimations of
the exact total energy at those points, values that we have
used here as a reference. Lie and Clementi make their es-
timations using the Hulburt-Hirschfelder potential [78]
with experimental values of the spectroscopic constants
(for the hydrogen molecule, the accurate theoretical
values of Kolos and Wolniewicz [79] were used instead).

From the potential-energy curves at the set of internu-
clear distances (R's), we have computed several spectro-
scopic constants (the equilibrium distance or R„ the Ui

brational frequency or co„ndathe dissociation energy or
D, ), in order to study how they are affected by different
correlation-energy approximations. Spectroscopic con-
stants are often computed by a least-squares fitting of
these points to a polynomial in 1/R [4,80—83], and, from
this polynomial, R, (the minimum), co, (related to the
second derivative at R, ), and D, (the difference between
the energy of the quasidissociated molecule and the fitted
polynomial at R, ) are readily computed. Because the
correlation correction is rather small, special care has
been taken in such calculations, in order to be sure that
their error is smaller than the effect of correlation. The
whole process may be outlined as follows.

(i) First we have to select a set of points to be fitted and
the order of the polynomial in 1/R to be used. We assign
an error or standard deviation cr =0.0001 a.u. to the en-
ergy of each point (the error of the numerical integra-
tion). Then we take a set of n points and fit them
to a polynomial of order m using a y fit [84]. We
check the goodness-of-fit with the value [84]
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Q =1—P{0.5(n —m), 0.5g ), where P( ) is the incom-
plete I function [85], and g is the quantity to be mini-
mized in the g fit. We repeat for some values of n and m
and finally we choose those that give the maximum Q.
The procedure is applied to each curve to be fitted.

(ii) We fit the UHF or GVB curves and the UHF or
GVB curves corrected by all the correlation estimations,
and from them we compute their respective spectroscopic
constants.

(iii) We take as the errors of our constants their stan-
dard deviation, computed from the covariance matrix of
their respective fit [84].

1 1 ~c

R' R pm R
(28)

This last equation is the one we are looking for. It relates
the change in the equilibrium distance due to a correla-
tion correction with the derivative of E,(R) at R, .

For seeing how E,(R) changes the vibrational frequen-
cy from co, to co'„we take the next derivative of {27)and,
then, using the known relation between the second
derivative and the vibrational frequency, U,"(R,') =pcs,',
we have

IV. EFFECTS OF CORRELATION ON HF
OR GVB SPECTROSCOPIC CONSTANTS

2 2CcRe
PEON

e

4
—2 1 1

llCO~Re
e e e

1

Rc4
e

(29)

In the section we will study the effect of a smooth
correlation correction on HF (or GVB) spectroscopic
constants of diatomic molecules. Let us suppose that we
are dealing with a diatomic molecule with a reduced mass

p and that U(R) is the HF (or GVB) potential-energy
curve of the molecule. R„co„and D, are spectroscopic
constants computed from U(R). We will assume that
such a curve is to be corrected with a given correlation
estimation E,(R ) to give a correlated potential-energy
curve U, (R):

COe =Cue
R,
R'

e

(30)

For the dissociation energy, we have that
D; = —U, (R,'). Taking U, (R ) from (23)—(25) and replac
ing 1/R,' —1/R, by (28), we have

Then, substituting 1/R; —1/R, by its value [Eq. (28)] we
finally obtain the relation between changes in the vibra-
tional frequency and correlation:

U, (R)=U(R)+E, (R) . (23)

Both U(R) and U, (R) have been shifted to give zero en-

ergy for R ~~. From this correlated curve, we can ob-
tain a new set of correlated spectroscopic constants that
will be named R,', co'„and D,'.

Now, we will suppose that near the equilibrium dis-
tance U(R) can be approximated as a Taylor series on
1/R to second order:

pCO~ ReU(R)= D,+—
2 R R,

(24)

It is easy to see that this expression has a minimum at
R =R„ that U(R, )= D„and that —U"(R, )=pco„as
should be for the true potential-energy curve.

For E,(R), we will take only a first-order Taylor ex-
pansion on 1/R, provided that the correlation curve is a
smooth one,

E (R)=b, c, —e'R 1 1
c c c e

e
(25)

b E, =E,(R, ) —lim E,(R ),
g ~ oo

(26)

where E,
' is the first derivative of E,(R) at R, .

Using approximations (24) and (25), we can find the
minimum R, of U, (R), taking the first derivative of Eq.
(23),

pcs R
U,'(R) =c,,' R2 R2 R R

(27)

and then, equating to zero and solving for R =R,', it re-
sults in

(31)

E,[p»]& E, [—p„] E, [ps]—. — (32)

This relation may be justified if we consider that the
molecule AB at R, has more correlation energy that both
atoms A and B, because for the isolated atoms, electrons
on A do not interact with electrons on B and vice versa.
Thus, —Ac, must be positive, like the second term in the
right-hand side of Eq. (31). Thus the following con-
clusion results: the correlated dissociation energy should
always be larger than the noncorrelated one.

Despite the simplicity of the model used to derive

The results of this section are summarized by Eqs. (28),
(30), and (31). Correlation acts on equilibrium distances
and vibrational frequencies only through e,' [the deriva-
tive of E,(R) at the uncorrelated R,]. The effect on dis-
sociation energies depends also on b,s, (the difference in
correlation between the system at equilibrium and at
quasidissociation distances).

Important qualitative conclusions may be inferred
from these approximations. From Eq. (28) it follows that
a positive c.,' means a shorter equilibrium distance, which
in turn, due to Eq. (30), means a larger vibrational fre-
quency, or, as has been pointed out by Kemister and
Nordholm [19], if a correlation correction decreases the
equilibrium distance, then it increases the vibrational fre-
quency.

For the dissociation energy, one may expect that corre-
lation energies should be larger (more negative) at equi-
librium distance (density p») than at quasidissociation
distance (densities p„and ps):
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them, relations (28), (30), and (31) yield quite accurate nu-

merical results. The errors they produce are nearly al-

ways within our error estimates for D,', and for R,' in
most cases.

V. RESULTS AND DISCUSSION

Here we will study the results obtained with the
methods described in Sec. III. Six correlation corrections
have been used: local spin density [29], LSD with self-
interaction correction [20], LSD with generalized gra-
dient correction [41], Lie-Clementi (LC) [45,46], Colle-
Salvetti (CS) [49,50], and Moscardo —San-Fabian (MSF)
[53].

In Table I the quasidissociation behaviors of all the
correlation functionals is shown for UHF and GVB wave
functions. By quasidissociation distance we mean that
geometry with maximum internuclear distance (10, 20 or
30 a.u. , depending upon the molecule; see the work of Lie
and Clementi [45,46]). The sum of the correlation energy
of the constituent atoms is also shown (A +8 rows). The
values in column "Exact" are the experimental correla-
tion energies with their relativistic contributions sub-
tracted [86]. This table illustrates the size-consistence be-
havior of the different correlation-energy functionals. As
expected from Sec. II, all of them are size consistent

when applied to a UHF wave function (except the MSF
method, due to its explicit N dependence), while only the
LC functional is truly size consistent for QVB results.
GVB correlation energies (with reversed sign) at quasidis-
sociation distance are always overestimated by the LSD,
SIC, and GGC methods, and always underestimated by
the CS formula. There is no clear trend for the MSF
functional, because there are two effects that tend to can-
cel each other (as explained in Sec. II).

In Tables II—IV the spectroscopic constants R„co„
and D„are shown. The correlation functionals have
been used to correct UHF results (UHF+ LSD, . . . ) and
GVB results (GVB+LSD, . . .). The row "Expt." shows
the experimental value of the constants, as quoted by Lie
and Clementi [45,46]. The maximum standard deviation
of all the results in a column is shown in the row "Error"
(in Table IV this row is not shown, because errors are al-
ways smaller than 0.01 eV). Finally, in these tables we
have put Kohn-Sham results from the literature
[83,87,19,88 —91], that have been computed approximat-
ing both exchange and correlation. %e have grouped
them as KS(LSD), KS(SIC), or KS(GGC) according to
the kinds of functionals used for exchange and correla-
tion (respectively, LSD, LSD with SIC, or LSD with
GGC). We have tried to select results computed with
functionals and computational methods that are as simi-

TABLE I. Correlation energies (in 10 a.u. , with reversed sign) at quasidissociation distance (see

text) from several wave functions %p (UHF, GVB), or from the sum of the correlation energy of the

constituent atoms (A +B).

System

H,('r+)

LiH ('X+)

BH ('X+)

FH ('X+)

Liz('X+)

B~( X )

C2( X )

N ('r+)

F2('Xg )

%'p

UHF
GVB
A+B
UHF
GVB
A+B
UHF
GVB
A+B
UHF
GVB
A+B
UHF
GVB
A+B
UHF
A+B
GVB
A+B
GVB
A+B
UHF
GVB
A+B

Exact'

0.0
0.0
0.0

45.4
45.4
45.4

125.8
125.8
125.8

347.7
347.7
347.7

90.8
90.8
90.8

251.6
251.6

318.6
318.6

389.6
389.6

695.4
695.4
695.4

LSD

44.7
83.3
44.6

172.5
202.8
172.5

309.5
337.5
309.5

656.8
684.1

656.7

300.4
321.9
300.4

574.4
574.4

748.4
707.2

913.6
842.6

1268.8
1284.5
1268.8

SIC

0.0
43.1

0.0

70.0
103.9
70.0

142.1
173.1
142.1

319.1
349.2
319.1

140.0
164.6
140.0

284.2
284.2

383.0
337.4

466.9
387.0

638.2
655.2
638.2

GGC

5.3
33.7
5.4

55.4
78.4
55.4

127.5
148.3
127.5

327.8
347.6
327.8

105.4
122.9
105.4

249.6
249.6

350.1

319.2

447.5
394.2

650.3
661.4
650.2

LC

15.5
15.5
15.4

76.7
76.7
76.6

136.3
136.4
136.3

318.4
318.5
318.4

137.9
137.9
137.8

257.1

257.2

315.5
315.6

376.1

378.0

621.4
621.4
621.4

CS

0.0
0.0
0.0

51.6
47.6
51.6

124.3
107.4
124.4

317.9
268.7
317.9

103.2
95.2

103.2

248.7
248.8

181.6
320.4

251.4
394.8

635.7
537.3
635.8

MSF

0.0
0.0
0.0

63.6
62.7
58.0

136.0
132.9
131.3

331.0
315.9
326.5

139.3
137.5
116.0

293.1

262.6

304.4
322.8

390.2
378.0

702.1

669.6
653.0

From Ref. [86],with relativistic contributions subtracted from the experimental correlation energies.
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lar as possible to those we have used in this work.
In Figs. 1 —5, correlation-energy curves E,(R) are

shown. All of them have been shifted to give zero corre-
lation energy at quasidissociation distances. The vertical
lines are at the uncorrelated equilibrium distance. Exact
curves have been obtained from the curves given by Lie
and Clementi [45,46].

We will discuss separately the results obtained from
UHF and GVB wave functions. For each series, we first
comment on the dissociation energy, which depends on
AE and e,

'
[Eq. (31)], and after that we analyze the con-

stants R, and co„which depend only on c,,', through Eqs.
(28) and (30). Finally, we compare our UHF series (com-
puted within a Kohn-Sham scheme with exact exchange)
with the Kohn-Sham calculations with approximate ex-
change.

A. UHF plus correlation energy

From Tables II-IV we can extract the following con-
clusions.

(a) D, . Correlation always improves dissociation ener-
gies, in some cases dramatically (H2, LiH, BH). Never-
theless, errors with respect to experimental values are

still considerable for other molecules (FH, B2). The
reason for such improvements is that UHF D, are severe-
ly underestimated, and, as has been discussed in the
preceding section, any correlation correction should in-
crease the dissociation energy. The six correlation func-
tionals considered here give similar results and it is
dificult to favor one of them for computing correlation
corrections to D, .

(b) R, and co, . All the correlation corrections decrease
equilibrium distances and increase vibrational frequen-
cies. As the UHF equilibrium distances (or vibrational
frequencies) for H2, BH, and FH (or H2, LiH, BH, and
FH) are already shorter (or larger) than the experitnental
values, these spectroscopic constants are worsened rather
than improved when corrected with correlation. This be-
havior of the Hartree-Fock spectroscopic constants is not
restricted to these molecules. Pople [92] pointed out that
for basis sets such as 6-316' there is a systematic un-
derestimation of Hartree-Fock equilibrium distances, in
most cases by about 0.02 —0.04 a.u. Conversely, vibra-
tional frequencies are usually overestimated (for instance,
from a set of 39 Hartree-Fock vibrational frequencies be-
longing to diatomic and polyatomic molecules only three
were smaller than its experimental counterpart [93]).

TABLE II. Equilibrium distance R, (in a.u.).

Expt.
Error

UHF
UHF+ LSD
UHF+ SIC
UHF+GGC
UHF+ LC
UHF+CS
UHF+MSF

GVB
GVB+ LSD
GVB+SIC
GVB+GGC
GVB+ LC
GVB+CS
GVB+MSF

KS(LSD)
KS(SIC)
KS(GGC)

H2

1.401
0.003

1.390
1.365
1.377
1.386
1.373
1.382
1.380

1.430
1.402
1.416
1.424
1.409
1.413
1.411

1 45'
1.423'

LiH

3.015
0.008

3.038
2.969
3.002
2.996
2.996
2.973
3.000

3.093
3.016
3.052
3.043
3.042
2.987
3.028

30

3.033'

BH

2.336
0.003

2.314
2.273
2.293
2.301
2.285
2.285
2.290

2.370
2.325
2.347
2.354
2.335
2.344
2.330

FH

1.733
0.002

1.693
1.676
1.685
1.680
1.681
1.684
1.684

1.728
1.708
1.718
1.710
1.711
1.708
1.708

1.791'
1.757'

Li,

5.051
0.041

5.538
4.876
4.914
4.968
5.186
4.891
4.941

5.537
5.317
5.412
5.377
5.383
5.096
5.230

5.12'
5.22"
5.22'

B2

3.003
0.003

3.096
3.026
3.070
3.042
3.046
3.034
3.063

3 03'

C2

2.347
0.003

2.443
2.407
2.425
2.413
2.407
2.348
2.397

2.35'

N2

2.073
0.001

2.079
2.054
2.066
2.067
2.055
2.007
2.051

2.07'
2.113'
2.07'

Fp

2.679
0.005

2.873
2.790
2.831
2.700
2.729
2.704
2.753

2.61'
2.802'
2.699'

'Fully numerical calculation from Ref. [83] using the Vosko, Wilk, and Nusair LSD functional for
correlation (Ref. [28]).
From Ref. [87] with the exchange correlation functional of Rajagopal, Singhal, and Kimball. Comput-

ed using an uncontracted 6-21G with polarization functions.
'From Ref. [19],with the LSD for exchange and a LSD functional (Ref. [28]) with the Stoll, Pavlidou,
and Preuss SIC (Ref. [20]) for correlation. The 6-311G**basis set is used.
From Ref. [88], spin unrestricted exchange-only calculation using the SIC scheme of Perdew and

Zunger (Ref. [29]). Computed using a linear combination of atomic orbitals with a fixed basis set of
Gaussian-type orbitals.
'From Ref. [89], with the functional of Becke and Perdew (Ref. [41]) for exchange and correlation, re-

spectively. Uncontracted STO basis sets are used.
"From Ref. [90],with the Langreth and Mehl functional for exchange and correlation (Refs. [14,39,40]).
Augmented Gaussian basis sets were used.
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TABLE III. Bond vibrational frequency ~, (in cm ').

Expt.
Error

UHF
UHF+ LSD
UHF+ SIC
UHF+ GGC
UHF+ LC
UHF+CS
UHF+MSF

GVB
GVB+ LSD
GVB+SIC
GVB+GGC
GVB+LC
GVB+CS
GVB+MSF

H2

4400
43

4581
4738
4655
4626
4686
4626
4647

4208
4392
4299
4274
4349
4380
4368

LiH

1406
15

1428
1505
1466
1471
1471
1492
1470

1301
1388
1347
1356
1360
1452
1406

BH

2368
19

2470
2589
2530
2522
2547
2548
2541

2260
2383
2322
2322
2357
2302
2359

FH

4139
18

4498
4613
4554
4609
4581
4566
4566

4132
4264
4194
4278
4256
4325
4306

Liz

351
6

229
422
413
393
314
402
400

273
310
293
299
300
361
337

B2

1051

939
1063
972

1035
1027
1008
981

C2

1855
8

1548
1628
1587
1624
1637
1830
1679

N2

2358
4

2384
2492
2439
2439
2497
2783
2547

F2

892
9

543
614
577
733
737
809
757

KS(LSD)
KS(SIC)
KS(GGC)

4190'
4290'

1400b

1408'
3929'
4026'

330'
293
364'

1030' 1880' 2380'
2281'
2409'

1060'
1012'
1002'

'See footnote a of Table II.
See footnote b of Table II.

'See footnote c of Table II.
See footnote d of Table II ~

'See footnote e of Table II.
'See footnote f of Table II.

TABLE IV. Dissociation energy D, (in eV).

Expt.

UHF
UHF+ LSD
UHF+ SIC
UHF+GGC
UHF+ LC
UHF+ CS
UHF+MSF

GVB
GVB+ LSD
GVB+SIC
GVB+GGC
GVB+LC
GVB+CS
GVB+MSF

KS(LSD)
KS(SIC)
KS(GGC)

Hp

4.75

3.62
4.99
4.95
4.75
4.18
4.64
4.54

4.12
4.44
4.28
4.48
4.67
4.74
4.79

49'
4.84'
5.0

LiH

2.52

1.47
2.69
2.60
2.46
1.95
2.38
2.47

1.92
2.28
2.11
2.24
2.37
2.59
2.66

2.2b

2.4'

BH

3.58

2.65
3.74
3.66
3.61
3.25
3.53
3.67

3.15
3.47
3.31
3.53
3.73
3.93
3.91

FH

6.12

4.09
5.29
5.14
5.42
4.95
5.16
5.25

4.81
5.25
5.03
5.58
5.64
6.25
5.88

6.56'
6.2'

Li&

1 ~ 14

0.20
0.85
0.84
0.82
0.41
0.75
0.76

0.44
0.59
0.52
0.65
0.66
0.94
0.91

1.0'
0.28'
0.60'

B2

3.00

0.75
1.07
0.95
1.56
0.90
1.26
1.00

39'

C2

6.36

2.84
3.55
3.19
3.67
4.23
6.89
5.64

73'

6.1g

N2

9.91

7.10
8.56
7.83
8.13
9.82

12.34
10.64

11.6'
9.44'

10.1'

F

1.66

0.55
0.71
0.62
1.11
1.21
2.48
1.46

34'
2.61'
2.2'

'See footnote a of Table II.
See footnote b of Table II.

'See footnote c of Table II.
See footnote d of Table II.

'See footnote e of Table II.
See footnote f of Table II.

gFrom Ref. [91],with the Langreth-Mehl functional for exchange and correlation (Ref. [14]). Comput-
ed perturbatively from fully numerical LSD densities.
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MSF

FIG. 1. H2 molecule. Correlation energy with reversed sign
( —E, ) vs internuclear distance (R), from the UHF wave func-
tion. All the curves have been shifted to give zero correlation
energy at large R. The vertical line is at the UHF equilibrium
distance.

—F,
(10 ' a.u. )

FIG. 4. H2 molecule. Correlation energy with reversed sign
( —E,) vs internuclear distance (R), from the GVB wave func-
tion. All the curves have been shifted to give zero correlation
energy at large R. The vertical line is at the GVB equilibrium
distance.

30.0

20.0

10.0

2.0
I I I I I
I I I

2.2 2.4 2.6

We will study in some detail this last point, following
the analysis of Cook and Karplus [94]. To simplify the
discussion, we will restrict ourselves to the H2 molecule.
We are interested in the unrestricted Hartree-Fock
potential-energy curve near the equilibrium distance, but,
as has been known for many years [95], this curve is vir-
tually identical to the restricted one (for distances shorter
than the Coulson-Fischer point, =2.27 a.u. ). So, we will
discuss here the restricted case, with both electrons in the
same orbital

EXACT
I.SD
SIC
GGC

I.C
CS
AIS['

(10 3a.u. )
90.0

80.0

70.0

60.0

50.0

40.0

30.0
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10.0

FIG. 2. BH molecule. Correlation energy with reversed sign

(
—E, ) vs internuclear distance (R), from the UHF wave func-

tion. AI1 the curves have been shifted to give zero correlation
energy at large R. The vertical line is at the UHF equilibrium
distance.

P(r)=tp (r)+yb(r), (33)

—E,
(10 3a.u. )

20.0

10.0

2.0 2.2 2.4 2.6 & (a.u. )

where y, ( ) and yb ( ) are equivalent functions the first
centered on atom A and the second on atom B. Using
this orbital we form the Hartree-Fock wave function (for
simplicity we will hereafter omit spin terms and normali-
zation constants):

2:7 2.'9

EXACT
LSD
SIC
GGC

3.1

LC
CS
MSF

Z (a.u. )
EXACT
I,SD
SIC
GGC

LC
CS
MSF

FIG. 3. B2 molecule. Correlation energy with reversed sign
( —E,) vs internuclear distance (R), from the UHF wave func-
tion. All the curves have been shifted to give zero correlation
energy at large R. The vertical line is at the UHF equilibrium
distance.

FIG. 5. BH molecule. Correlation energy with reversed sign

( —E, ) vs internuclear distance (R), from the GVB wave func-

tion. All the curves have been shifted to give zero correlation

energy at large R. The vertical line is at the GVB equilibrium

distance.
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P (rl) Pb(r2)+ Pb( rl) P (r2)

+(P (rl)P ( r2) +'Pb( rl)'Pb(r2) (34}

In a correct description of the hydrogen molecule, the
relative importance of the ionic terms should decrease as
R increases. However, the Hartree-Fock wave function
(34) keeps this rate constant for any distance, and so, as
the distance R increases, the error in the Hartree-Fock
energy, E,—(R), also increases [96] (see Fig. 1). In other

words, the HF correlation energy E,(R) is a decreasing
curve, so that c,' is negative. This is exactly the opposite
behavior of what we would expect for a correct correla-
tion energy curve: as R increases and the H atoms fall
far apart, each electron should remain bounded to a
different nucleus, so that correlation between both elec-
trons decreases, given a decreasing E,(R)—. All the
correlation functionals behave in this form.

For other molecules, an increasing E,(R)—is to be ex-

pected when the Hartree-Fock description of the molecu-
lar bond is qualitatively incorrect (at distances where re-
stricted and unrestricted HF descriptions are equal).
This is confirmed for the molecules Hz, LiH, BH, FH,
and Li2, which have not a qualitatively correct Hartree-
Fock wave function (for example, Figs. 1 and 2, where it
can be seen that Exact's are increasing curves for some
interval of R). If the interval on which E,(R ) inc—reases
includes the UHF equilibrium distance (as for H2, BH,
and FH), then this constant is shorter than the experi-
mental value, and the UHF co, is larger. On the other
hand, the B2 molecule has a qualitatively correct
Hartree-Fock curve, so that a decreasing E,(R) is ex--

pected, as confirmed in Fig. 3. As a consequence, UHF
R, for B2 is larger than the expermental value, and UHF
co, is smaller. With respect to the correlation functionals,
it should be stressed that they always have decreasing

E,(R ) curves—for all these molecules.
From the previous discussion, it becomes clear that

correlation corrections to Hartree-Fock R, or co, have
little predictive value, unless the Hartree-Fock descrip-
tion of the molecular bond is qualitatively correct. The
fact has already been pointed out in some recent papers
[19,6].

B. GVB plus correlation energy

We can point out the following facts from Tables
II—IV.

(a) D, . Dissociation energies are increased (and im-
proved) by all of the correlation corrections, as expected
from inequality (32). GVB+ LSD, GVB+ SIC, and
GVB+GGC dissociation energies are always smaller
than GVB+LC values, and these in turn are smaller than
GVB+CS and GVB+MSF dissociation energies. This
ordering has to do with the size-consistence behavior of
these methods (see the previous discussion of Table I).
An overestimation of the correlation energy with re-
versed sign at quasidissociation distance (GVB+LSD,
GVB+SIC, and GVB+GGC) yields a smaller dissocia-

tion energy, while an underestimation (GVB+CS,
GVB+MSF) yields larger D, 's .The GVB+MSF series
gives in general the best results, probably due to a cancel-
lation of errors between the correlation energy at R, and
at large distance.

(b) R, and co, . Equilibrium distances and vibrational
frequencies are respectively decreased and increased by
any correlation correction. Looking at Figs. 4 and 5 we
see that E,(—R) are always decreasing curves for all
correlation-energy corrections, but now, unlike the
Hartree-Fock case, exact GVB correlation-energy curves
are also decreasing curves, and that gives R, (co, ) larger
(smaller) than the experimental value (this is also true for
all the other molecules tested here, except perhaps the
FH molecule, which has a nearly constant curve due to
the goodness of its GVB description}. This behavior
seems to be quite general. For instance, from GVB or
MCSCF calculations on a set of 14 molecules [45,46],
only one had both R, shorter and co, larger than its
respective experimental values. As a consequence, this
means an improvement of the spectroscopic constants,
whatever the method we use. However, it is not clear
which method is the best, although perhaps the Colle-
Salvetti corrections are the most reliable.

We will illustrate the differences with the Hartree-Fock
case using the H2 molecule again. The GVB wave func-
tion for this molecule may be expressed [97,98] in a form
similar to that used for the Hartree-Fock wave function,
Eq. (34),

+GVB(rl r2) P (rl ) Pb(r2)+ Pb(rl )IP (r2)

+&[t.«1 )m. «2)+ mb(rl)f b(r2)] .

The parameter c allows the ionic terms to have the
correct relative importance. The wrong effect due to the
ionic terms in the HF wave function (34) is now correct-
ed, so that we can expect smaller errors to the total ener-

gy for larger distances, that is, a decreasing E,(R) or-
an increasing E,(R ) curve (see Fig. 4). That means larger
equilibrium distances and smaller vibrational frequencies
than their respective experimental values [Eqs. (28} and
(30)]. As a consequence, any reasonable correlation es-
timation (that is, one that gives smaller absolute correla-
tion energies as the distance increases, as do all the ex-
pressions tested here) should improve (and indeed they
do) the value of these spectroscopic constants.

C. Comparison with Kohn-Sham results with

approximate exchange

Here we will compare our results, computed within the
Kohn-Sham scheme with exact exchange and approxi-
mated correlation, with results from the literature, ob-
tained with both exchange and correlation approximated
(using the same or as similar as possible a correlation
functional). The spectroscopic constants are shown in
Tables II—IV. Provided that correlation approximations
and computational methods are coxnparable for each pair
of calculations [UHF+ LSD —KS(LSD), UHF+ SIC
—KS(SIC}, UHF+ GGC —KS(GGC)] we believe that
differences in the results may be attributed to the use of
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p(r) = Iq. (r) I'+ lq»(r) I'+2q, (r)y„(r) . (36)

It is clear that, as the distance R between atoms 3 and
8 increases, this density tends to the density of the isolat-
ed atoms A and 8, because the term 2y, (r)yb(r) de-

creases. We would expect that any reasonable exchange
functional yields smaller errors for the isolated atoms, so
that the error of such an exchange functional, contrary to
the Hartree-Fock exchange, is a decreasing curve with R.
Thus, unlike the exact exchange case, calculations made
with approximate exchange are good candidates for im-

provement with any reasonable [or decreasing E,(R)—
curve] correlation estimation. Looking at Tables II and
III we can say that R, and co, computed with approxi-
mate exchange are generally of similar or better quality
than those computed with exact exchange. This observa-
tion, together with the fact that reliable UHF curves can-
not be obtained for some molecules such as N2, 02, or F2
(and so prevent us from using the exact exchange
scheme), seems to mean that approximate exchanges are
more useful than the exact one (at least for this small set
of tnolecules).

With respect to dissociation energies (Table IV), there
is no clear trend in the reduced set of molecules we have

either the exact or an approximate exchange, so that they
may be useful in assessing their respective quality. The
conclusions that follow should be taken cautiously, be-
cause different results have been computed with different
basis sets.

In Table II (III) we see that equilibrium distances (vi-

brational frequencies) calculated with approxitnate ex-
change are always larger (smaller) than their respective
values computed with exact exchange. This is the correct
trend, because, as has been said above, correlation
corrected UHF values are usually underestimated
(overestimated). For explaining this trend, we will use
again the same simple model for the H~ molecule [94].
Near the equilibrium distance, restricted and unrestricted
DFT calculations are also equal to each other [99,100], as
they are for the Hartree-Fock case, so that only total den-
sities rather than spin densities are needed. From a dou-

ble occupied orbital like that used to build up the HF
wave function (orbital 33), we get the (unnormalized)
electron density:

selected. Both kinds of calculations usually give similar
results.

VI. CONCLUDING REMARKS

For Hartree-Fock or Kohn-Sham with exact exchange
calculations, it seems that the size-consistency problem is
the source of most troubles when computing magnitudes
related with potential-energy curves such as equilibrium
distances or vibrational frequencies. Those problems are
still present at short distances, and despite this we use
unrestricted methods, which give correct dissociation at
large distance. A qualitatiuely correct description of the
potential-energy curve is needed if it is to be improved
with correlation energy functionals.

Paradoxically, Kohn-Sham calculations where the ex-
act exchange is replaced by an approximate exchange
give better potential-energy curves near the equilibrium
distance. That means that approximated exchanges may
be closer to experimental results than the exact-by-
definit~on exchange, although Kohn-Sham dissociation
energies computed with approximated exchanges are
sometimes overestimated.

Finally, the troubles arising from the Hartree-Fock ex-
change may be removed by using a slightly more complex
wave function (just to have a qualitatively correct behav-
ior) such as a GVB or a short CI expansion. Current
density-functional estimations of the correlation energy
(LSD, LSDSIC, and LSDGGC) are still useful for im-

proving the potential-energy curves, despite the double
counting of correlation energy or the lack of size con-
sistency. Better results are obtained with correlation ap-
proximations that have been specially treated to avoid
the double counting, whether they are size consistent, as
is the Lie-Clementi method; or not, as are the Colle-
Salvetti and Moscardo- San-Fabian methods. The
Moscardo —San-Fabian method gives the best dissociation
energies.
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