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Topographical view of molecular electron-momentum densities
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Topographies of ground-state electron-momentum densities (EMD's), y(p), are studied for a number

of diatomic as well as polyatomic molecules and compared with the corresponding separated atom-
momentum densities with a view to bring out clearly the efFect of bonding from a momentum-space

standpoint. All possible critical points of rank three are seen to occur in the molecular EMD topology.
Some linear molecules, in particular, are seen to possess a ring of stable critical points. Diatomic mole-

cules constituted of atoms with exclusively s-type orbitals exhibit, in their y(p) topography, a maximum

at p=0. Whenever for any di- or polyatomic system y(0) is maximal, it turns out to be a unique critical
point, whereas for all other cases of criticality at p=0 a definite hierarchy, dictated solely by the critical-
ity at the origin, in the nature of critical points elsewhere is observed. Criticality at p=O, while being
imperative, is seen to have a direct bearing on the anisotropies in EMD that manifestly are chiefly
characteristic of molecular, rather than separated-atom, EMD. Further, from studies carried out on
some isoelectronic series of diversified polyatomic systems, a correlation between the curvatures associ-
ated with the p =0 criticality and distribution polarity is discovered.

PACS number(s): 31.10.+z, 31.90.+s

I. INTRODUCTION

Atomic and molecular electron-momentum densities
(EMD's) y(p) have been a subject of considerable interest
to chemists for the past 50 years. The molecular EMD is
experimentally tractable in that it can be derived from
directional Compton profiles [1],which fact endows merit
to its study. On the theoretical side, following the
pioneering work of Coulson [2], as a result of several
studies from different standpoints, the following princi-
ples emerged, as categorized by Epstein and Tanner [1]:
(1) Fourier-transform principle, (2) virial-theorem princi-
ple, (3) bond-directionality principle, (4) bond-oscillation
principle, (5) hybrid-orbital principle, and (6)
expectation-value principle. In spite of a large number of
theoretical as well as experimental investigations, the
EMD has eluded a direct interpretation in simple chemi-
cal terms and hence has not been much utilized by prac-
ticing chemists for furthering their knowledge of molecu-
lar structure.

The bond-directionality (BD)principle, which has been
a subject of discussion for many years and has recently
been very carefully analyzed by Tanner [3], states that
"in a chemical bond in a bound molecule in its equilibri-
um configuration, there are values p of momentum
which are more probable, i.e., which correspond to local
maxima of y(p). These values are determined by both
the geometric and electronic symmetries of the molecule.
For momenta p=p +5p near a maximum, it is more
likely that 5p is perpendicular rather than parallel to the
bond axis." The BD principle, which gives a signature of
bonding within the molecular-orbital framework, is clear-
ly operative for covalently bonded diatomic molecules

[1—3] and cannot be directly extended to describe polya-
tomic systems. This follows from the fact that there is no
reference to nuclei in the momentum space and that the
symmetry of the molecular EMD is enhanced in general
as compared to its r-space molecular symmetry [4].
Thus, for polyatomic molecules, with the absence of a
straightforward extension of the BD principle, implica-
tions of chemical bonding as viewed in the momentum
space even at a gross level are difBcult to describe and are
not reflected in molecular EMD maps. Further, anisotro-
pies in EMD are also not clearly discernible [5—10] (Refs.
[5]—[10] are representative studies; for a detailed bibliog-
raphy, consult Ref. [3]).

Langhoff and Tawil [5] computed the anisotropies in
the EMD in terms of those given by the corresponding
directional Compton profiles, the latter defined as
Jz(q)= fy(p)5(q —k.p)d p, where k is the unit vector
in the direction of momentum transferred to the electron,
and q is the projection of the momentum-transfer vector
on the initial electron-momentum vector. For diatomic
and planar molecules, the deviations from sphericity, viz. ,
Jj —J,„and J~~

—J,„, together qualify to be a good mea-
sure of the anisotropies. Here J~ denotes Compton
profile perpendicular to the bond (for diatomics) or to the
plane of the molecules (for planar molecules), Ji the
Compton profile in the direction of the bond or in the
plane of the molecules, and J,„ the spherically averaged
Compton profile defined as J,„(q)=(4m.) 'f Jz(q)dQ&.
Further, for diatomics, Koga, Nakao, and Hao [6]
defined the anisotropies in the EMD by Q„=(p„")/(p,"),
where p„and p„respectively, denote perpendicular and
parallel components of p. Koga, Nakao, and Hao [6] also
argued that the oscillations in the EMD, anisotropies in
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the molecular EMD, as well as bond polarity, are con-
nected to anisotropies in the molecular kinetic energy.
Earlier, Ramerez and co-workers [7] had proposed a
measure of "relative anisotropies" in directional Comp-
ton profiles in terms of just a single number, namely, the
difference between directional Compton profiles at zero
momentum, i.e., b J(0)=J,(0)—J„(0). Further, Thakkar
et al. [8] studied anisotropies in the EMD for linear mol-
ecules by suitably partitioning it in a Legendre-series ex-
pansion. This partitioning is accomplished by expanding

y(p) =y0(p )+yz(p )P2(cos8)+y4(p)P4(cos8)+ .

where Pl (cos8) are the Legendre polynomials of order L,
y0(p), which is isotropic, gives the spherically averaged
EMD, and the products of y2(p), y4(p), y6(p), . . . with
the corresponding Pl s give the anisotropic contribution
to the EMD. This expansion is an important step in the
partitioning of the EMD to study its anisotropy directly;
however, it has been applied only to linear molecules (for
polyatomics, the spherical harmonics must be employed).
Following this work, Simas, Smith, and Thakkar [9] stud-
ied the effect of substituents on the EMD of linear rnole-
cules via the Legendre-series partitioning and correlated
the substituent constants to the kinetic-energy anisotro-
pies for a given compound, relative to the nonsubstituted
parent compound. More recently, Anchell and Harriman
[10] have studied the phase-space density using the
Husimi function [10] and introduced the concept of local
anisotropies in the molecular EMD via the second mo-
ment of the momentum tensor that exhibits gross similar-
ities with the results of kinetic-energy anisotropies stud-
ied before by Thakkar, Sharma, and Koga [11]. The gen-
eralized bond-directionality principle then emerges, as is
brought out in Ref. [10]: A plane of three atoms have
mornenta preferred in a direction normal to the plane.
This principle is demonstrated for the H20, NH3, and

CH4 molecular species [10].
While the electron-momentum distribution eludes a

direct interpretation, its much studied coordinate-space
counterpart, viz. , the electron density p(r), gives a rather
simple picture of molecular bonding in accordance with
general chemical intuition and hence is relatively easier
to interpret. The salient features of molecular bonding
and structure at the microscopic level are customarily ob-
tained by studies on the redistribution of electron densi-
ties upon molecule formation and other allied quantities
such as electron-density differences maps, force con-
stants, dipole moments, molecular electrostatic poten-
tials, etc. Among these studies, a significant contribution
due to Bader [12] is noteworthy, viz. , the topological
studies of molecular systems in terms of a careful analysis
of the molecular electron density p(r) itself. Studies on
the gradient field and Laplacian of the electron density
lead to a useful quantification of terms such as a rigorous
definition of atoms in a molecule [12], the chemical bond,
and different geometrical structures [12] such as ring sys-
tems, cages, and so forth. The study of V p(r) has pro-
vided a firm footing to the concepts of electrophilic and
nucleophilic attacks, reactivities, and also to more popu-
lar concepts such as hyperconjugation [12]. All these

studies essentially hinge on a critical-point analysis of
p(r} as well as that of V p(r) and, by means of catas-
trophe theory as applied to the very concept of stability
of molecular structure, endow indeed a new perspective
to molecular-structure theory [12].

It is the aim of the present study to point out that the
molecular electron- momentum density is yet another im-
portant scalar field which can be studied in the above per-
spective, as initiated by Gadre, Limaye, and Kulkarni [4].
Analogous to their position-space counterparts, the
momentum-space densities were also studied in terms of
difference EMD maps [13], bringing out the effect of
molecular-bond formation. In this work we propose to
investigate, in fuller detail, the topography of EMD's of
some sample molecular systems vis-a-vis those of their
corresponding separated-atom-momentum densities and
the effect due to molecule formation on the redistribution
of y(p) topography. This will enable one to interpret an-
isotropies in the molecular EMD (through its topographi-
cal analysis) directly and seek connections within the
phenomenon of chemical bonding. All the analysis car-
ried out here refers to ground-state quantities with atom-
ic units used throughout.

II. TOPOGRAPHY
OF MOLECULAR ELECTRON-MOMENTUM DENSITY

The one-electron-molecular electron-momentum densi-
ty is derived from the ¹lectron momentum-space wave
function P(p&, p2, . . . , P~) as

1'(P)=&f ~4(P~P2~ ~PN)~ d P2 d PN &

where P(p, , p2, . . . , P~) is a 3N-dimensional Fourier-
Dirac transform of the coordinate-space molecular wave
function g(r„r2, . . . , rz). We have studied the EMD to-
pography for the systems, H2, CO, BF, Nz, HF, HCN,
H26, NH3, CH4, BH3, C2H2, C2H4, C2H6, N2H4, H2CO,
CH3OH, CH3F, C2H40, CH4N2, C2HSN, C3H6, and C4H6
using the molecular geometry and basis-set data due to
Snyder and Basch [14]. For the species Li2, LiH, and LiF
(using a 3-21G basis), OH, CN, and N3 (with a 4-31G
basis), and CH3NH2 and C6H6 (employing a double-g
basis), the wave functions were obtained by geometry op-
timization using a versatile ab initio package MIcRQMoL
[15]. The topography of y(p) was analyzed by isolating
its critical points (CP s), i.e., the points in momentum
space at which V y(p„,p,p, )=0. For Gaussian-type
functions used herein, one readily obtains analytical ex-
pressions for the first and second derivatives of y(p}.
The second derivatives at CP form the elements of the
Hessian matrix H, given by H;, =8 y(p)IBp;Bp. . The
Hessian, upon diagonalization, gives the eigen values

which essentially are the curvatures of the
EMD at the critical point. To further contrast between
bonding and nonbonding cases, a similar study was car-
ried out on the EMD for the aforementioned molecular
systems in the separated-atom premise, i.e., with the con-
stituent atoms in molecular nuclear configuration, but
with their atomic wave functions described using compa-
rable basis sets, frozen.
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As has been pointed out in a previous study [4], the
origin is always a critical point in the topology of the
molecular EMD, a result which stems from the fact that
the molecular EMD has to be inversion symmetric about
the point p=O, thus forcing it to be a critical point. The
point p=O also qualifies to be the "point" in the point
group of the EMD [4], since all symmetry operations in p
space leave it invariant.

For convenience, the molecules studied herein may be
classified as (a) diatomic and linear molecules, (b) isoelect-
ronic molecules, and (c) cyclic systems of hydrocarbons
and with one or more heteroatoms. The topography of
these classes will be discussed below.

A. Diatomic and linear molecules

This class of molecular y(p) has been extensively stud-
ied in the literature: The guiding principles mentioned in
Sec. I are mainly extracted from the study of diatomic
molecules. We subdivide this class of molecules into two
types, viz. , molecules formed from atoms with exclusively
s-type orbitals, viz. , H, He, Li, and Be, and molecules
formed from atoms with both s- and p-type of orbitals.

The molecules H2, LiH, and Li2 fall into the first
category. Coulson [2] first showed that y(p) for Hz has a
maximum at p=O. We observe that a similar behavior is
evinced by all the molecules that have exclusively s-type
orbitals at their atomic level. Except for this unique glo-
bal maximum [i.e., a unique (3, —3) type of CP at p=0],
y(p) for a molecule in this class is deprived of any other
type of CP in its topology. That p=O is a maximum is
evident from the expression for s-type contributions to
molecular y(p) for Gaussian orbitals:

—p /[4(a&+p„)]y(p)= QP„„e ~ " cos(p R»), (2)
p, v

where P„, is charge-density bond-order matrix, a„and P„
are primitive Gaussian exponents, and Rzz is the separa-
tion between atoms A and 8. Evidently, y(0) will turn
out to be maximal owing to the presence of the cosine
term. This significant maximal s contribution to y(p)
also suggests that such a feature is not an artifact of any
peculiar basis set and will be retained even after inclusion
of polarization terms. This conjecture has been
confirmed by employing double-g polarized (DZP) basis
sets for the above molecular systems.

For the other category of molecules, involving both s
and p orbitals at their atomic level, a (3, —1) type of CP
is never found to occur at p=O. All the other types of
CP's of rank 3 are exhibited at p=O for different molecu-
lar systems: A strict (3, +3) minimum is observed for
N3, OH, HF, and LiF molecules [for these molecules a
pair (3, —3) or (3, + 1) type of CP is always found along
the "bonding" direction, viz. , the p, direction], a (3, +1)
saddle for N2, HCN, C2Hz, and CN, and a (3, —3) max-
imum for the CO and BF molecules (cf. Table I).

A CP is said to be degenerate when a rank of the CP is
less than the dimensions of space; i.e., at least one of the
eigenvalues of the Hessian is zero. According to catas-
trophe theory [16], a strictly isolated degenerate CP re-
sults from the coalescence of two or more nondegenerate

(O,l) , ((
(1,0)

FIG. 1. Grid plot of y(p) for the C2H2 molecule in the p„-p~
plane displaying a ring of nonisolated degenerate critical points
(see Sec. II for details). All values are in atomic units.

CP's at a point. From the studies of the r-space electron
density p(r}, this coalescence gives rise to instability in

the molecular structure: Any other nuclear configuration
in the neighborhood of the unstable molecular structure
associated with the degenerate CP is stable. The analysis
of degenerate CP's essentially subscribes to catastrophe-
theoretical analysis, which exhaustively classifies these in-

stabilities. Another case that may occur is that a func-
tion is extremal along a line or a curve, leading to a curve
of degenerate CP's. Such a type of behavior is also seen
to occur in the case of another (albeit unrelated) scalar
field of chemical interest, viz. , the molecular electrostatic
potential [17].

The critical-point analysis of diatomic and linear mole-
cules is of special interest since y(p) for all these mole-

cules necessarily have a D „h symmetry. Thus any CP ly-

ing off the molecular axis forms a continuous ring of non-
isolated degenerate CP's of rank 2, a fact which entails
that the direction of degeneracy (i.e., the direction i such
that A,;=0) does not remain fixed. A three-dimensional

grid plot of a plane containing a degenerate ring of CP's
for a fixed p, =0 for C2H2 molecules is displayed in Fig.
1, which resembles an inverted pig trough with a curve of
maxima satisfying the equation of a circle. The critical
mountain of degenerate CP's in the present case can be
broken up into ripples of continuously connected nonde-
generate maxima and saddles. The form of the function
depicted in the Fig. 1 resembles the function

F(p. p, }=a(p.'+p,'} (p.'+p,')'—

Hence a cut in the p„-p~ plane passing through the origin
resembles the function f (x}=ax x. As it turn—s out,
the nonisolated degenerate ring of CP s in this case is in-
determinate and has infinite codimensions [16—18].

The degenerate CP's in this example are, of course,
stable; i.e., if the geometry of the molecule is slightly per-
turbed, the ring of degenerate maxima is still retained.
This property is in contradistinction with the other isolat-
ed degenerate CP's found for some peculiar molecular
structures [12] in the topology of p(r), wherein a slight
perturbation in the geometry leads to the nonexistence of
degenerate CP's [12]. This feature may be manifested in
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the inherent instability of isolated degenerate CP's. The
nonisolated degenerate CP's found here in the y(p) topol-
ogy are indeed stable and are a consequence of D z sym-
metry of linear molecules in p space. Although this oc-
currence of a ring of degenerate CP's is a simple conse-
quence of symmetry, this unusual feature is not found in
its r-space counterpart p(r), in its ground state, and such
an existence is particular to and hence is of special in-
terest in p space.

B. Isoelectronic molecules

Four isoelectronic series with 10, 14, 18, and 24 elec-
trons, respectively, were investigated in the present study:
(1) CH~, NH3, H20, HF, and OH, (2) N2, CO, BF,
HCN, and CzH2, (3) ethane (C2H6), methyl amine

(CH3NH2), methanol (CH3OH), and methyl fluoride
(CH3-F), and (4) cyclopropane (C3H6), ethylenimine

(CzH5N), ethylene oxide (C2H40), and diaziridine

(CH4N2).
Molecules belonging to series (1) all exhibit, for their

EMD, at p=0, a strict minimum [CP of (3,+3) type],

while those within series (3) show a (3, +1) saddle (cf.
Table I). This behavior may be attributed to a similar
type of molecular bonding within a given series. The oc-
currence of criticalities is also dictated by the symmetry
of molecules in p-space [4]. For instance, by virtue of
Dzh symmetry, HzO is seen to have four (3, +1) saddles
symmetrically located (on the vertices of the parallelo-
gram in p -p, plane) and eight (3, —1) CP's. For the
second isoelectronic series, however, the above trend at
p=0 is not observed (cf. Table I), which may be traced
back to the differences in the nature of the bonding, ac-
cording to whether it is covalent or ionic. Partial-wave
analysis studies [19]also support the above observation in
the sense that the y(p)'s for CO and BF exhibit marked
similarity as compared with that for N2.

Epstein [20] and Hirst and Liebmann [21] have studied
the radial momentum density I(p) [where I(p)
=(4m. ) 'f y(p)dQ ] for 10 and 18 electron molecular

P
systems, respectively. As the polarity of substituents in-
creases from CH~ to HF [as in series (1) above] and from

C2H6 to CH3F [in series (3)], the maximum value of I(p),
viz. , I,„occurring at p =p,„, decreases, accompanied
by an increase in the p,„value. A similar trend is ap-

TABLE I. Table of curvatures (eigenvalues) of critical points at p=O and types of some critical
points found away from p =0 in the topography of molecules (all values in a.u. ).

Molecule

H2
CO
C3H6
Liz
LiH
BF
C2H4
C2H5N
C6H6
C4H6
CH4N~

C2H40
CH3OH
CH3F
CH3NH2
C~H6
C2H2
HCN
N~
HCHQ

N2H4
BH3
CN
LiF
HF
CH4
NH3
H20
OH
N3

—4.559
—2.733

—10.76
—626.6
—91.82
—17.72
—17.44
—11.70
—1.970

—10.97
—7.514
—7.610

2.445
2.426
3.315
3.126
7.174
3.495
1.099
0.972

—8.572
1.341
0.038
5.047
0.867
4.028
3.349
1.933
2.834
0.043

—4.559
—2.733

—10.76
—626.3
—91.82
—17.72
—23.29
—1.181
—1.970
—4.509

0.910
0.317
2.920
2.426
2.732
3.126
7.174
3.509
1.099
1.464
2.757

—11.37
0.038
5.047
0.867
4.028
3.349
2.554
0.564
0.690

A3

—5.558
—4.659
—0.824

—825.5
—60.42
—14.99
—39.72
—10.81

20.70
11.90

—5.494
—8.562
—7.072
—5.565
—7.759

—12.49
—4.405
—2.265
—3.372
—4.470

2.804
1.341

—4.443
16.11
1.326
4.028
4.140
2.225
0.564
0.690

Types of CP's
away from p=O

(3, —3)
(3 —3)
(3, —3)
(3, -3)
(3, —1), (3, —3)
(3, —1), (3, —3)
(3, —1), (3, —3)
(3, —1), (3, —3)
degenerate CP's
degenerate CP's
degenerate CP's
(3, —1), (3, —3)
(3, —1) (3, —3)
(3, —3)

degenerate CP's, (3, —3)
degenerate CP's, (3, —3)
(3, —1), (3, —3)
(3, +1), (3, —1), (3, —3)
(3, +1), (3, —1), (3, —3)
degenerate CP's, (3, —3)
degenerate CP's, (3, +1)
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TABLE II. Momentum densities and average momentum

lp ..I (in a.u. ) at (3,—3) CP's (maxima) in y(p) for molecules of
the isoelectronic series with bond polarities (sc) of molecules. '

Molecule

CH4
NH3
OH
H20
HF

CqH6

CH3NH2
CH3OH
CH3F

C3H6
C2HgN

C2H40
CH4N2

10-electron
1.467
1.026
0.747
0.663
0.434

18-electron
2.447
1.956
1.719
1.515

24-electron
2.996
2.633
2.358
2.123

I p max I

series
0.357
0.467
0.481
0.512
0.565

series
0.263
0.317
0.320
0.308

series
0.000
0.000
0.096
0.175

~La=1—
~H

0.000
0.191
0.801
0.250
0.347

0.000
0.176
0.163
0.000

0.000
0.076
0.112
0.269

'See text of Sec. II for the definition of bond polarity of each
isoelectronic series.

parent from Table II for the momentum density by exam-
ining its global maxima, i.e., (3, —3} type of CP s in the
y(p) topology. From Table II it is clear that the
momentum density decreases with an increase in the elec-
tronegativity of an atom or a group attached to a given
fixed atom or a group, whereas the p,„value increases.
In polar molecules this spread of the momentum distribu-
tion with increasing electronegativity of the substituent
atom or group may be ascribed to a complementary be-
havior in coordinate space, viz. , a biased charge distribu-
tion of p(r), the electron density. However, the 14-
electron series does not exhibit the above feature because
of different types of bonding in this series. As has been
pointed out by Koga, Nakao, and Hao [6], bond polarity
can be related to anisotropies in the molecular kinetic en-
ergy. A correlation of the curvatures of the CP at p=0 is
observed with the bond polarity or distribution polarity,
depending on whether the system under study is diatomic
or polyatomic. To bring out explicitly this correlation
for the 10- and 18-electron series that have, respectively,
(3, +3) and (3, +1) type CP at p=O, the ratio of curva-
tures of two higher positive-valued eigenvalues may be
considered, whereas for the 24-electron series, the ratio of
two negative-valued eigenvalues may be taken into ac-
count. As a measure of the distribution polarity, a nu-
merical index ~ is set up which compares different bond
polarities on equal footing: sc = 1 —

XL /A, ~, with
IAz I

~ IX~I. The 10- and 24-electron series, as evi'denced
by an increase in a, show a good correlation between this
distribution polarity index and increase in electronega-
tivity of the atom or group (cf. Table II). Such a proper-
ty, however, is not found to hold for the 18-electron
series.

C. Ring systems

The study of ring systems of hydrocarbons, viz. , cy-
clopropane and benzene, showed varied topographical
structures. In the case of cyclopropane the existence of a
unique (3, —3) maximum at p=O is discernible in its
y(p) topology. In the cyclopropane ring, when one of
the —CHz groups is replaced by a —NH group, leading
to the ethylenimine molecule, this maximal y(0) charac-
ter persists without any extra CP's creeping in. However,
when —CH2 is replaced by an —0 group to form
ethylene oxide, a (3, —1) CP occurs at p=0 along with a
pair of (3, —3} kinds of CP's perpendicular to the C-
C—0 ring plane. Similarly, if two —NH groups replace
the two —CH2 groups to form a diaziridine molecule, a
(3, —1) saddle occurs at p=0 and two local maxima, i.e.,
a pair of (3, —3) CP's, are observed perpendicular to the
C—N—N plane. Similar characteristics are also exhibit-
ed by benzene with a (3, —1 } saddle at p =0 and a pair of
maxima perpendicular to the plane of the molecules.
This occurrence of the y(p) maximum off the plane may
be viewed as yet further supportive evidence for the gen-
eralized bond-directionality principle [10].

The topographical analysis for some of the molecules
in the present study has been carried out with a STO-3G
(minimal) basis and 6-316' or DZP basis. It was ob-
served that a minimal basis set is insufficient to study the
critical structure of molecules. However, from studies of
polarized basis sets, it is clear that the DZ basis set used
in the present study exhibits the correct critical structure
in the sense that it leads to qualitatively identical topo-
graphies.

The topographical study of the corresponding
separated-atom (SA) cases for all the molecules studied
herein reveals that p=O is always a critical point; howev-
er, the nature of this CP in general changes as atoms bind
to form the molecule. Another general observation from
the topography of ys~(p) is that exclusively (3, —3) type
of CP's, i.e., maxima, are seen to occur away from the
origin. A (3, +3) CP, i.e., a minimum, is never found in
the topology of ysA(p), suggesting that the occurrence of
a minimum in the molecular y(p) is a relaxation effect
brought about by molecular-bond formation. The nature
of CP's at p=0 for ys~(p) of the H+H system is a max-
imum, since the atomic y( IpI ) for hydrogen is monotonic
in IpI. The H+F system also displays a maximum at
p =0 because of the predominance of monotonic behavior
of y(IpI) for hydrogen over the nonmonotonic behavior
of y( IpI ) for fluorine. In a similar fashion, the nature of
CP's at p=O for polyatomic molecules in the separated-
atom premise may be analyzed, to seek any trend in the
deviations in the y(p) topography, characterizing the
process of bond formation.

From the above observations, one may infer that the
occurrence of CP's at other positions than the origin and
also of types other than the maximum in the topology of
the molecular EMD are also indicative of bonding. In
the case of some linear molecules, as noted before, a ring
of degenerate CP's is observed around the p, axis; the ab-
sence of such a feature in ys~(p) implies that this critical
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degenerate ring formation may be taken to be a signature
of bonding.

III. ANISOTROPIES IN MOMENTUM
DENSITY: A TOPOGRAPHICAL VIEW

The analysis of topology momentum density is some-
what obscured because of the lack of a nuclear
configuration unlike for its p(r) counterpart. As men-
tioned earlier, the origin p=O is always a critical point
and all possible types of criticalities are observed at this
point for different molecular structures. Also, the type of
CP found at p =0 is never found anywhere else in the to-
pology of the molecule. The most interesting observation
is that of a hierarchy of CP's (cf. Table I): Whenever a
minimum, i.e., a (3, +3) type CP, occurs at p=O, all oth
er types of CP's, viz. , (3, +1},(3, —1), and (3, —3), are
seen to occur at some isolated points away from the ori-
gin. Further, if a (3, +1) nature at p=O is exhibited,
only (3, —1) nd (3, —3) types of CP's are seen to arise
elsewhere. Moreover, when a (3, —1 } type of CP exists at
the origin, it could be accompanied by exclusively
(3, —3} type of CP's at some pAO in the y(p} topology.
Finally, a strict local maximum, i.e., a (3, —3) type of CP
at p=O, demands that it is a unique critical point and
y(p) is deprived of any other CP's in its topology. Thus
a minimum in y(p), if it exists, could only be observed at
p=0 as inferred from the molecular systems studied here.

Yet another noteworthy feature in the topology of
y(p), barring the cases which have a maximum at y(0)
(which is a unique CP in that case), is the occurrence of
directional maxima: Proceeding from the origin p=O
outward, it is seen that a strict maximum in y(p) always
lies the farthest with other possible intermediate criticali-
ties in between. After attainment of the said strict max-
imum, y(p) decreases monotonically, to vanish asymptot-
ically. That a maximum [rather than any other type of
CP, viz. , (3, +1) or (3, —1)] which always occurs at
higher

~ p ~
values may, albeit heuristically, be explained as

follows: During bond formation at equilibrium distance,
the kinetic energy of the given molecule increases, partic-
ularly in the internuclear region. From the connection of
y(p) and kinetic energy [the kinetic energy is equal to

f y(p)(p /2)d p], one can say that higher kinetic energy

implies a substantial contribution from higher-
momentum values, but for a finite system, y(p) itself di-
minishes at higher rnornenta. Hence there is a break-even
point at a sufticiently large momentum value around
which the probability density y(p) is maximal.

The analysis of CP's at p =0 may also be used to iden-
tify the EMD anisotropies, i.e., preferential momentum
directions along which such a preponderant y(p) is seen.
This may be analyzed as follows: Consider the eigenval-
ues of the Hessian corresponding to the CP at p=O; a
negative curvature along a direction in p space implies
that in the neighborhood the momentum density will de-
crease radially outward, whereas a positive curvature in-
dicates an increase. Thus it is expected that a maximum
in the momentum density may occur along such a direc-
tion where the positive curvature associated with the CP
at p=O is itself maximal. This trend has indeed been ob-
served for all the molecular y(p)'s studied here, except
for those cases with a unique maximum at p=O. Consid-
er, now, a polyatomic molecule having a minimum, i.e., a
(3, +3) type CP (all three eigenvalues positive) at p=O; a
maximum in y(p) is observed along the direction in
which the positive curvature is maximum. The direction
along which the next lower (intermediate) valued curva-
ture encounters has a (3, —1) type of CP and that associ-
ated with the lowest one has a (3, +1) type of CP. This is
demonstrated with the example of the water molecule,
which has, for its criticality at p=0, all three eigenvalues
positive (cf. Table III). One of the most interesting cases
is posed by methane, which has all equal positive eigen-
values for the Hessian at p=O, (if 2 eigenvalues, i.e., the
curvatures, are equal or almost equal, then both the cor-
responding momentum directions exhibit CP's), shows 6
maxima in y(p), a pair each along p„p,p, axes, 12
(3.—1) CP's, 1 in all quadrants of the momentum-
coordinate planes, and 8 (3, —1) CP's located at the 8 ver-
tices of a cube, by virtue of OI, symmetry. For a mole-
cule having a (3, +1) type of CP at p=O, a (3, —3) max-
imum as well as a (3, —1) saddle are found along the
directions according to the magnitudes of positive curva-
tures, as illustrated in Table III for the CH3OH molecule.
In this case, X2 is maximal positive; hence a pair of local
maxima would be seen along the corresponding direction.
For a (3, —1) CP at p=0, the direction in which the only

TABLE III. Anisotropies in momentum density for representative molecules of (3, +3), (3, + 1), and
(3, —1) type critical points at p =0 (all values in a.u.).

Molecule

Eigenvalues of CP's
at p=0

I A2 A3 px py pz

Momentum coordinates of
other CP's in molecules

y(p)

Type of
critical
point

H20

CH3OH

C4H6

1.933

2.445

—10.97

2.554 2.225

—4.509 11.90

2.920 —7.072

0.0
0.0

(+ )0.110'
+0.526

0.0
0.0

+0.301
0.0

0.0
+0.512

(+ )0.293'
0.0

+0.308
(+ )0.320'

0.0
0.0

+0.535
0.0

(+ )0.411'
0.0

+0.412
(+ )0.001'

0.0
+0.337

0.658
0.663
0.654
0.638
0.654
1.719
1.703
3.888

(3, —3)
(3, —3)
(3,'-1)
(3, +1)
(3, +1)
(3, —3)
(3, —1)
(3, —3)

'(+)indicates that only the upper and only lower signs are considered for two points generated for all
three p, p~, and p, .
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positive curvature lies is seen to be the preferred momen-
turn direction, as is demonstrated in Table III for the
trans- butadiene molecule. Since for the molecules hav-
ing (3, —3) maximum at p=O, no other type of CP is
seen to exist, similar definitive arguments regarding the
anisotropies are not possible. However, one can say that
the higher the negative curvature, the higher is the falloff
in the momentum density in that particular (momentum)
direction. Thus anisotropies in the momentum density of
polyatomic molecules are clearly related to the criticality
of y(p) at p=0. The above arguments are evidently valid
for a host of diatomic molecules also, since some of these
show a ring of CP's, whereby it can be concluded that
any direction apart from the p, direction is preferred by
the momenta.

A similar analysis applied to the separated-atom case
reveals that there is no preferential direction of momenta
in ys~(p) in that all CP's are seen to occur at (p„=+pa,
pr =+po, p, =+po). As remarked above, the very ex-
istence of anisotropies evinced by preferential momentum
directions can be looked upon as a consequence solely of
bond formation

IV. CONCLUDING REMARKS

An attempt has been made here to view the impact of
molecular-bond formation on the critical structure of the
electron-momentum density of diatomic as well as polya-
tomic molecular systems. The salient deviations of the
critical-point structure, characteristic of bond formation,
become obvious upon a comparison with the correspond-
ing separated- (unbonded) atom cases. Interestingly
enough, some linear molecules are seen to possess a ring
of degenerate CP's, as is demanded by the D „& symmetry

for y(p). The radial momentum density I(p), as well as

y(p), shows similar trends in terms of shifting its maxima
outward with increasingly electronegative group substitu-
tion. A fair correlation of ratios of curvatures of a CP at
p =0 with the distribution polarity for some isoelectronic
species is observed. Thus, in general, one can say that in-
formation such as the geometry of a molecule, type of
bonding, or effects of different types of bonding will have
a direct bearing on the criticality at p =0. This follows
from the r-space valence-orbital contribution to the elec-
tron density being mapped in p space to lower values of
momentum as a result of a complementary reciprocity
in r and p spaces brought about by the Fourier-transform
connection between the respective wave functions.

The present study also addresses directly the anisotro-
pies in the molecular EMD via the topographical analysis
as against their extraction by indirect means reported in
earlier studies in this direction [5—10]. The preferential
direction of momenta leading to anisotropies in the EMD
dictated by the preponderance of the EMD can be associ-
ated with the curvatures (eigenvalues) of the Hessian ma-
trix corresponding to the criticality at the origin. It is
hoped that the present study will impart an impetus for
further studies such as reactions in momentum space via
topographical analyses of the molecular EMD, which are
currently being carried out in our laboratory.
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