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Electron correlation in momentum space: The beryllium-atom isoelectronic sequence
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Various momentum-space properties are computed for the Be atom and its isoelectronic sequence

from highly accurate configuration-interaction wave functions that include more than 90% of the corre-
lation energy. We assess the effects of electron correlation in momentum space by making a comparison
with the results obtained from the Hartree-Fock level. The results reveal differences that indicate that
the inclusion of electron correlation is necessary if one is to obtain highly accurate momentum space
quantities. Additionally, our results show that the sum of the position and momentum-space entropies
increases in going from the Hartree-Fock to the configuration-interaction level, supporting the argument

that this sum may be used in assessing the quality of a basis set. The observation that the entropy sum

and the other calculated properties remain stable with the inclusion of more electron correlation sug-

gests that these properties are not sensitive to the amount of electron correlation and that density con-

vergence criteria may be more useful in obtaining an accurate electronic distribution than criteria based

solely on the amount of correlation energy.

PACS number(s): 31.20.Tz, 32.80.Cy, 31.90.+s

I. INTRODUCTION

It is well known that an accurate description of one-
electron properties must include both momentum and po-
sition space densities, and that in combination, these two
complementary avenues of analyses leads to a much
better understanding of the electronic structure of atoms
and molecules [1].

In the past, Benesch and co-workers [2—4] have exam-
ined the importance of electron correlation on momen-
tum densities and other density related properties using
then available correlated wave functions. With the in-
creasing use of (e, 2e) spectroscopy [5] and Compton
scattering [6] in recent years, as probes for the study of
electron momentum distributions, it is desirable to obtain
accurate momentum densities and Compton profiles us-
ing the highly accurate configuration-interaction (CI)
atomic wave functions that are now available.

Bunge [7] has obtained a CI wave function for the
beryllium atom that accounts for 99.55% of the correla-
tion energy (CE). Such a wave function should produce
essentially exact properties in position and momentum
space. More recently, Esquivel and Bunge [8] obtained
an accurate analytical density for Be by systematically
improving the CI wave functions so that the density con-
verges towards a definite expression as a function of r [9].
The result was a CI expansion built in a very compact
basis set which accounts for 93% of the CE. Neverthe-
less, the agreement between the Esquivel-Bunge (EB) and
Bunge's densities was shown to be impressive, both in the
point by point analysis and in the results for one-electron
expectation values. Moreover, both densities produce ex-
cellent values for the electron-nucleus cusp ratio and
obey the asymptotic behavior.

An electron correlation study in momentum space is
indeed necessary since it has been shown that the amount
of CE included in the wave function is not in direct rela-

tionship to the reliability of the corresponding position
space density. Thus it is important to address whether
fully converged position space densities are fully able to
produce momentum properties with the same accuracy as
in position space. Besides, obtaining CI wave functions
which account for over 99% of CE is by no means an
easily accomplished task while fully converged densities
may be obtained with much less effort [9].

In the present work, we report our study of the accu-
rate momentum density, Compton profile, moments of
the momentum density, information entropies in position
and momentum spaces, and quantities related to the
momentum density, for Be and its isoelectronic sequence
using the CI wave functions constructed by Esquivel and
co-workers [8,10]. Furthermore, we have also calculated
these properties for Be with the use of Bunge's CI wave
function [7]. Our aim is to examine and compare the
momentum density related properties we obtain to calcu-
lations done at the Hartree-Fock level, to ascertain the
sensitivity of these physically significant properties to the
inclusion of electron correlation in the basis set. We also
examine the change in these properties with the addition
of more electron correlation to the wave function. Last-
ly, we compute the position and momentum-space infor-
mation entropies [11] and their sums to analyze any
trends in the isoelectronic sequence and also to examine
the ability of these entropies in assessing the quality of a
particular wave function. We discuss briefly in the next
section our methodology for calculating the various prop-
erties and their physical significance. In the last section
the results are presented and discussed.

II. THEORETICAL METHODOLOGY

The momentum distribution may be calculated by two
distinct methods. The first involves the approximate
solution of the Schrodinger equation in momentum space
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&&/(ro, x„x,, . . . , x~)do dx,dx, . dxN,

is obtained in its natural form

Y(r r ) X ~krk(r)Xk(r ) (2)

and then transformed into momentum space

y(p, p') =(2n ) f exp( i p r—+i p' r')y(r, r')

to obtain the momentum-space wave function. Although
attempts have been made in this direction [12], this area
remains in its infancy. The second and by far the most
predominant method involves the Dirac-Fourier trans-
forrn of a position space wave function. However, we fol-
low here a method suggested by Benesch and Smith [2,3].
First, the spin-traced one-particle density matrix,

y(r, r') =Xf f*(r'o, xz, x3, . . . , x~~

The isotropic Compton profile (ICP), J(q), is related to
the spherically averaged momentum density, II(p), i.e.,

J(q)=2m f pII(p)dp . (7)
Iql

The moments of the electron momentum density are
defined by

(p") =4m f p"+ II(p)dp, —2&n &4 (8)
0

where the limits on n arise from the fact that II(p) does
not vanish at the origin and decays as p at large p [2].
These moments have physical meaning: (p ) is propor-
tional to the nonrelativistic kinetic energy and (p ') is
simply the peak value of J(q =0) of the ICP. (p ) is pro-
portional to the Slater-Dirac exchange energy to a high
degree of accuracy and (p ) is roughly proportional to
the initial value of the Patterson function in x-ray crystal-
lography [14]. The expectation values E4 and Ho are the
quasirelativistic energy

Xdrdr' . (3) E~=(p )/2m, —(p )/8m, c

y(P P )= X~kXk(P)Xk(P ) .
k

(4)

Here yk(p) is the NO in the momentum space. Thus,
given the NO, yk(r), in the position space, Eq. (4) can be
evaluated by computing the Fourier transform (FT), i.e.,

In the above 1( is the position space representation of the
X-electron wave function and x,. =(r;,o;) is a combined
space-spin coordinate for electron i. The gk are the natu-
ral orbitals which give the density matrix in diagonal
form and A, k are interpreted as the occupation numbers
of the respective natural orbitals (NO's). Using the natu-
ral expansion y(p, p') may be written as

and the complete relativistic kinetic-energy operator

Ho=m, c [[I+p /(m, c )]'i —1I, (10)

11(p)=~ +~~ +~ p +O(p ),

where m, is the mass of the electron and c is the speed of
light in a vacuum (for details see Ref. [15]). We have also
computed the small-p MacLaurin and large-p asymptotic
coefficients of II(p ) which may prove useful in the
analysis of experimental Compton profiles; The general
expressions for the asymptotic expansions of II(p) [16]
are

Xk(P)=(2~) f e Xk(r)dr
for small p, and

5
II(p)=B p s+B, p

' +B,~ '~+O(p ' ), (12)

11(p)=fp'y(p, p)« (6)

Evaluation of the FT of the kth NO is described in detail
in the review article of Kaijser and Smith [13]. The
spherically averaged momentum density may thus be ob-
tained as

for large p. These coefficients as obtained from Hartree-
Fock wave functions [17]have been tabulated [15,16].

In addition to the properties above, we have computed
the momentum-space information entropy [11]

S„=—f 'Y(p p)ln'Y(p p)dp . (13)

TABLE I. Calculated total energies in hartrees at the HF and CI levels for (a) the Be atom and (b) the Be isoelectronic sequence.

(a) The Be atom
HF
CI,„
CIE8
CI~
CIL
CI~

Level

—14.573 021
—14.666 902
—14.661 017
—14.610 111
—14.619026
—14.578 660

C2+
(b) The Be isoelectronic sequence

N'+ p4+ F5+ Ne +

HF
CI

—24.237 566
—24.343 379

—36.408 489
—36.529 551

—51.082 311
—51.217 415

—68.257 705
—68.406 070

—87.934048
—88.095 490

—110.111005
—110.285 012
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TABLE II. A comparison between various momentum densities for the Be atom.

p (a.u. )

0.0
0.1

0.3
0.5
0.7
1.0
1.5
2.0
3.0
4.0
5.0
7.0

4.84064
4.507 00
2.620 37
1.01079
0.314 15
0.06046
0.020 16
0.012 87
0.00443
0.001 45
0.000 50
0.00008

IIEB(p)

4.853 63
4.516 34
2.618 74
1.01052
0.31475
0.06042
0.020 18
0.012 86
0.00443
0.001 45
0.000 50
0.00008

5.950 60
5.491 16
2.996 88
1.045 60
0.286 67
0.046 77
0.018 70
0.012 71
0.004 44
0.001 45
0.000 50
0.00008

4.895 15
4.521 92
2.623 19
1.012 16
0.31490
0.060 28
0.020 14
0.012 86
0.00444
0.001 45
0.000 50
0.00007

II'�(p)
5.948 97
5.489 64
2.99601
1.045 33
0.286 68
0.046 81
0.018 71
0.012 73
0.00445
0.001 45
0.000 50
0.00007

IIHF(p)

5.950 81
5.491 34
2.996 93
1.045 63
0.286 73
0.046 79
0.018 70
0.012 72
0.00444
0.001 45
0.000 50
0.00007

We have also calculated S, the analogous quantity in po-
sition space, so that we may compute the sum, Sz+Sz.
These entropies are of interest since it has been suggested
that [11]their sum increases with an enhancement of the
quality of the basis as well as with electron correlation for
ground-state atoms. Hence these measures could be of
importance in the assessment of basis set and wave func-
tion quality.

All integrals pertaining to the respective properties
were numerically calculated by dividing the interval
[0,00] into a number of subintervals, each of which was
treated with an eight point Gauss-Lobatto quadrature.

III. RESULTS AND DISCUSSION

The orbital and total II(p) and J(q} and related mo-
ments for Be and its isoelectronic sequence were calculat-
ed both from the Hartree-Fock wave functions of
Clementi and Roetti [17] and the CI wave function of
Bunge [7] and those of Esquivel and Bunge [8] and
Esquivel, Smith, and Bunge [10] using Eqs. (6)—(8). For
the beryllium atom the corresponding quantities were an-
alyzed by means of Bunge's wave function with a 650
term expansion in a [ 10s,9p, Sd, 7f, 5g, 3h, 1i] Slater-type
orbitals (STO) basis that represents 99.55% of the CE [7].
This function was reproduced and the natural orbitals

and occupation numbers were calculated [8]. The EB
wave function was also employed for the present analysis.
This CI expansion contains 508 terms in a [9s,6p, 4d, lf]
basis including 93% of the CE [8].

Furthermore, in order to study correlation effects of
the core, valence, and intershell electrons, CI wave func-
tions were specifically calculated in the E-, L-, and inter-
shell regions by promoting electrons in the 1s, 2s, and
1s2s configurations, respectively. The CI expansion con-
tains 68 terms for the K and L shells and 103 terms for
the intershell. These CI expansions are built in the same
basis set as the EB wave function.

For all other ions along the isoelectronic sequence, ful-

ly converged analytical charge densities were employed.
The corresponding nonrelativistic CI wave functions
were calculated in a systematic manner, i.e., all single and
double excited configurations obtained by promoting K
and L electrons in the Hartree-Fock configuration are in-
cluded in the wave function. No triple and quadruple ex-
citations are included. The final CI expansions contain
289 terms in [8s, 6p, 6d, 3f, 3g] STO basis sets yielding en-

ergies which approximately represent 95% of the CE (see
Table I}. Position space information for CI densities of
these ions are planned to be published elsewhere [10].

The momentum density and Compton profile for Be
are tabulated in Tables II and III for a few selected points

TABLE III. A comparison between various ICP [J(q)] values for the Be atom.

q (a.u. )

0.0
0.1

0.3
0.5
0.7
1.0
1.5
2.0
3.0
4.0
5.0
7.0

J,„(q)

2.953 79
2.807 03
1.936 31
1.098 07
0.658 75
0.432 20
0.31241
0.223 90
0.102 31
0.045 26
0.020 70
0.005 10

JEB(q)

2.954 54
2.807 43
1.936 21
1.098 66
0.658 99
0.432 13
0.312 37
0.223 84
0.102 26
0.045 21
0.020 68
0.005 10

3.158 87
2.979 25
1.94944
1.031 91
0.60026
0.408 49
0.30923
0.223 72
0.10248
0.045 31
0.020 71
0.005 10

JL, (q)

2.957 40
2.810 12
1.937 60
1.098 59
0.658 38
0.431 67
0.31224
0.223 80
0.102 19
0.045 12
0.020 60
0.005 06

3.158 50
2.978 94
1.949 42
1.032 15
0.600 58
0.408 74
0.309 42
0.223 84
0.102 44
0.045 23
0.020 64
0.005 07

JHF(q)

3.159 13
2.979 51
1.949 67
1.032 12
0.60044
0.408 60
0.309 36
0.223 81
0.102 43
0.045 22
0.020 64
0.005 07



454388 TRIPATHI, SAGAR, ESQUIVEL, AND SMITH

0 Ne~"~ i~
/—1 I

N"
I

2
II

IIII
3

—10

C)
—15

—20

—25 I i I i I i II

q (a.u. &

FIG. 1. A plot of the momentum den
'

yensit difference function
forafewmem ersob f the Be isoelectronic sequence.

FIG 2 A plot of the Compton profile difference function for~ ~

a few members of the Be isoelectronic sequence.

er to corn are these quantities obtained from the
7 EB 8], and Hartree-Focw ave functions of Bunge 7,

[17]. A point by point comparison on of II,II, an
momentum densities ob-[defined, respectively, as the mome

taine rom ed f the wave functions of Bunge ex, Esquivel
(EB) and that obtained from the L she -g'-shell re ionand Bunge an

e. Both II B and IIL,of Be (L)] shows a good resemblance. o
with II at p =0 and withinagree within 0.3% and 0.5% wi

ess than 0.1% at all subsequent values o p.f . Theot er
and II are in general too highdensities, i.e., II+, II+L, , an HF a

0 o) at =0 but tend to converge grad-(ppo y
ually to the exact densities ,',„, EB,II', II II,III or p v

arkablreater than 1.5 a.u. , although they exhibit a remarka y ~11(p)= 11 (p) —IIHF(p) ~J(g) ~EB JHF (14)

ood agreement among themselve .ves. This feature may begoo
that due to the near degeneracyrationalized by noting a

~

1he 2s and 2 states of the Be atom, the sing y
h d hnd doubl excited configurations from e c

t h 11 are not effective in introduc g
~ ~ ~

in electron correla-inters e a
from thesetions. All correlations originating

shell.configurations come from the valence s e .
In order to stu y e id the differences in the momentum en-

EB and HFsity and Compton profile obtained from the an
functions, we have isp ayed' 1 d difference functions, defined
as

CI(KI.)CI(EB} CI(L)CI(K)Property CI(ex)

r o erator, the relativistice uasirelativistic kinetic-energy opeTABLE IV. The expectation values of y, q
r

' '
nd as m totic coe cien s offi

'
t for the Be atom. Note that g -p

b
'

b k d
~ ~

ers of 10.
kinetic-energy opera or,

o . 11 b re in atomic units; num ers in squcoefficients have been scaled by powers o . r; in squofZ. A num ersar

HF

(p ')
(p)
(p'&
(p')
(p'&

(a, )

S
Sii+S
Ao
A2

A4
BH/Z
8 10 /Z
a»/Z9

21.938 7
7.532 98

29.332 9
186.351

2165.03
—1.441 3[—2]

8.946 1[—4]
11.6944
8.754 3

20.448 6
4.840 64

—34.777 5
145.883

1.409 06
—6.301 11

—51.021 9

21.959 0
7.53042

29.314 3
186.210

2163.63
—1.440 2[ —2]

8.940 2[ —4]
11.691 1

8.757 6
20.448 7
4.853 63

—35.185 S

150.476
1.407 78

—6.11045
8.056 58

25.289 6
7.440 43

29.215 2
186.289

2166.67
—1.442 2[ —2]

8.963 7[ —4]
11.221 8
8.952 9

20.174 7
5.950 60

—48.153 2
229.125

1.411 83
—6.272 76
11.389 7

21.987 7
7.520 88

29.232 7
185.427

2157.06
—1.435 8[ —2]

8.997 7[—4]
11.674 7
8.766 1

20.440 7
4.859 15

—35.17S 7
150.080

1.419 39
—7.18668
24.821 6

25.283 3
7.435 14

29.150 3
185.613

2161.09
—1.438 5[ —2]

9.0192[ —4]
11.218 1

8.950 8
20.168 8
5.948 97

—48.141 1

229.069
1.422 98

—7.31205
30.674 9

25.290 6
7.434 18

29.145 8

185.586
2160.95
—1.438 4[ —2]

9.021 0[ —4]
11.215 5
8.950 3

20.165 8

5.950 77
—48.1S60
229.079

1.423 29
—7.31701
29.313 5
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e expectation values of the momentum density, the quasirelativistic kinetic-energy operator, the relativistic kinetic-

energy operator, the information entropies, and asymptotic coefficients for the Be-atom isoelectronic sequence. All numbers are in

atomic units; numbers in square brackets indicate powers of 10.

Property

&p ')
(p)
&p')
&p')
(p')
E4
&H, )
Sn
Sp
Sii+S
Ao

A2

A4
B,/Z'
Bip /Z
Bi2/Z

B+

10.080 1

9.91742
48.678 4

386.923
5 591.88

—3.722 2[ —2]
2.829 0[ —3]

15.395 6
4.8960

20.291 5
1.465 40

—4.409 71
7.250 7
1.476 63

—6.392 33
—2.320 92

5.84443
12.301 0
73.0600

698.097
12 076.6

—8.038 7[—2]
7.200 1[—3]

18.205 1

2.029 6
20.234 7
0.654 89

—1.128 00
1.1123
1.527 09

—6.672 10
18.434 6

N'+

3.82402
14.699 6

102.441
1 143.91

23 046.8
—1.534 1[—1]

1.577 5[—2]
20.458 8

—2.595 5[ —1]
20.1993
0.338 92

—0.383 95
0.244 13
1.564 59

—6.570 37
10.513 19

O4+

2.701 82
17.088 5

136.820
1 748.45

40 193.0
—2.675 4[ —1]

3.097 1[—2]
22.347 7

—2.172 3
20.175 4
0.200 52

—0.15909
0.070 56
1.592 99

—6.792 60
17.531 92

F5+

2.01241
19.477 0

176.205
2 536.71

65 545.1
—4.363 0[ —1]

5.603 6[—2]
23.975 3

—3.817 2
20.158 1

0.128 56
—0.075 54

0.024 77
1.616 15

—6.637 46
9.695 05

Ne +

1.557 51
21.864 8

220.578
3 531.92

101 286.0
—6.742 1[—1]

9.492 5[—2]
25.405 6

—5.2604
20.145 3
0.087 33

—0.039 49
0.009 94
1.634 28

—6.86642
17.898 17

in Figs. 1 and 2 for the Be the isoelectronic sequence.
From Fig. 1 it is clear that there is a large deviation be-
tween the CI and HF densities up to p=1.5 a.u. The
difference decreases as one moves down the isoelectronic
sequence, i.e., largest for Be (=30%) and smallest for
Ne + (=8%). The large negative deviation of EII(p)
near the valence shell region at small-p values can be un-

derstood intuitively. It is well known that in the HF
description of the atom each electron obeying the ex-
clusion principle moves in the average potential without
disturbing the position of the other electrons. As soon as
electron correlation is introduced, the electrons start
avoiding each other. Consequently the expectation value
of the kinetic-energy operator enhances. Furthermore
the electron moves under an increased effective nuclear
charge due to lesser screening. These effects together in-
crease the mean radius of the electron distribution in
momentum space (a decrease in the mean radius of the
electron distribution in position space; for a detailed dis-
cussion see Benesch and Smith [3]). Further, the decreas-
ing trend along the isoelectronic sequence rejects the re-
sult that the effect of electron correlation decreases near
the valence shell region. A similar variation can be seen
in Fig. 2 for EJ(q). Again we see here that the correla-

tion effects on this quantity are appreciable but not as im-

portant as the case of b, II(p). The fact that the relative
differences are smaller in this case may be attributed to
an averaging out of b, II(p) due to the integration [see Eq.
(7)].

On examination, a similar behavior is also noticed for
the corresponding J(q) and the moments of the momen-
tum density (see Tables IV and V). The corresponding
trend in the asymptotic coefficients of II(p) for the Be
atom and its isoelectronic sequence (see Tables IV and V)
is more similar to the case of II(p) in that the differences
from the Hartree-Fock level (see Ref. [16]) are relatively
large. On comparison with the coefficients at the HF lev-
el (see Table VI), this seems to be also true for the
remainder of the isoelectronic sequence with the largest
differences occurring in the 8,2 coefficient. This should
be expected since the parent momentum densities are
themselves quite different. The excellent agreement be-
tween the results obtained by using Bunge's [7) 650 term
and EB's [8] 508 term CI wave functions over the entire
range of p and q values studied here leads us to conclude
that II(p) and J(q) and the moments of the momentum
density depend on a good balance of the electronic distri-
bution among the different atomic shells as it permits an

TABLE VI. The first three coefficients in the small-p MacLaurin and large-p asymptotic expansion of the spherically averaged
momentum density for the Be-atom isoelectrouic sequence computed from Hartree-Fock wave functions [17].

Coefficient

Ao
A2

A4
88/Z
810/Z
8,2 Z

1.699 73
—5.745 65
11.223 7

1.491 63
—7.317 87
27.5800

C2+

0.72045
—1.339 68

1.411 86
1.543 85

—7.389 88
27.207 4

0.372 94
—0.440 15

0.290 55
1.581 38

—7.402 11
26.573 3

04+

0.218 83
—0.179 70

0.082 06
1.61055

—7.411 16
26.1364

F5+

0.13955
—0.084 53

0.028 38
1.631 02

—7.342 79
24.989 1

Ne

0.094 53
—0.04405

0.011 36
1.651 43

—7.373 92
24.953 9
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appropriate representation of the density at the nucleus
and at large distances and to a lesser extent on the
amount of CE included in the wave function. We have
tabulated in Tables VII and VIII values of ll(p) and J(q)
at various values of p and q, which have been constructed
from the wave functions of Esquivel, Smith, and Bunge
[lol.

The information entropies in Table IV for the Be atom
reveal some interesting trends. First, the S values de-
crease from the HF to the CI quantities while S» in-
creases. These trends are not in agreement with those of
Gadre et al. [11]where the opposite behavior for S and
S» was shown on going from a poor HF basis to a near
Hartree-Fock one. Second, the sum S»+S is a max-
imum for the CI functions and a minimum for the HF
case. This agrees with the conjecture [11]that the entro-

py sum enhances with the quality of the wave function.
It is interesting to note that although the CI wave func-
tion of Bunge [7] includes more correlation than that of
the EB [8] function, the entropy sums are about the same.
This observation may serve to further validate the

opinion [8] that a fairly balanced electronic distribution
may be obtained by using a density convergence criterion
instead of the usual approach based on the correlation en-
ergy. The results from the Be isoelectronic sequence in
Table V show the same kinds of trends as those presented
for the near Hartree-Fock case: (i) S decreases with in-

P
creasing atomic number, Z; (ii) Sz enhances as Z in-

creases; (iii) the sum S +S„decreases very slowly as Z
increases.

IV. CONCLUSIONS

The present calculation clearly demonstrates that the
effects of electron correlation are very important in ob-
taining the accurate II(p) and J(q) particularly in the
valence region. The remarkable resemblance of the prop-
erties calculated using Bunge's [7] wave function with
those of EB's [8] CI wave function for the Be atom clear-
ly indicates that the Esquivel and Bunge wave function is

TABLE VII. The momentum density for Be and its isoelectronic sequence.

p (a.u. )

0.00
0.04
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3.80
4.00
4.50
5.00
6.00
7.00
8.00
9.00

10.0

Be

4.853 63
4.797 72
4.51634
3.658 49
2.618 74
1.691 85
1.01052
0.571 99
0.31475
0.173 24
0.098 68
0.06042
0.031 00
0.223 39
0.018 43
0.015 47
0.012 86
0.010 55
0.008 57
0.006 91
0.005 54
0.00443
0.003 54
0.002 83
0.002 26
0.001 81
0.001 45
0.000 84
0.000 50
0.000 19
0.00008
0.00003
0.00001
0.00001

1.465 40
1.458 36
1.422 02
1.300 10
1.121 66
0.915 69
0.710 17
0.525 90
0.374 16
0.257 57
0.172 97
0.11440
0.050 18
0.02444
0.014 69
0.010 89
0.009 11
0.007 95
0.006 99
0.006 09
0.005 26
0.004 51
0.003 83
0.003 23
0.002 72
0.002 29
0.001 92
0.001 23
0.000 79
0.000 34
0.000 15
0.00007
0.00004
0.00002

C2+

0.643 89
0.642 09
0.632 72
0.600 50
0.550 82
0.488 85
0.420 41
0.350 99
0.285 08
0.225 80
0.174 87
0.132 81
0.073 21
0.039 08
0.021 16
0.012 34
0.008 17
0.006 21
0.005 21
0.004 61
0.004 15
0.003 74
0.003 35
0.002 98
0.002 63
0.002 31
0.002 02
0.001 43
0.000 99
0.00048
0.000 24
0.000 12
0.000 06
0.00003

N3+

0.338 92
0.338 31
0.335 11
0.323 94
0.306 26
0.283 30
0.256 56
0.227 65
0.198 10
0.16923
0.142 09
0.11740
0.076 81
0.048 00
0.029 11
0.017 51
0.01077
0.007 02
0.004 98
0.003 89
0.003 28
0.002 91
0.002 64
0.002 42
0.002 22
0.002 03
0.001 84
0.001 42
0.001 06
0.000 58
0.000 31
0.000 17
0.000 09
0.000 05

p4+

0.200 52
0.20026
0.19894
0.19427
0.18676
0.17678
0.164 82
0.151 41
0.137 12
0.122 47
0.107 94
0.093 95
0.068 72
0.048 23
0.032 71
0.021 65
0.014 14
0.009 26
0.006 21
0.004 35
0.003 25
0.002 60
0.002 21
0.001 96
0.001 79
0.001 65
0.001 54
0.001 27
0.001 02
0.000 63
0.000 37
0.000 22
0.000 13
0.00008

F5+

0.128 56
0.128 44
0.127 80
0.125 58
0.121 95
0.11708
0.111 13
0.104 31
0.096 85
0.088 97
0.080 89
0.072 82
0.057 37
0.043 65
0.032 20
0.023 15
0.016 30
0.011 33
0.007 84
0.005 47
0.003 90
0.002 88
0.002 24
0.001 83
0.001 56
0.001 39
0.001 27
0.001 07
0.000 90
0.000 62
0.000 40
0.000 25
0.000 15
0.000 10

Ne+

0.087 33
0.087 27
0.086 94
0.085 77
0.083 86
0.081 26
0.078 05
0.074 32
0.070 17
0.065 69
0.061 00
0.056 19
0.046 59
0.037 53
0.029 44
0.022 55
0.01692
0.012 48
0.009 10
0.006 59
0.004 77
0.003 49
0.002 61
0.002 01
0.001 60
0.001 33
0.001 15
0.000 90
0.000 77
0.000 57
0.00040
0.000 27
0.000 18
0.000 11
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TABLE VIII. The Compton profile for Be and its isoelectronic sequence.

q (a.u.)

0.00
0.04
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3.80
4.00
4.50
5.00
6.00
7.00
8.00
9.00

10.0

Be

2.954 54
2.93028
2.807 43
2.423 87
1.93621
1.47096
1.098 66
0.833 74
0.658 99
0.548 19
0.478 13
0.432 13
0.373 92
0.331 69
0.293 60
0.257 54
0.223 84
0.19307
0.165 55
0.141 36
0.120 34
0.102 26
0.086 81
0.073 68
0.062 55
0.053 15
0.045 21
0.030 39
0.020 67
0.009 98
0.005 10
0.002 74
0.001 55
0.000 91

B+

2.043 08
2.035 74
1.997 73
1.869 55
1.679 72
1.456 56
1.228 08
1.01629
0.83449
0.687 60
0.574 38
0.49005
0.38401
0.326 90
0.291 70
0.265 05
0.241 42
0.21901
0.19746
0.17695
0.157 72
0.13996
0.123 77
0.109 17
0.096 10
0.08449
0.07422
0.053 62
0.038 82
0.020 70
0.01140
0.006 50
0.003 84
0.002 35

1.568 54
1.565 30
1.548 48
1.490 39
1.40002
1.285 86
1.157 59
1.024 70
0.895 34
0.775 58
0.669 25
0.578 08
0.440 42
0.352 22
0.29773
0.263 29
0.239 51
0.220 89
0.204 54
0.189 18
0.174 37
0.16002
0.146 24
0.133 13
0.120 80
0.109 31
0.098 71
0.075 95
0.058 13
0.033 99
0.020 10
0.012 13
0.007 50
0.004 75

1.275 91
1.27421
1.265 33
1.234 27
1.184 79
1.12000
1.043 75
0.960 20
0.873 42
0.787 07
0.704 17
0.626 99
0.495 01
0.395 18
0.324 27
0.275 77
0.242 90
0.22001
0.203 02
0.189 28
0.177 22
0.165 99
0.155 20
0.144 71
0.134 51
0.124 64
0.115 17
0.093 53
0.075 15
0.047 73
0.030 19
0.01924
0.012 43
0.008 17

O4+

1.076 54
1.075 53
1.070 26
1.051 74
1.021 81
0.981 85
0.933 58
0.878 98
0.820 11
0.759 03
0.697 59
0.637 44
0.52604
0.431 63
0.356 43
0.299 32
0.257 37
0.227 08
0.205 14
0.188 84
0.176 12
0.165 57
0.15627
0.147 66
0.13943
0.13144
0.123 63
0.104 99
0.087 99
0.060 18
0.040 48
0.027 15
0.018 30
0.012 46

F5+

0.931 60
0.93096
0.927 57
0.915 64
0.896 20
0.869 92
0.837 66
0.80045
0.759 39
0.715 64
0.670 32
0.62449
0.534 98
0.453 05
0.382 17
0.323 66
0.277 12
0.241 14
0.213 82
0.193 21
0.177 54
0.165 35
0.155 49
0.147 14
0.13973
0.132 89
0.126 38
0.11088
0.096 21
0.070 24
0.049 96
0.035 13
0.024 65
0.017 37

0.821 30
0.820 86
0.818 56
0.81042
0.797 10
0.778 95
0.756 43
0.730 10
0.700 61
0.668 61
0.634 80
0.599 04
0.529 04
0.460 62
0.397 84
0.342 67
0.295 90
0.257 44
0.226 56
0.202 18
0.183 12
0.168 22
0.15647
0.147 00
0.139 14
0.132 38
0.126 33
0.11288
0.10048
0.077 51
0.057 97
0.042 57
0.031 02
0.022 57

of the same quality and can be safely used to obtain accu-
rate ll(p), J(q), and moments of the momentum density.
Furthermore, the entropy sum S +Sz is shown to in-

crease with the inclusion of electron correlation which
lends credence to the argument that this quantity may be
useful in judging the accuracy of a particular wave func-
tion. Based on this criterion, our results also suggest that
the quality of the electronic charge distribution obtained
from a particular basis depends to a lesser extent on the
amount of electron correlation included with that basis.
This study further validates the opinion that in the con-
struction of accurate densities, density convergence cri-

teria are superior to those based solely on the correlation
energy.
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