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Analysis of Aharonov-Bohm effect due to time-dependent vector potentials
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We analyze and propose a method to detect the Aharonov-Bohm effect due to time-varying vector po-
tentials, specifically those arising from a coherent light source. We show that the effect is feasible for use
as a light-intensity detector. The quantum limit of detection is that of a single photon. Such a system
would be a quantum-nondemolition measurement since no photon absorption occurs.
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I. INTRODUCTION

Since the original paper by Aharonov and Bohm [1],
numerous experiments [2—4] have detailed the phase
change acquired by an electron propagating in the pres-
ence of electromagnetic potentials. The detection
schemes have involved both free electrons and electrons
in metallic rings. These researchers have been mainly in-
terested in the nonlocality of the electromagnetic poten-
tials. Therefore these experiments have involved only
time-independent potentials, particularly vector poten-
tials. In this paper we analyze the Aharonov-Bohm effect
due to a time-dependent vector potential and consider the
feasibility of experimentally observing this effect.
Specifically, we suggest a method of detecting the elec-
tromagnetic potentials of a coherent light source, thereby
detecting the beam intensity without actually absorbing
the photons, and thus constituting a quantum-
nondemolition experiment.

II. THEORY

Figure 1 illustrates the geometry typically used to ob-
serve the Aharonov-Bohm effect. A coherent electron
beam which enters from the left is split around a magnet-
ic flux, and is then recombined. When the flux inside the
loop is varying with time, Maxwell s equations forbid a
vanishing electromagnetic field on the loop itself in accor-
dance with Faraday's law. However, even though the
electromagnetic field will act on the electrons, the ampli-

tude can be made small enough such that the phase
change due to the potential will be the principal effect
when the electrons are recombined.

Assuming cylindrical symmetry, we can approximate
the situation with the geometry shown in Fig. 2, where
we have taken the x axis to be that of the electron path.
We then deal with the one-dimensional nonrelativistic
Schrodinger equation for the electron, which is given by
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where A' and 4' are the vector and scalar potentials in
the moving frame, and t'=t as we are only dealing with

where A and 4 are the vector and scalar potentials, re-
spectively, and e, where e is negative, is the electron
charge. Without any loss of generality, we can take the
scalar potential to be zero everywhere.

It is convenient to use an inertial frame x'=x —vt
moving with the average phase velocity v of the electron.
The phase velocity of the electron is half that of the
group, or classical, velocity. In this frame the
Schrodinger equation becomes
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FIG. 1. Schematic illustration of the Aharonov-Bohm phase
experiment.

FIG. 2. Simplified geometry of electron paths using cylindri-
cal symmetry.
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the nonrelativistic case. The electron wave function
4'(x', t') in the moving frame is related to the electron
wave function %(x, t) in the laboratory frame by [5]
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0"(x', t') =0'(x, t)exp —i x+i t
2A

(3)

g4'(x', t') =4,'(x', t')exp ——f 0&'dt'
o

ie=ql,'(x', t')exp v A'dt'
Ac o

(5)

where
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4,' in turn can be written as

I

q'(lxt')=4' (bx', t')exp A' dx'
Ac o

where %b satisfies the following partial differential equa-
tion:

B% 'b

+ — d ' ql' =i' (8)b

The second term on the left-hand side of Eq. (8) can be
modeled as a scalar potential term due to Faraday's law
as in

The potentials A' and 4' are related to the potential A
(4& is taken to be zero) by [6]

A'(t')= A(t),
(4)

C '(t') = — A(t) .
C

The interference which arises when the electrons
recombine on the right side of the loop is directly related
to the difference of the wave-function phases associated
with the upper electron path and the lower electron path,
respectively. Since the phase in Eq. (3) is the same for
both the upper and lower path electrons, it has no physi-
cal effect. We need therefore only consider Eq. (2). We
write the solution of this equation in the form

e 'BA', e—f, .dx= —,f 'A dc o Bt' c Bt' o

F= —e Bt' c

where F is the Aux and 6 the electromotive force. There-
fore, Eq. (8) can be considered to be the wave equation
due to only Faraday's law. Substituting Eq. (7) into Eq.
(5), the wave function can be separated into two terms:
%"(x',t') =4'b(x', t')

Xexp f A' dx'+vf A'dt'
Pic . o 0

(10)

where +b contains the effects of Faraday's, or Maxwell's,
law, and the phase factor

exp f A' x'+v f A'dt'
Ac. o o

comes from the requirement of gauge invariance of the
Schrodinger equation, or equivalently, the Aharonov-
Bohm effect. Because of Faraday's law, the function
%b(x', t') is different from the free particle wave function
Vo(x', t'). However, the difference between 4'b(x', t') and
Vo(x ', t') is negligible for the case of particular interest,
that of the detection of optical signals (see Appendix A).

We note in Eq. (10) that there are two contributions to
the Aharonov-Bohm phase. The first, exp[(ie/
Pic )v f 0

A'dt'] =exp[(ie/kc)v f ' A dt], is that due to the

average speed of the electron. This corresponds to the
usual dc Aharonov-Bohm effect. A second contribution,
exp[(ie/Rc )f 0

A' dx'], arises from the velocity modula-

tion which is a consequence of Faraday's law. This can
be estimated from Newton's law. For the present case,
the second term is negligible (or zero if x'=0 when the
electrons recombine) since the electron oscillation is small
for fields at optical frequencies. The phase factor in Eq.
(10) can also be derived using Feynman's path-integral
method (see Appendix B).

Since electrons move slowly across the loop compared
with optical frequencies, the vector potential oscillates
many times before the electrons reach the other end of
the loop. Only the last uncanceled cycle contributes to
the final change. For sinusoidally varying vector poten-
tials, the interference at the end of the loop is proportion-
al to the quantity
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where A= cocos(cot) is assumed and J„( )'s are Bessel
functions. The high optical frequencies can easily be
filtered out in the detection circuit. Therefore the elec-
tronic conductivity will be proportional to only the dc
term, i.e.,

where n is the number of photons. This reduces to

m.hn=
4Zpe Sa '

n =54 photons,
(16)

2evAp

ACRO

P'= —1+Jp
1

(12)
2

This equation is valid even for electrons traveling at rela-
tivistic speeds since the phase change in Eq. (10) is valid
for this case. Figure 3 shows the graph of the dc term P'
versus the amplitude of the vector potential Ap.

III. QUANTUM LIMIT OF DETECTION

The quantum limit of detection for this system is that
of a single photon. This can be derived using a half wave-
length as the interaction length, so that there is no excess
cancellation of phase. We may approximate the interfer-
ence at the end of the loop as the difference between the
phase changes of the upper and lower path electrons.
For an enclosed flux of —,'4p, where 4p is a single flux

quantum h/e in mks units, which results in a n phase
shift, one obtains

h
2Ap —=

2 2e
(13)

This corresponds to a beam intensity of

h2 2I=
4Z

(14)

h NE=nh co/2~=
8Zpe

(15)

where
1/2

Zp= =377 0 .
Kp

For a beam focused down within the interaction length,
and assuming an infinite bandwidth detector, we obtain
the energy E for a half cycle of light

where u=
37 is the fine-structure constant. For a single

photon passing through the system, the enclosed flux is
reduced by a factor of &54. Therefore a single photon
will cause a phase change of n /&54, corresponding to a
4.5%%uo change in conductivity, which is within the limits
of detection. This agrees with the prediction of a 4.6%
suppression of critical current in a Mercereau ring inter-
ferometer due to a single photon deduced by one of the
authors [7]. We therefore conclude that the quantum
limit of this system is the detection of a single photon.

IV. EXPERIMENTAL SETUP

We now propose a method to detect the Aharonov-
Bohm effect due to a coherent light source. One possible
method to obtain a magnetic flux within an electron loop
is to use total internal reflection off a crystal surface. We
may therefore observe the evanescent magnetic fields
emanating from the other side of the crystal. According-
ly, the coherent electron beam must be very close to the
surface of the crystal. An ideal configuration would be to
evaporate a small metal ring on the crystal surface and
observe the electron interference by simply measuring the
conductivity. However, the maximum electron velocity
in a metal, which is limited roughly by the Fermi veloci-
ty, is too low to observe sufficient interference [from Eq.
(12)]. Therefore the electron loop must consist of free
electrons traveling at high speeds. Due to the large
focusing lengths required when dealing with electron op-
tics, the path length necessary to recombine the electron
beams may be too long to preserve coherence. Therefore
we propose the system shown in Fig. 4. Two slits, far
enough apart to accommodate a focused beam between
them, are located near the surface of the crystal. An elec-
tron beam illuminates the slits, and the resulting electron
diffraction pattern is measured. The laser beam is fo-
cused within the two electron trajectories, causing a shift
in the diffraction peaks due to the Aharonov-Bohrn effect.
However, as the peak shifts are oscillating at optical fre-
quencies, the most convenient method of detection is that
of measuring the increase in central peak broadening.

For the diffraction experiment as shown in Fig. 4, the
relative change in the central peak diffraction angle is
given by (see Appendix D)

P gg 4evAp

op 7TAc co
(17)
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FIG. 3. dc electronic conductivity vs vector potential.

where 260 is the change in the central peak angle due to
the vector potential, and 20p is the central peak angle
when no electromagnetic field is present inside the loop.
From Eq. (17), we see that the relative change in the cen-
tral peak diffraction angle is dependent on the optical fre-
quency and beam intensity. A change in either of these
parameters will result in a change in the electron
diffraction pattern. We see an immediate application for



4322 B. LEE, E. YIN, T. K. GUSTAFSON, AND R. CHIAO 45

Electron Beam
Mask Detector 2.0

1.6

Side View
1.4

Electron
Beam

Mask

Laser
Beam

Detector 0
E

CL

1.2

1.0 I I

4 6

A (IO s V/m)
10

Top View

FIG. 4. Possible experimental setup for the observation of
the vector potential of coherent light using electron interference
experiment.

this system as a light intensity detector. The system is
particularly interesting in that there are only virtual ex-
changes of energy from the photons to the electrons and
vice versa. The photons are not absorbed as in most pho-
todetectors, but merely diverted. Therefore this consti-
tutes a quantum-nondemolition measurement. Figure 5
shows a plot of the primary peak width versus Ao for
v=3 X 10 m/s (voltage of 10 kV), and co=10' rad/s.
The primary peak has a full width at half maximum of
1.23 X 10 rad for d=5 pm for no applied electromag-
netic potential. We see, for example, that a change of Ao
from zero to 1.7 X 10 s V/m, or equivalently a beam in-
tensity of 7.9X10 W/cm, will result in a 10%%uo increase
in the central peak width. For a laser spot size of 3 pm,
this intensity corresponds to a power of 0.056 W. There-
fore this effect should be detectable with a reasonably
powered laser. The width increase is shown to saturate
due to the proximity of the next interference peak. Using
lower-frequency fields will enhance the sensitivity of the
system.

V. CONCLUSIONS

FIG. 5. Width in primary interference peak vector potential.
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APPENDIX A

For A'(x', t') = Aocoscot', Eq. (8) becomes

A' ~+b
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Aox'sin(wt')%b =i%, . (Al)
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Using a classical approach, we can estimate the max-
imum displacement of an oscillating electron by
Newton's law:

eAO
+max =

cm co
(A2)

Substituting the free electron solution Vo(x', t') =
e ' into the left-hand side of Eq. (Al) and using

Eq. (A2), we can estimate the ratio of the first term to the
second to be

fj~Q ~/2m

e Ao/c m
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In conclusion, we have analyzed the Aharonov-Bohm
effect for time-dependent electromagnetic potentials and
have shown that this effect should be observable in an
electron interference experiment. For a known beam fre-
quency and electron energy, this can be used as a light in-
tensity detector. Since the photons are not absorbed, this
constitutes a quantum-nondemolition measurement. It is
also possible that the resulting photons will be in a
squeezed number state as the photon number uncertainty
will be decreased. The quantum limit of such a system is
the detection of a single photon.

For typical values of v= 10 m/s and A o
= 5 X 10

s V/m, this ratio is equal to 6X10 . Therefore we see
1kx I Q)pt

that Vo(x ', t') =e ' is a good approximation for the
solution of Eq. (Al) where too=fik /2m.

APPENDIX B

According to Feynman's path-integral method [g,9],
the wave function %(t) is obtained from the incident
wave function %(0,0) by the integral
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qr(x, t)= fd x g exP —' f —mvo+ —A(xo, to)vo dto 'lr(0, 0)
[xo(to)]

where the summation is over all possible space-time paths (xo, to) with the boundary conditions given by x(0)=0 and
x (t). The classical path which minimizes the action of the path integral is the path which provides the major contribu-
tion to the wave function %(x, t). Therefore

%(x,t)=%(0,0)exp
™f v (t)dt exp f A(x(t), t) dx(t)
2A o Ac o

where x (t) is the classical path. Here, the first exponential on the right-hand side can be written as

exp
™rv (t)dt =exp ' f [vd, (t)+v„(t)] dt
2A o 2A 0

=exp ™f [vd, (t)+v„(t)]dt exp vd, (t)v„(t)dt
2A o fi o

where the first factor is the same for upper and lower path electrons while the second factor is different because the ac
velocities are opposite in direction. However, this Faraday effect can be neglected when compared with the phase
change

exp
' f A(x(t), t).dx(t) =exp ' f A(x(t), t} " dt
Ac o Ac o dt

re f r'Af( g( f) g} d [x'(t')+vt'] d,
Pic o dt'

r

=exp A'(x'(t'), t') , dt.'+ v A'(x'(t'), t')dt'ie r'. . . , dx'(t'), ie
Ac o dt' Pic o

I I

=exp ' f" A'(x'(t'), t') dx'(t')+ vf A'(x'(t'), t')dt'
Ac o Ac o

which is integrated over the classical path and in accor-
dance with the phase factor in Eq. (10).

V'xy( xvt), t =y t — x
2

APPENDIX C
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In an inertial frame moving with the average phase veloc-
ity of the electrons, vx, the equation becomes

2
e

,
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In our case, we can start with the Klein-Gordon equa-
tion [10]

VA'=y A, 4'= —y —A,
c

1y=
2yc2)1/2

The solution is

I I

qr'=qrbexp ——f N dt' exp f A 'dx
o ic xo

where where %'b satisfies
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Similar to the nonrelativistic case, the difference of 4b from the free-field wave function %'o is small compared to the
effect of the phase factor. The phase factor is given by

I
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=exp vy f Adt' exp y f A dx'
Ac o Ac x,'
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Pic C ~o Ac &p Ac o dt Ac o

This phase factor is the same as that of the nonrelativistic case in Eq. (10).

APPENDIX D

For the electron diffraction experiment as shown in Fig. 4, Eq. (11)can be modified as the following:
2

1 ie ieP =—exp v f A dt+ico, t +exp v f ( —A)dt+ico, (t +r)
4 Ac o Rc

2
1 ie=—exp — v A dt+ico, (t+r)
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exp v f Adt+ v f Adt iso, r +—1
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1 2ev ev1+cos f A dt+ f A dt co,r—
2 Pic o Ac

1 2evAo evAo
1+cos sin(cot)+ sin(car) —co,r

2 ACN ACN
(D 1)

where co, is the angular frequency of an electron wave,
and ~ is the difference between the time necessary for the
electron leaving the first slit and the electron leaving the
second slit to reach the specified position at the screen. If
we use a detection scheme which records the electron ac-
cumulation at each position on the screen, the condition
for the primary peak half maximum to occur is given by

2evAo evAo
sin(cot )+ sin(cor)

AC CO AC CO max
(D2)

The time difference ~ is related to the path difference by

because the second term in Eq. (D2) is always smaller
than the first term. Because co~ is much smaller than uni-

ty in our experiment, we can approximate Eq. (D2) by

2evAo
$27

where d is the distance between slit A and slit B, 0 is the
diffraction angle, and v is the electron phase velocity.
Therefore we can deduce the half angle 0 of the primary
peak to be

2ev Ao
2

0= +
2coe d 'flc coco~ d

while the half angle 0o of the primary peak width when
no electromagnetic field is applied is given by

0o= 2', d 4d

Therefore we deduce the relative angular increase in the
primary peak width to be

d sinO d0 a0 0—0o

0o 0o

4evAo
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