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Strong-field approximation for the Schrodinger equation
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A perturbation series is derived for the Schrodinger equation where the perturbation is permitted to

go to Do. Such an asymptotic series can be obtained in a representation where the time evolution of the

states is due to the unperturbed part of the Hamiltonian of the problem and the time evolution of the ob-

servables is determined by the perturbation, contrary to the interaction picture. The equivalence be-

tween the series given by such a picture, and an asymptotic perturbation scheme is given. The method is

applied to a spin-
2

particle in a two-component magnetic field, one component of which, considered as a

perturbation, can be time varying. Choosing a constant perturbation we show the equivalence between

the exact solution and the approximate one when a component of the magnetic field is much larger than

the other. In this case the limit t ~ 00 cannot be taken, as mixed-secular terms appear in the asymptotic

series. Taking a linear time-varying dependence for a component of the magnetic field, we get a nonana-

lytic asymptotic series.

PACS number(s): 03.65.—w

I. INTRODUCTION II. METHOD

It is well known that a solution series can be derived
for the Schrodinger equation in the limit of small pertur-
bations in the framework of the interaction picture [l].
This was the first approach taken by Dirac to solve, in an
approximate way, problems where the Hamiltonian de-
pends on time [2—4]. This method has proved successful
and is often applied in quantum mechanics and field
theory [5) as well. Some difficulties arise if one wants to
take the opposite limit, i.e., large perturbations. If we
look for an asymptotic-series solution, a standard pertur-
bation approach does not give meaningful results.

This question can be answered, as we are going to
show, if we change the time scale of the problem [6].
Then a systematic approach can be made, and an asymp-
totic series emerges. This way of working is equivalent to
defining a representation where the states evolve by a free
Hamiltonian and the operators by perturbation, appear-
ing as an interaction picture with the role of the free part
of the Hamiltonian and that of the perturbation inverted.

Nonanalytical series can appear, due to the form of the
perturbation. In the following we will see an example.
The S matrix can still be defined, but a uniform conver-
gence of the series is necessary. This is not always as-
sured; sometimes the exact solution is needed. We will
not treat the S-matrix problem in this paper.

The paper is organized as follows. In Sec. II we show
the method, first deriving the asymptotic series from the
free picture (i.e., the representation defined above) and
then, from an asymptotic-perturbation approach, show-
ing in this manner the equivalence. In Sec. III we exploit
the case of a spin- —,

' particle in a two-component magnetic
field with a time-varying component. The equations so
obtained are applied to a constant perturbation and a
time-varying one with a linear law. The spin motion is
also described, obtaining the correction to first order.
Section IV gives the conclusions.

We consider a Hamiltonian that is time independent
and write down the Schrodinger equation

e (i /A) VtH —(i /A) Vt
OF oe

The time-evolution operator U is defined so that

( F)=tU(t tQ )1PF(tQ )

and

. aU
HoFU =iR

ai

with the initial condition

(4)

(5)

(6)

U(tQ tQ}=I

where I is the identity operator. Equation (6) has the for-
mal solution

U(t, tQ)=I ——f dt)HQF(t) )

2
E 1+ f dt) f dtzHQF(t) )HQF(tz)

fo fo

+ 0 ~ ~

(HQ+ V)/=i'
i

where the choice of Ho and V is done as it would be in

the interaction picture. Then we put

e
—(i /A) v)q

and substitute in Eq. (l) to obtain

dfF
HQF@F =i h

dt

with
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If T(t, tp) is the time-evolution operator in the
Schrodinger picture, the following relation is verified:

T(t, t )=e ""' 'U(t, t )e
(i /fi) Vt

(9)

In this representation we have the result that states
evolve because of the free Hamiltonian [Eq. (3)] and that
operators evolve because of the perturbation [Eq. (4)].
Equations (8) and (9) give the perturbation series in the
Schrodinger picture.

Now we show that Eqs. (8) and (9) form an asymptotic
series for Eq. (1). In order to accomplish our aims, we in-
troduce a parameter c and take V to be time dependent,
so that we may rewrite Eq. (1) as

so that we can write the formal solution of the set as

0"=To(t toW'(Fo)

T()(t, t())f dt)H()(t) )Q(tp)

T,(F,F, )

X f dt, f dt, H,'(t, )H()(t, )f(Fp),
to to

where

(19)

(20)

(21)

[Hp+e V(t)]/=if( a
ai

and we look for a solution of the form

q(pl+— q() ) + q(2) +
p2

(10)

and

F
T()(t, t() ) =exp —— dt'V

0

H()(t)=T()(t, t()) 'H()T()(t, t()) .

(22)

(23)

A direct substitution of Eq. (11) in Eq. (10) does not
give meaningful results. A way out of this problem is
gained by redefining the time scale as

For V independent of time and c.= 1, we get complete
coincidence with Eqs. (8) and (9). The need for a time-
dependent perturbation will be shown in the following.

t =Et,
so that

(H, +.V) 1(")+—q")+—li("+
p2

(12) III. APPLICATIONS

In order to show the properties of this kind of approxi-
mation, we derive the wave function for the case of a
spin- —, particle in a magnetic field with two components,
one of which is time varying. We take

=itis g+——g + —zg +(0) (1) (2)

Bt C
(13)

By comparing, order by order, the following set of equa-
tions is obtained:

H0 =O.303

and, for the perturbation,

V(t) =(r)Q)(t),

(24)

(25)

g,],{03
vq(" = i))l

Bt
(14)

where 0.; are the Pauli matrices with i =1,2, 3.
It easily verified that

g, ],(1)
H g' '+ V/'"=i%0

at

g, (,(2)
H q("+Vq")=is0

at

(15)

(16)

8(F)
Tp(t, t p) =I cos

2

where

2
8(F)= f dt'Q, —

8(F)
l ET Sln1 (26)

(27)

g.(,( k)
q(k —1)+ Vq(k) g Y'

0
at

(17) The unperturbed Hamiltonian is [Eq. (23)]

Hp(t)=Q, [o 3cos[8(t)]+(raisin[8(t)]], (28)
For the sake of simplicity, we assume that

[V(t), V(t')]=0, (18)
from which we derive the first three terms of the pertur-
bation series [Eqs. (19)—(21)] that can be cast in the form

I cos
8(t )

2
—i Cr1 Sin

8(t )

2
g(t() ), (29)

P'"= ——Q3 dt, o 3 cos 8(t, ) — +crz sin 8(t, )—i ( '8(F) . 8(F)
(30)
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2

——03 dt, f dt2 I cos 8(t, ) —8(t2) — +io i sin 8(t, )
—8(t2)—(2) 7 t 8(r ) . . 8(F)

p(&p), (31)

totic development of the wave function.
Taking t p =0, we obtain, from Eqs. (29)—(31),

It is easily seen from Eq. (29) that a particle in a strong
magnetic field undergoes always Rabi Hopping in the
leading term of this approximation. The time scale of the
flopping is determined by the perturbation. at—7'0.

1 sin
2cfi

I cos
2c.A

1/2

i e—(1)
Aa

P(0), (38)

A. Constant perturbation

[o~V,(t)+039,(t)]g(0), (39)The aim of this almost trivial example is to show that
the correct asymptotic expansion can be obtained by
working out the preceding equations in a specific case
and comparing them with the exact solution. For this
model we take 0, to be time independent in Eq. (25).
Choosing t0 =0, the solution for this problem is obtained
from the time-evolution operator

0
[IVz(t )

—i o i 92( t ) ]g(0), (40)

with

1/2
at

t cos
2eA'

V, (t)=S
' 1/2

n . 3 1 . nT(t,0)=Icos t i ——o + o sin t-
n ' n

with

(32} t sin
at
2cfi

(41)

n=(n'+n')'" .
1 3

From Eqs. (29)-(31)we get

cos t i cr s—in t f(0),01 01

(33)

(34)

Q, (t)=C at
t cos

2c.A

1/2
at

t sin
2c.A

(42)

i o—3 sin t f(0),03 01

1

T

2

It sin r
Q3 Q1

2

(35)

C and S being the Fresnel integrals defined by

C(ax) = f dz cos(z ),
0

S(ax)= f dz sin(z ),
0

where a is a generic constant. Moreover, we have

(43)

(44)

01
+icr, t cos t

sin t
1

'f(0), (36)

72(t)=S,

a
sA'

1/2
at

t cos
2ch

1/2
at

t sin
2c.A'

(45)

which agree with Eq. (32) when the approximation
03/0 '1 (( 1 is made. This series is of no use for t ~ Oo, as
mixed-secular terms appear. In this limit we need to
resort to the exact solution.

Q, (r )=2,
1/2

at
t cos

2c,A

1/2

t sin
at
2cA

(46)

B. Linear time-varying perturbation

We consider a perturbation of the form

Q, (r)=at . (37)

A similar Hamiltonian has been considered in the
Landau-Zener theory [7,8] and provides a simple model
in some NMR experiments, for example. Here we take
the strong-field approximation in order to see the asymp-

with the functions 1, and J'2 defined as

J,(ax)= f dz[C(z) cos(z )+S(z) sin(z )],
J2(ax)= f dz[S(z}cos(z ) —C(z) sin(z )] .

(47)

Two considerations are in order. First, it is easily
verified that the limit t~ ~ is meaningful for C, S, 21,
and 22. Second, the series for the wave function is not
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analytical as the development parameter goes like 1/a'
and we have a series

the first. This should be expected from Eq. (14) as the un-

perturbed part of the Hamiltonian plays no role.
The first-order term gives

y(O)+ 3 y(1)+ 3 y(&)+. . .
Aa gaia

(49) 203
(o ) ) = J dt' si n[8(t')],

0
(54)

C. Motion of spin in a strong magnetic Seld

The method outlined here provides some insights into
the physics of spin motion in a strong magnetic field. In
order to make the discussion clear, we choose to=0,
c.=1, and take

1

g(0) =
() (50)

From Eq. (29), it is easily realized that

(,) =0,
(o, ) = —sine,

and

(o3) = cos6),

(51)

(52)

(53)

showing that, at order 0, the component of the spin along
the perturbation is 0, while the other two components de-
scribe a circle of unity radius on a plane orthogonal to

A last note should be done on the development param-
eter that appears to be the same as the one characterizing
the transition probability in Landau-Zener theory [9].
The experimental implementation of Hamiltonians of this
kind is described in Ref. [9].

while for the other two components, we have higher-
order corrections. So we get ( o ) )%0 and varying in
time. Such a small secular effect could be revealed in
some NMR experiments.

IV. CONCLUSIONS

We showed that the Schrodinger equation may have an
asymptotic-series solution that describes situations with a
strong perturbation applied to a quantum system. Such a
perturbation series derives also from a picture defined as
the interaction picture where the roles of the free Hamil-
tonian and the perturbation are reversed. The direct ap-
plication to a spin- —, particle in a magnetic field has
shown that the series could not be uniformly convergent
and, depending on the form of the perturbation, also not
analytical in the development parameter. In this paper
we gave just an example of the applicability of this ap-
proximation, but great utility should be expected in the
analysis of quantum analogs of chaotic classical Hamil-
tonians where it is known that strong perturbations come
into play and that the standard perturbation theory is of
no use. This question is definitely open. The same could
be said whenever standard perturbation theory breaks
down. If some useful generalization to field theory could
be found, an analysis of the asymptotic behavior of the S
matrix with strong-coupling constants could be done.
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