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Classical eigenspinors and the Dirac equation
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The four-velocity and orientation of an "elementary" particle is given classically by the Lorentz trans-
formation from the rest frame of the particle to the observer's frame. This transformation, first dis-
cussed in detail by Giirsey [Nuovo Cimento 5, 784 (1957)],is the classical eigenspinor of the particle; it is
shown here to satisfy a trivial four-momentum relation that is the exact analog of the Dirac equation of
relativistic quantum theory. Although the classical elementary particle can spin at an arbitrary rate, it is
constrained by the Lorentz-force equation and by the linearity of its time evolution to have a g factor of
2. Bilinear covariants of its eigenspinor include the four-velocity and spin, and these as well as the trans-
formations of the eigenspinor under P, T, and C, have the same form as in quantum theory. However,
the bilinear covariants giving the spacelike Frenet vectors orthogonal to the spin have no counterparts
among the usual bilinear covariants QI'g of quantum theory, although they can be expressed in the form
QI'P', where I' is a sum of products of Dirac matrices and g' is the charge-conjugated spinor wave func-
tion. The relation of the classical and quantum theories is strengthened by a discussion of the superposi-
tion of eigenspinors and the eigenspinor field of a classical distribution of particles.

PACS number(s): 03.65.Bz, 03.20.+ i, 03.30.+p, 11.10.gr

I. INTRODUCTION

The Dirac equation and its spinor solutions lie at the
very foundations of relativistic quantum theory. Ap-
propriate solutions govern the motion of elementary fer-
mions in external fields and thereby describe not only the
electromagnetic interactions of leptons but also the ha-
dronic interactions of quarks. The success of quantum
electrodynamics (QED) in describing leptons and their in-
teractions is well documented. With few exceptions [1] it
is based on perturbation expansions in the fine-structure
constant ct=ke l(6'c)= », '036 [where k is 1 in gaussian
units and 1!(4sreo) in SI units]. QED has served as a
model for quantum chromodynamics (QCD) to describe
the interactions of quarks, but the much larger size of the
strong-coupling constant at typical interaction energies
has severely restricted the accuracy and variety of QCD
applications. It appears that significant advances in the
realm of QCD calculations hinge largely on finding non-
perturbative approaches.

New insights into the meaning of relativistic quantum
theory and its classical limit may be crucial in the devel-
opment of new computational approaches. There is a
long history of papers [2] that have sought classical ana-
logs of the Dirac equation, but as pointed out previously
[3], the common technique of letting R~O fails to give us
the relativistic classical limit in QED or, for that matter,
in any perturbative theory dependent on the convergence
of expansions in a parameter proportional to A '. A
number of classical models interpret the fact that com-
ponents of the "velocity operator" a have eigenvalues +c
in terms of a point charge which moves at or greater than
the speed of light c on a helical path.

Here, an approach based on the covariant Pauli alge-
bra is used to demonstrate close relationships between
classical and quantum theories of "elementary" fermions.

The relationships established are more direct than those
of the usual prescription for quantizing classical theories,
in which classical variables of the Hamiltonian or La-
grangian are replaced by operators, and Poisson brackets,
by commutators. The fermion is not required to be a
point particle and no luminal or superluminal velocities
are required.

It is well known that Dirac spinors can be constructed
to represent the covering group SL(2,C) of restricted
Lorentz transformations, which includes boosts, rota-
tions, and their products. In his study of the Frenet
tetrad in relativistic kinematics, Giirsey [2] associated the
Dirac wave function with a representation of the Lorentz
transformation of the particle. Hestenes [4], in his Dirac
theory in the real Dirac algebra, made a similar
identification and, like Huang [5], related Schrodinger s
Zitterbemegung to the electron spin and the wave nature
of matter. Barut's approach [6] to relating the classical
and quantum theories of the electron was to find a classi-
cal Lagrangian whose quantization gives the Dirac equa-
tion. In a recent paper, Tisza [7] introduced the concept
of a "wave simplex" in an algebraic model for a new
non-Newtonian mechanics designed to integrate quantum
and classical pictures.

In this paper, Giirsey's classical "proper matrix" or
"proper four-spinor" is further developed and becomes
the eigenspinor of an elementary particle in the covariant
Pauli algebra; it is shown here to obey an equation identi-
cal in form to the quantum Dirac equation. Bilinear co-
variants of the eigenspinor are formed, interpreted, and
associated with their quantum counterparts. These co-
variants include the four-velocity, associated with the
quantum-mechanical current density, and the spin. The
concept of an elementary particle forms an important
link between the classical and quantal worlds: it is shown
to lead to a g factor constrained by the Lorentz-force
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equation to be equal to 2. Classical negative-energy and
zero-mass solutions and the transformations of the eigen-
spinor under spatial inversion (P), time reversal (T), and
charge conjugation (C) are also shown to correspond
closely to those in the quantum theory. The full quantum
Dirac theory is even more closely approached by a spinor
field formed from a superposition of classical eigenspinors
which describe a free rest-frame rotation at the Zitter-
bewegung frequency [5].

The following section reviews essential elements of the
Pauli algebra. The classical eigenspinor of an elementary
particle is introduced in Sec. III, and is shown to obey a
trivial "classical Dirac equation" in Sec. IV. Bilinear co-
variants and basic transformation laws of the classical
eigenspinor are compared to their quantum counterparts
in Sec. V. The constraint on the g factor of the particle is
also derived in this section. In Sec. VI, an attempt is
made to relate quantum solutions to the Dirac equation
to a classical spinor field of rotating particles.

II. ELEMENTS OF THE PAULI ALGEBRA

p =po+p=(p, +p„,)+(p.+p,.» (2)

The arguments are developed here in the Pauli algebra
P, which has been extended to a covariant formulation of
special relativity [8—10]. In P, which mathematicians
know as the Clifford algebra of real three-dimensional
Euclidean space, an associative but generally noncommu-
tative multiplication of vectors admits products to any
order. As shown elsewhere [8], P has the same power for
problems in special relativity as the closely related real
Dirac algebra [11] (the Clifford algebra of Minkowski
space), but is significantly simpler and more intuitive.
The brief introduction presented here contains all the
background needed in the following sections.

An arbitrary element p EP can be expanded in prod-
ucts of the three unit vectors e&, e2, e3. The condition that
the square of any vector a =a~ej (summed over j= 1,2, 3)
is the square length a a gives the basic multiplication rule

ejek+ekej =25jk .

This rule relates products which differ only in the order-
ing of the basic vectors and allows any product of basis
vectors containing two or more factors of a given e to be
reduced. There are, as a result, only eight linearly in-
dependent products, namely 1,e e ek with j(k, and
e&e2e3, representing real scalars, polar vectors, planes,
and volumes, respectively. These products constitute the
basis set of the algebra.

The set is simplified by noting that the "canonical ele-
ment" eieze3 of P commutes with all elements and has a
square (e&eze3) = —1; it plays the role of the imaginary i
in the algebra: e&e2e3=i. Furthermore, e,e2=e&e2e3e3
=ie3 and similarly e2e3=ie& and e3e&=ie2. It may be
seen that i' is a pseudovector representing the plane
normal to e, whereas i times a scalar is a pseudoscalar
and represents a volume. Any p EP can thus be written
as the sum of real-scalar, pseudoscalar, polar-vector, and
pseudovector parts

where p, and components of p, are pure real, whereas p,
and components of p, are pure imaginary. Thus the
Clifford algebra P of real three-dimensional Euclidean
space spans a complex four-dimensional space: any ele-
ment is the sum of a scalar and a vector: p =po+p ek,
the components of which may be complex (or zero).

The simplest faithful representation of P is a 2X2 ma-
trix representation in which the unit vectors e may be
represented by the Pauli spin matrices o. , and indeed it is
from this representation that the Pauli algebra takes its
name. To every element p=ps+p "ek EP there corre-
spond two closely related elements: the Hermitian conju-
gate p =pp +p *ek, obtained by taking complex conju-
gates of the components, and the spatial reverse

p=pz —p ek. Both Hermitian conjugation and spatial
reversal are said to be "antiautomorphisms" because
when applied to a product pq of P, the order is reversed,
as is readily verified: (pq) =q p and pq =

q p. Of course
the combination is an automorphism: (pq) =p q . The
order in which the antiautomorphisms are applied is im-
material: the spatial reversal of a Hermitian conjugate is
the same as the Hermitian conjugate of the spatial rever-
sal. An element equal to its Hermitian conjugate is real
and its matrix representations are Hermitian; an element
equal to its spatial reversal is a (possibly complex) scalar.

The scalar part of a product pq is indicated by the dot
product

p q = ,'(pq+pq) =-poqo+p q .

Since 1EP, p q =1 (pq)=1 (qp). Although the product
p =pp of any element with itself is not generally a scalar,

pp is, since (pp)=pp. In other words, pp=p p=pp. If
pp =0, the element p is nu/l. Every non-null element p has
an inuerse

p '=p/(pp) (4)

One of the beautiful features of the Pauli algebra is the
natural way it yields the structure of Minkowski space-
time. Minkowski four-vectors appear as real elements of
P; for example, the four-momentum p =pz+p=p"e„
where e~ = 1, and JM is summed over the values
p=0, 1,2, 3. One may associate p with contravariant
components and its spatial reversal with covariant ones:
p=p"e„=p„e„. The scalar pp is the Lorentz norm

pp =pp —
p =p"p„. Similarly, p.q p&q&

—p q is the
Lorentz-invariant scalar product p q =pj"q„. If p q =0,
then p and q are four-orthogonal to each other.

A restricted Lorentz transformation of a four-vector
like the four-velocity u =p/m =y+u is given by [8,9]

u —+u'=LuL

where L =exp( i8/2+w—/2) is a unimodular element
(LL =1) of P and a member of the group SL(2,C), whose
six parameters are given explicitly by the components of
w —E8. If 8=0, L is Hermitian and describes a pure
boost with boost parameter w. On the other hand, if
w =0, then L is unitary and describes a pure rotation by
the angle 0 in the plane i 8 about the axis 8. Note that L
is the exponential of a vector, but such expressions make
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perfect sense in P since any product of a vector is defined
by (1). Indeed, using the rule a =a.a, one can expand
any analytic function of a vector a into a scalar part and
a vector part parallel to a. For example,
exp(a) =cosh&a. a+(a/&a. a) sinh(&a a).

Several four-vectors will be used in the following dis-
cussion, all in units with c =1. These include the space-
tirne position x =t+ x, the electromagnetic four-potential
A =P+ A, the particle current density j=p+ j, and the
four-vector differential operator B=B/Bt —V. As with
other four-vectors, one can expand 8 in the basis elements
e„: B=e„B/Bx„=e„B".If p is a constant four-vector,
note that B(p.x) =p. Products of four-vectors with spa-
tially reversed four-vectors evidently transform distinctly
from four-vectors themselves. For exar.pie, the elec-
tromagnetic field F=BA —8 A =E+iB transforms as

F=BA —8 A LBL L AL —8 A =LFL .

Such transforrnations characterize "six-vectors" (with
three polar-vector components plus three pseudovector
components), which correspond to antisymmetric
second-rank Minkowski-space tensors. Another six-
vector is the exponent of L itself.

III. THE CLASSICAL EIGENSPINOR

The observed four-velocity and orientation of a particle
is given by the special Lorentz transformation A which
transforms the particle from its rest frame Ko to the
observer's frame K. The particle is considered elementa-
ry if and only if its motion in K at any point x(r) on its
world line can be described by a single Lorentz transfor-
mation A(~) at the proper time r Such a p.article cannot
contain independent structures (such as several elementa-
ry particles) since it would then generally require
different transformations A for each component part and
would therefore not be elementary. If the particle con-
tained separate structures which moved rigidly together,
it could still be elementary, but would suffer the well-
known convict with causality of any rigid body when ac-
celerated: superluminal signals would be required to
keep the various parts rigidly together. It is therefore
probably correct to characterize any elementary particle
as structureless, but it does not have to be a point particle
and the existence of spin is not precluded.

The transformation A can generally be written as the
product of a rotation A and a boost S: A =g%. The
four-velocity of the particle is found by applying A to the
rest four-velocity, which for a positive-energy particle (in
units with c = 1) is u „„=1:

u =Au At=AAlu=Srest

Note that u is independent of the rotation %. More gen-
erally, however, A gives not only the four-velocity, but
also the orientation of the particle. If the particle is ob-
served in a different frame K', A must be replaced by the
transformed

A=GA, 6 —=AA, (10)

where the dot indicates a derivative with respect to the
proper time ~. Since A is unimodular, AA=1 and

AA= —AA= —AA. As a result, 6 is the negative of its
spatial reversal and is therefore a pure (complex) vector.
Thus its scalar part vanishes: 1 6=A.A=O, and conse-
quently A is four-orthogonal to A.

By the spinor transformation (8) and the Lorentz in-
variance of r, 6 must transform as a six-vector:
G~LGL. In particular, 6 in the observer's frame is re-
lated to 6„„in the rest frame of the particle by

G=AG„„A .

As a consequence, the equation of motion (10) can also be
written

A=AG„„=A(a—ib)/2 . (10')

The real part a and imaginary part b of 26„„are, respec-
tively, the instantaneous acceleration and the instantane-
ous rotation rate of the particle in its rest frame.

The eigenspinor A can transform any four-vector or
six-vector property from the particle frame to the
observer's laboratory frame. The transformation of the
four-orthogonal basis four-vectors e„gives the Frenet
tetrad of four-vectors

formation behavior [12] is one way to define spinors in P,
and A may be called the eigenspinor of the particle. In a
2 X 2 matrix representation of the algebra, A is precisely
Giirsey's "proper matrix" [2], each column of which is a
common two-component spinor (see Sec. IV, below).

The eigenspinor plays a dual role: it is both an opera-
tor with which properties of the particle, such as its
four-velocity (7), can be transformed from the rest frame
to the observer's frame, and it is an operand on which
other Lorentz transformations can act, as in (8), from the
left. Note that the spinor transformation (8) is peculiar
to Lorentz transforrnations like A which connect an ob-
ject frame to an obserUer frame. The Lorentz transforma-
tion L ffaetcsonly one of these: a passiue transformation
changes the observer's frame, whereas an actiue transfor
mation changes the object frame. On the other hand, a
transformation L,2 connecting two frames K& and K2,
both of which are affected by L, transforms as
L )2~LL )2L

The motion of an elementary particle is determined
from its initial velocity and distribution in space if the
evolution of its eigenspinor is known. The time evolution
of A from ~o to w can be written

A(r) =L(r, rp)A(rp),

where the classical time-evolution operator L(r, rp) is a
unimodular Lorentz transformation obeying L(1p 1p)=1
and L(r, wp)=L(r, r, )L(r„rp) Both A. (v) and L(r, wp)

obey the same equation of motion, which takes the form
of a trivial identity

A~A'=LA, u„=Ae„A (12)

where L transforms quantities from K to K'. This trans- as discussed by Gursey [2]. Note that the subscripts here
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u„=Ae„A +Ae„A
=Gup+ UpG

(14)

When p =0, this is exactly the form of the Lorentz-force
equation in P [9]. A charge e of mass m in an external
electromagnetic field F=E+iB is governed by (14) with
G replaced by the six-vector (e/2m)F, where F(r) is the
field on the world line of the particle of proper time ~.
The most general form of G which makes (14) consistent
with the Lorentz-force equation is

G= F(r)—2mS,2' (15)

where S is a six-vector constrained by Su+uS =0. In
other words, the four-vector s = —iSu is real. This con-
dition ensures that S does not inhuence the four-
acceleration si. In the rest frame, u = 1 and the condition
on S means that s„„is a pure vector s„„=so,and ac-
cording to (10'), it contributes an angular velocity 4mso
to the rest-frame rotation rate b.

Evidently the six-vector S and its "dual" s are associat-
ed with the particle spin, the magnitude and direction of
which are not restricted by classical equations of motion.
The factor 2m multiplying S is arbitrary; it has been
chosen so that in Sec. V below, S corresponds directly to
a spin of —,

' (in units with c=fi=l). The linear time-
evolution equation (10) for the eigenspinor A, together
with (15), has been used to simplify the solutions of a
number of problems in classical electrodynamics [10];for
example, one sees immediately that the electric-field part
(e/m )E of 2G generates boosts whereas the magnetic-
field part —(e/m)B, together with 4imS=—4msu, gen-
erates rotations.

The six-vector S in (15) can depend on the electromag-
netic field F, but the only six-vector expression of first or-
der in F and F which satisfies the constraint
Su+uS =Ois

label different four-vectors, not components of a four-
vector, and that the Frenet vectors are all four-
orthogonal to each other. The timelike Frenet four-
vector uo is just the four-velocity of the particle:

u =uo=«oA'=AA

Since the basis vectors e„are constant, the proper-time
derivative of any Frenet vector is simply [13]

proaches zero. Any particle of finite size, no matter how
small, will have different bits moving at slightly different
velocities whenever rotation or curved trajectories are in-
volved. Any nonlinearity in the evolution equation for
the eigenspinor will then yield different eigenspinors for
different parts, and the particle will no longer be elemen-
tary. Thus elementary particles that are not isolated
points require linear equations of motion.

To achieve the linearity of (10) with respect to A, con-
tributions to S which are first order in the fields, as in
(16), must vanish. Similar considerations appear to elimi-
nate all six-vectors formed from odd powers of the elec-
tromagnetic field. However, there may exist a contribu-
tion of S whose rest-frame value S„„=isois of the form
of a Lorentz-invariant scalar times a constant pseudovec-
tor, and the scalar may contain some field dependence
such as F or u A (see below). Its Lorentz invariance en-
sures that the equation of motion (10) with (15) is linear
in A. In the absence of external fields, symmetry under
time translations suggests that the spin vector so should
be constant. The angular velocity of the classical spin in
the rest frame is then 4m so and is also constant.

IV. THE CLASSICAL DIRAC EQUATION

The "classical Dirac equation" is simply the spinor
form of the equation relating the four-momentum and the
four-velocity: p =mu. From (7) and the unimodularity of
the eigenspinor A, this relation can be written in a form
linear in A and A:

pA =mA. (17)

Since (17) is valid if and only if AA /(A A ) is the four-
velocity of the particle, any spinor A which satisfies the
classical Dirac equation (17) must, within an arbitrary in-
itial rotation and a real scalar multiplying factor, be the
eigenspinor of the particle.

In a minimal (2X2) faithful matrix representation of
(17), the two columns, say ri=A(o) and )=A(, ), of the
eigenspinor A are acted upon independently. The equa-
tion may thus be written separately for both the right and
left columns of (17). The spinor transformation (8) also
holds independently for rI and g, so that they may be
identified as two-component spinors.

In order to express A in terms of g and g, note that in
the standard Pauli representation where e„=a„,

S"'=xFX—ux'F'x'u, (16)

where x is some Pauli element. No matter how x is
chosen, if expression (16) is nonzero, it depends on the
four-velocity u and makes the time evolution (10) of the
eigenspinor nonlinear in A. There is a reason to avoid
such nonlinear equations of evolution, a reason beyond
questions of beauty and mathematical simplicity.

The elementary particle considered so far is structure-
less, but not necessarily confined to a single point. It
seems desirable to avoid the singularities associated with
particles of zero dimension, and even classically, "point
particles" usually have distributions reached as a limit of
some finite distribution as a characteristic dimension ap-

A'+ A' A' —i A'
=("~)= ""= A'+iA'

and its spatial reversal is

A=(g, g)=
."I

The Hermitian conjugate of A is thus

f24 24

(18)

(19)

(20)
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where we have defined the two-spinor
T

(21)

The choice (24) is not unique since one may also define,
for example,

(27)
The right-hand column of (17) together with the Hermi-
tian conjugate of the spatial reversal of the left-hand
column of the same equation thus give

pri =mg, pg=mq (22)

Note that barring a two-component spinor is equivalent
to transposing it and lowering its indices: ri=(ri&, gz),
where the subscripted spinor components are given by
the usual prescription g„=e&zg, with Ei&=E'22=0 and

Ep) = E(2= 1. Note further that (ri) =(ri } and that
double )arring of two-component spinor changes its sign:

ri=(ri ) = —ri. This relation shows that two-component
spinors like ri and g are not elements of P since for all

p EP, spatial reversal is involutory: p =p.
The discussion to this point has concerned positive-

energy particles, but for a complete comparison with the
Dirac theory, negative-energy particles must also be con-
sidered. Such particles can be consistently introduced in
a classical context. Each has a rest-frame four-
momentum p«st =mu«„= —m, so that place of (7), one
has u =Au„„A = —AA and the observed four-
momenturn is

p=mu = —mAA (23)

The four-velocity u is dx/dv, where dx is the increment
moved by the particle along its world line in ~roper times
d ~, and the relation u = —AA implies
u 1=—A.A =dt!d~& —1. Thus negative-energy parti-
cles move backward in time, and as in the usual
Feynman-Stiickelberg interpretations [13], they corre-
spond to antiparticles with the opposite four-momentum,
namely with p(antiparticle) = —p =Am A . Therefore
the eigenspinor A of negative-energy particles is, within a
complex phase factor and an initial rotation, just the
Lorentz transformation of the corresponding antiparticle
from its rest frame to the observer's frame. The eigenspi-
nor for negative-energy particles must satisfy (23), which
is consistent with (17) only if A is now antiunimodular:
AA= —1. One possibility is to identify i A as the unimo-
dular eigenspinor of the corresponding antiparticle.

When the two two-component spinors are combined
into a four-component column spinor

V. BILINEAR COVARIAI4TS
AND SYMMETRY TRANSFORMATIONS

Bilinear covariants arise naturally in P as Lorentz
transformations of rest-frame properties of the particle.
The eigenspinor A enters in the role of the transforma-
tion from the rest frame Ko to the observer's frame K.
The Frenet four-vectors u„(12) and the six-vectors
formed from them

u„u„=Ae„e+ (28)

are such bilinear covariants. These can be expressed in
terms of the two-spinors g, g and compared to the quan-
tum bilinear covariants. Consider, for example, the
four-velocity u =uo, which for a positive-energy particle
is simply urest 1 in Ko. In K,

to obtain the same equations (25). This and many other
alternate choices are equivalent to (18) and (24) with an
additional initial rotation: A'=AS. In the case of g'
(27), %=i e~ =exp(i e~m/2 .

) and is a rotation by m about
—e2. Similarly, another obvious choice for the antiparti-
cle eigenspinor corresponding to the antiunimodular
eigenspinor of negative-energy particles is Ae, , which
differs from i A by a rotation of m about —e&. Since the
axes chosen to specify the initial orientation of the rest
frame are arbitrary, these various representations as well
as any others related by an initial rotation are physically
equivalent. In what follows, the identification (24) is
adopted with A=(ri, g). Relations among some of the
equivalent forms will be associated with parity, time-
reversal, and charge-conjugation transformations in the
next section.

The simple interpretation of the classical Dirac equa-
tion (17), (22), or (25) seems to have been missed by other
authors: it merely expresses the relation between the
four-momentum of a particle and its four-velocity. It
corresponds most closely to the momentum representa-
tion of the quantum Dirac equations. The source of the
considerable physical content of the quantum Dirac
equation will be pursued in Sec. VI, but it is worthwhile
first to consider further correspondences between the
classical and quantum formalisms.

(24)
u =Au„„At=AA =rtgt+gt . (29)

the classical equations (17}or (22) take the usual quantum
form

(25)

0 1 0 —cr—k

Ok
(26)

where the 4X4 matrices r„are defined in the Weyl (or
spinor) representation [14]:

Its components u" can be expressed in terms of the classi-
cal four-spinor (24) by

(30)

where the barred four-spinor is defined as in the Dirac
theory by f=gtr =(g,g) and the scalar identity
gg =g q has been used. Both relations (29) and (30)
pick up an overall minus sign for negative-energy parti-
cles. The bilinear form (30) is identical to that for the
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TABLE I. Bilinear covariants of the classical eigenspinors A and g. Where there are two signs, the

upper one refers to positive-energy particles and the lower one to negative-energy ones.

Type

Scalar

Four-vector

Six-vector

Pseudo vector

Pseudoscalar

P-algebra form

AA=AA=+1

AA =+@
l——Ae, A=S
2

——Ae A =is
2

AA=A A'=0

Four-spinor form'

6=+2

,'4r—'r"0=»"
4r'0=0

Interpretation

Unimodularity or
antiunimodularity

Four-velocity

Spin

Spin dual

v l'7'= if'7'7'3 ' an«""=—~r"7'—r"7"~

2
The six-vector S is related to the antisymmetric spin tensor S"' by S= [S "o (i/2)—e;,kS"jerk in the

same way that the electromagnetic field F is related to F""(Ref. [10]).

four-current density of quantum theory. As in the quan-
tum Dirac theory, Eqs. (29) and (30) have the same form
if we use different linear combinations of the two-
component spinors g, rI; only the representations of the y
matrices differ.

The correspondence of all the bilinear forms in Table I
has been established by expanding the covariants in terms
of the Weyl spinors rl, g. In the case of spin, the
correspondence exists if the six-vector S is identified in
terms of the Frenet vectors as S=u&uz/2= —iu3uo/2.
The invariant rest-frame vector so= —iS„„is therefore
—e3/2. Since solutions to the classical Dirac equation
(22) can include an arbitrary initial rotation, this choice
of orientation is permissible; the fact that it yields a four-
spinor form identical to the usual quantum one is related
to the projectors (1+e3)/2, which isolate the two
columns of A (see below in this section).

The time dependence of S is determined by the same
equation that governs the evolution of any Frenet six-
vector (28):

S=AAS+SAA=GS+SG=GS —SG . (31)

The pseudo-four-vector is=Su =iAsoA is i times the
dual af the spin tensor S":s"=

—,'e" ~S, u13 where e"
is the fourth-rank antisymmetric tensor with e ' =1. It
is a linear combination of the spacelike Frenet four-
vectors and obeys their equation of motion (14):

s =AsoA +AsoA =Gs +sG (32)

With G =(e/2m)F(r) —2m S as in (15) above, and with
S=iAsoA where so is constant, the equations of motion
(31) and (32} for S and s are fully equivalent to the Barg-
mann, Michel, and Telegdi (BMT) equation [15] for a
spin with g factor g =2 in an electromagnetic field F.
The value g =2 is a consequence of assuming a linear
time development (10) for A. A more general, nonlinear
time-development equation can accommodate an arbi-
trary g factor: if one puts 4mx =4mx =v'e (2—g) in (16)
and uses this expression for the six-vector S, the BMT
equation is obtained for an arbitrary g factor, but as dis-
cussed in Sec. III, this choice leads to a nonlinear equa-
tion for the time evolution of the eigenspinor and is

therefore unsatisfactory for an elementary particle which
is not an isolated point.

In essence, the definition of an elementary particle as
one whose motion is described by a single eigenspinor
forces the orbital motion and spin precession of such a
particle to proceed at the same rate in a magnetic field.
[The result is not automatic since orbital motion can be
caused by boosts as well as by rotations, but it does fol-
low from the linearity of the time evolution (10) of A.]
The ensuing equality of the Larmor and cyclotron
frequencies —as in numerous earlier (but contested}
claims [16]—makes g =2. The concept of an elementary
particle is a key bridge from purely classical theories,
where there are no elementary particles, where the spin
and orbital motions are independent degrees of freedom,
and where therefore the g factor is arbitrary, to quantum
theories of elementary fermions where the spin is an inse-
parable property of the particle and where g =2 to within
small QED corrections. (It should perhaps be added that
the proof given here than at classical elementary particle
must have a g factor of 2 is not dependent on the use of
the Pauli algebra: the proof may also be given in terms of
traditional Minkowski-space matrices. )

Equivalent expressions for the basic symmetry trans-
formations P, T, and C can also be identified for the two
forms of the eigenspinor. As in the case of the bilinear
covariants, the four-spinors forms are identical to the
usual quantum ones, but the corresponding forms for the
eigenspinor A are relatively simpler and have transparent
geometrical interpretations (see Table II). Note especial-
ly the CPT transformation, which simply multiplies A by
i, and the PT transformation, which rotates the initial
rest frame by m about —e&. It is the CPT transformation
which relates the eigenspinor A for negative-energy parti-
cles to that for the corresponding antiparticles. The in-

formation in Table II can be used to determine how the
bilinear covariants transform under the various symme-

try operations. For example, the four-velocity is seen to
be invariant under C, PT, and CPT, but to transform as
u~u under P or T whereas the spin dual s changes sign
under either C or PT. Note that under C or CPT, uni-
modular eigenspinors become antiunimodular and vice
versa. Furthermore, C =P =1,but T =(CPT) = —1.

Although all sixteen linearly independent bilinear co-
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TABLE II. Symmetry transformations of the classical eigenspinors A and f
Transformation

P
T
PT
C
cpT

P-algebra form

A~A
in@)/2A~A e

inc) /2
A~Ae
A~Ae,
A~i A

Four-spinor form'

ro4
&—2it'
r—o&A"

ir'0

Interpretation

Spatial inversion

Time reversal

Initial rotation by m

Initial refiection
Antiparticle spinor

'y =iy y'y y and X2= —r'y'y .

variants of the form QI f, where I is a linear combina-
tion of products of Dirac gamma matrices, have been
given in Table I together with their equivalent expres-
sions in terms of A, there are many other bilinear covari-
ants of A, namely the other Frenet four-vectors (12) and
six-vectors (28), which cannot be so expressed. The Fre-
net four-vectors u& and u2, for example, cannot be written
in the form QI g. This limitation is reasonable if there is
at most one preferred direction (namely es) in the rest
frame of the elementary particle. Bilinear expressions for
u„u2 can be found in terms of g and g'= ir g'—(see
Table II). Thus the components of u, and uz can be seen
to be the real and imaginary parts of fr"f' [17].

To strengthen further the association of classical and
quantum spinors, consider the limiting expressions at
high and low velocities. At low velocities, the eigenspi-
nor approaches a pure rotation

A=(rl, g)=fil%=%=% =A —= (p, —rl ) (33)

so that i) t=g, g = rI, and t—he sum g+rI (correspond-
ing to the "large" component of the Dirac tetrad in the
Dirac-Pauli representation) is much larger than the
difference r) —

g (corresponding to the "small" com-
ponent}. Negative-energy eigenspinors, however, satisfy
A= —A, which means that the roles of the small and
large components are interchanged.

In the ultrarelativistic limit, when the energy p&=E
and momentum p become equal in magnitude:
fE) = fpf »m, the relative size of the two-component spi-
nors depends on the helicity, and hence on the dot prod-
uct of the unit vectors p n, where n= —Ae3%t is the ro-
tated spin direction. %hen n is aligned along p, one of
the two classical two-component spinors g, rl vanishes in
the limit of high velocity. Thus for positive-energy parti-
cles or antiparticles, since the left and right columns of
A=SR are (i),0)=A(1+e3)/2 and (O, g)=A(1 —e3)/2,
the ratio of their square magnitudes

[%%(1+e3)%S] m p.(1—n) 1 —p ~ n

[SA(1—e3)% S).m p.(1+n) 1+p.n
(34)

becomes large if the helicity is negative (n= —p) and
vanishes if it is positive (n=p). For massless fermions
(neutrinos), these limits are exact, and one of rI and g van-
ishes. The solutions representing the two helicities are
then related by the interchange r)~g, which is exactly the
transformation of charge conjugation (see Table II).

VI. QUANTUM AND CLASSICAL AMPLITUDES

APoA~ Pou (35)

of po then gives the corresponding current density in the
observer's frame. Comparing (35) to the bilinear convari-
ants of Sec. V and to the usual quantum expression
j"=l(r"l( for the (probability) current density suggests
that it is (po/2)'~ A which corresponds, within an arbi-

A close association has been established between the
Dirac four-spinor of relativistic quantum theory and the
classical eigenspinor A. Since A gives both the velocity
and the orientation of the particle, it is reasonable that it
should be closely related to the wave function. Indeed, A
satisfies a classical Dirac equation (17}whose form, when
expressed in terms of a four-spinor lt (24), is exactly the
same as in the quantum theory; its time evolution follows
the linear equations (9) and (10); and its bilinear covari-
ants and symmetry transformations have the same ex-
pressions in terms of the two-spinors rj, g as in quantum
theory. Of course, there are still major differences be-
tween the classical theory discussed here and the first-
quantized Dirac theory: the eigenspinor A has so far
been expressed as a function of the proper time of the
particle, whereas the quantum Dirac four-spinor is a
function of local space-time and serves not only as a
Lorentz transformation but also as a probability ampli-
tude. Furthermore, the classical Dirac equation, as em-
phasized in Sec. IV, is almost trivial: the equation simply
expresses the relation between the four-momentum and
the four-velocity. The physical content of the quantum
Dirac equation evidently lies largely in the operator form
of the four-momentum. In this section, the prospects are
investigated for pushing the classical theory still closer
toward the quantum interpretation.

As defined in Sec. III, the classical eigenspinor is the
Lorentz transformation of the particle from its rest frame
to the observer's frame. It does not give directly the
world line of the particle but rather its four-velocity and
hence the tangent vector to the world line. Of course, if
the initial position of the particle is known, the four-
velocity can be integrated to calculate the world line it-
self, but by demanding that Eqs. (9) and (10) of time evo-
lution be linear, we have avoided the need for confining
the particle to a point. An elementary particle is struc-
tureless since it requires only one Lorentz transformation
(its eigenspinor) to describe its motion, but it may be that
its position is best represented by a distribution, say by a
density po in its rest frame. The Lorentz transformation
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trary initial rotation, to the quantum Dirac spinor as usu-
ally normalized.

Since the basic equations (9), (10), and (17) obeyed
by the classical eigenspinor A are linear in A and A,
they are also satisfied by any real linear combination
g„a„A„ofsuch eigenspinors, where the a„are real sca-
lars. Quantum theory allows complex linear combina-
tions of wave functions, and multiplication by a complex
phase does not change the state represented by the wave
function. However, it is easy to verify that multiplication
of the four-spinor f (24) by a phase factor exp(ip) is
equivalent to a rotation of the particle rest frame by 2y
about e3.

P~e'~P=e'~ A=(rt, g)~(e '~ri, e'~g)

=Ae (36)

Therefore any complex linear combination of four-
spinors g corresponds to a real linear combination of
eigenspinors A.

One must still question whether such linear cornbina-
tions are classically meaningful. In many cases, the phys-
ical significance of a linear combination is easy to discern.
Consider, for example, two eigenspinors with the same
boost component but with four-orthogonal rotations:

A, =%%, , j =1,2

%, %2=0.
(37)

Because their rotational parts are four-orthogonal, so are
the eigenspinors themselves: A& Az =%

& A2 =0. The
eigenspinors are related by a 180' rotation:

A2=A, R,2,
where the scalar part of the rotation

%,2
—=%,%2=exp( —i 8&2/2)

(3&)

(39)

1S

cos(8)2/2)=1 %,2=%, %~=0 . (40)

If the axis a=8&2 is aligned with e3, the corresponding
four-spinors differ only by a phase factor, but if n lies in
the e,e2 plane, the corresponding four-spinors are orthog-
onal. In either case, %,2= in and the —real linear com-
bination

A =A& cosa/2+A2 sine/2

=A, ( cosa/2 in sina/2) —=A, exp( ina/2)—
(41)

produces an eigenspinor differing from A& by an initial
rotation e about n. The close correspondence of this su-
perposition of eigenspinors with the superposition of
quantum spin- —,

' states is evident. The correspondence
with spin eigenstates is made precise by taking %,= 1

("spin up") and letting the rotation axis n be perpendicu-
lar to e3.

Normalized linear combinations of eigenspinors with
different boost components are not as easy to interpret.
Since boosts are always timelike real elements of P, no
two pure boosts can be four-orthogonal. Furthermore, a
real linear combination of unimodular boosts may be an-
tiunimodular if coefficients of differing sign are allowed.
Evidently, linear combinations of boosts can generally be
meaningful in the classical theory only if negative-energy
particles are included.

If linear superpositions of eigenspinors are accepted
into the classical theory, then a classical spinor field %(x)
can be defined as such a summation of (po/2)' A from
each contributing path. The simplest case is that of free
particles. In Sec. III, it was seen that the eigenspinor of a
free particle can spin at a constant rate 4m so in its rest
frame [see the discussion following (15)]. Classically, the
constant spin vector so is undetermined, but we can take
its direction to define the rest-frame axis —e3.
so= —soe3. The four-momentum of the particle and
hence [by (17)] its four-velocity is assumed constant. Its
eigenspinor thus obeys

A(r) =A(0) exp(i2msore3) . (42)

In order to superimpose such eigenspinors, the
Lorentz-invariant rotation angle —4msp7e3 needs to be
expressed in terms of the space-time coordinates x. Since
for a particle of constant four-momentum p, m~=p x
where p is the four-momentum of the particle, (42) may
be rewritten

A(x ) =A(0) exp(2isop x e3) . (42')

p.x~ p+eA .dx (43)

so that a rotation by the angle 2y(x) about e3 is

The space-time dependence of the corresponding classical
four-spinor is exactly that of the familiar plane wave of
quantum-mechanical momentum eigenstates, but now the
complex phase of the plane wave takes on a concrete
geometrical meaning: it is twice the rotation angle of the
rest frame about —e3. The scalar constant so is evidently
not fixed classically, but its magnitude determines the
scale of quantum effects: by putting so ———,

' and thereby
absorbing it into the units, one effectively sets the size of
A. In the resulting units, the rotation of the free eigenspi-
nor is seen to be the Zitterbetvegung frequency [4,5]
2m =2mc /A'.

The above discussion indicates how classical eigenspi-
nors are natural amplitudes which can be superimposed
and closely associated with quantum wave functions. Al-
though some details must still worked out, many possibil-
ities for establishing further intimate relationships are
clear. Just as any wave function can be expanded in

plane waves, so can any spinor field A(x) be expanded in
free eigenspinors of different momenta. Local gauge in-
variance in quantum theory corresponds to the invari-
ance under a position-dependent rotation of the eigenspi-
nor about the rest-frame —e3 axis. It can be ensured by
the introduction of a gauge field A(x) into the momen-
tum term:
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equivalent to the gauge transformation eA ~eA+By(x)
of the vector potential A.

In terms of the four-spinors, the amplitudes being
summed all have the form

—w/2 0
e w.a/2q

where in the %eyl representation

(50)

2
g(x2)=g(x, )exp —i f dx (p+eA) (44)

The superposition required is a path integral of the sort
introduced by Feynman [18] over four-spinors (44).
Equation (44}and its equivalent diff'erential form

i Bg(x }=(p+ e A )f(x) (45)

is one relation which all contributing amplitudes obey,
and since it is linear, all linear superpositions of eigenspi-
nors including the Dirac wave function must also obey it.
Relation (45) gives the full first-quantized quantum Dirac
equation when combined with the classical Dirac equa-
tion (25) and the identification of j"=gy"g as the proba-
bility current density.

Classical results are derived by the standard
stationary-phase arguments: the action

2 2 2—f dx (p+eA)= —f dru (p+eA)= f

dt's,

(46)
1 1 1

of macroscopic objects is large enough that the rapidly
oscillating phase in the linear superposition of four-
spinors (44} cancels all contributions except for paths
where the phase is stationary. Since
X= —(m +eu ~ A)/y is the Lagrangian for a charge e in-
teracting with an external potential A, the stationary
phase condition is equivalent to Hamilton's principle of
least action [19].

The half-integer spin of solutions to the Dirac equation
follow as usual from the behavior of f(x) under active ro-
tations: since the spinor rotation operator
J7= exp( i8/2) is —unitary, both g and g transform in
the same way, and the four-spinor therefore transforms
according to

0
/=exp( i X 8/—2)g,

where 8 X is short for 8"Xk (summed over k =1,2, 3)
with

crk 0
Xk 0 (48)

The total rotation of g(x) involves not only the rotational
mixing of the components, but also the backward rota-
tion of the argument x [20]. Of course it is the orbital an-
gular momentum L= —ir X 7' which generates the trans-
formation of the argument:

f(x —d 8Xx)=(1 i L d 8}g(—x } (49)

and the total generator of rotations in g is L+X/2,
where X/2 is seen by its commutation relations and its
square X /=3' to represent an angular momentum of —,

'

in units of A.
Boost transformations can be written down immediate-

ly from the transformation law (8) A~%(w}A for eigen-
spinors and the relations (18) and (24) between A and g:

—cr 0
~=var= (51)

=(ri, g)e ' =(e '7), e g) . (52)

If the magnitude m of the boost parameter is large, g' be-
comes vanishing small compared to f On . the other
hand, boosts along —s make g' dominant. This is, of
course, consistent with (34). The sign of w is reversed in
the last three equalities of (52) for negative-energy solu-
tions.

The quantum Dirac equation can also be expressed in
the Pauli algebra in terms of the eigenspinor A(x), but
then the momentum operator takes a different form from
that in (45):

(p+eA )A= —iBAe3=2BSA, (53)

where S= —(i/2)Ae3A is the six-vector spin (see Sec. V
and Table I), so that the Dirac equation becomes

PA=(2BS—eA )A=mA (54)

The imaginary i in the usual operator relation has thus
been replaced by twice the spin six-vector S. Note that
S =ss= ——.2—

4'

VII. CONCLUSIONS

In this paper, an algebraic spinor approach has been
presented for studying to correspondence between rela-
tivistic classical theory and quantum theory. A close re-
lationship has been established between the Dirac wave
function and the classical eigenspinor, which is the
Lorentz transformation from the instantaneous rest
frame of the particle to the observer's frame. The classi-
cal Dirac equation has been shown here to be a trivial ki-
nematic identify for the eigenspinor, and transformations
of particle properties such as the four-velocity and spin
from the rest frame to the laboratory frame give bilinear
covariants fully analogous to those of the Dirac theory.
The symmetry transformations of P, T, and C of the clas-
sical eigenspinor also have exactly the same form as in
the Dirac theory. The classical equations of motion for
the eigenspinor allow an arbitrary rest-frame spin, and
for elementary particles which are not isolated points,
they are consistent only with a g factor of 2.

Now in the rest frame of the particle, A is simply a rota-
tional spinor and obeys A=+A, where the two signs are
for positive- and negative-energy particles (see Sec. V),
and therefore the two-component spinors are simply re-
lated [see (33)]: g=+ri . A boost along the spin direc-
tion s=AsoA /(AA) (this is a three-vector when A is a
rotational spinor) then gives, for positive-energy particles
or antiparticles,

A~A':—(ri', g') =S(ws)A =AS( wso)
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The close relationship between the classical eigenspi-
nor and quantum wave functions led us to consider su-
perpositions of classical eigenspinors describing a spin at
the Zitterbemegung frequency. The four-spinor forms of
such free-particle eigenspinors are plane waves whose su-

perposition can lead to interference and other quantum-
like phenomena. The results support some of Hestenes's
work [4] relating Zitterbewegung to the complex phase of
the Dirac and Schrodinger wave functions, but the ap-
proach here seems more general. Unlike the quantum
formulation of Hestenes or the classical models of Giirsey
[2], Barut [6], and others, the present work does not re-
quire helical lightlike trajectories or a separation of mass
and charge centers. Indeed, although the elementary
particle is not necessarily a point particle, causality seems
to preclude any identifiable internal structure, and the
Dirac equation itself is seen as a statement that the four-
velocity and four-momentum are parallel. The spin of
the eigenspinor provides undulations like those of the
"wave simplex, " on which Tisza [7] based his non-
Newtonian formulation of classical physics. However,
whereas Tisza asserted that no simple mathematical
theory can handle translation, rotation, and undulation
simultaneously, the classical eigenspinor introduced here
does in fact unify precisely these three kinematical
modes.

Since the classical Dirac equation and other classical
constraints are invariant under an arbitrary rotation of
the rest frame, it may be questioned whether the "spin"
of a free elementary particle corresponds to a physical ro-
tation of some sort. The experimental evidence that
charged fermions have magnetic moments and that their
spins contribute to the total angular momentum, together
with analyses of the rotational motion of quantum solu-
tions to the Dirac equation like those of Huang [5]
demonstrate a physical reality of the spinning motion.

Although clearly more work is needed to find new non-
perturbative solutions to QED problems, the close
correspondence established here in the Pauli-algebra ap-
proach between relativistic classical mechanics and the
quantum Dirac theory lays the groundwork for future
studies and suggests that it would be useful to extend the
approach to formulations of such phenomena as radia-
tion reaction, interactions with quantized electromagnet-
ic fields, electroweak interactions, and many-body effects.
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