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Principal-axis hyperspherical description of N-particle systems: Quantum-mechanical treatment
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Principal-axis hyperspherical coordinates (made up of one hyperradius and 3N —7 angles as internal
coordinates) and three Euler angles as external (rotational) coordinates [X. Chapuisat and A. Nauts,
Phys. Rev. 44, 1328 (1991)],are used to describe an N-particle system. The exact quantum-mechanical
Hamiltonian of the system in terms of these coordinates is established and is very simple. Generalized
angular-momentum vector operators, which allow the generation of a profitable standard representation
for the angular part of the problem, are introduced. The corresponding matrix representation of the
Hamiltonian operator is built.

PACS number(s): 03.65.—w

I. INTRODUCTION

In a recent paper [1],hereafter called I, a set of coordi-
nates well adapted to the N-particle systems considered
along the line of argument of the hyperspherical
description —the so-called principal-axis hyperspherical
(PAH) coordinates —has been introduced. The PAH
coordinates descend directly from the old Eckart coordi-
nates [2], recently rediscovered by Robert and Baudon
[3—5]. They constitute a generalization of the hyper-
spherical coordinates introduced, 30 years ago, by Delves
[6] and Whitten and Smith [7,8] for three particles. A
wealth of information on the hyperspherical description
of the three-particle systems can be found in several re-
views [9—17].

In addition, in I, the exact classical Hamiltonian of the
system, expressed in terms of the PAH coordinates, has
been derived. After very long, intermediate calculations,
it turned out to be remarkably simple, the only condition
being that some special quasimomenta (canonically con-
jugate to some quasivelocities) were introduced.

The aim of the present paper is the quantization of this
classical Hamiltonian and the derivation of the corre-
sponding quasimomentum operators, in particular in
view of establishing a standard representation accounting
analytically for all the angular part of the problem
Therefore the numerical integration effort is to be con-
centrated, as far as the kinetic energy is concerned, to the
only hyperradial (i.e., one-dimensional) part of the wave
function.

In Sec. II some basic requirements for the quantization
of a classical Hamiltonian are summarized. The exact
quantum-mechanical PAH Hamiltonian is actually de-
rived in Sec. III. A fruitful modification of the conven-
tion of normalization of the wave function is proposed in
Sec. IV. Generalized angular-momentum vector opera-
tors are introduced in Sec. V; starting from the study of
the commutation relationships of these operators, a stan-
dard representation is built, which allows one to generate
a profitable matrix representation for the angular part of
the kinetic energy operator.

PK = g [B(q)]xp, (E=1,2, . . . , m)

where [B(q)]x is the current matrix element of the non-
singular m X m matrix B(q), depending only on the coor-
dinates. The determinant of B(q}is denoted by

t '(q)=DetB(q) . (2)

In classical mechanics, the kinetic energy T can always
be expressed as a quadratic form of momenta:

(3)

where

m g i g j
g''(q)= g (i,j =1,2, . . . , m)

Bx Bx

and x (q) is the ath mass-weighted Cartesian coordinate
of the point representing the system in the (Euclidean}
configuration space parametrized by q. T can always be
rewritten as

with

2T = g Pxg (q)PL
K, L =1

m

g '(q}= y [B '(q}] g"(q)[B '(q}]'
i j =1

(K,L =1,2, . . . , m) (6)

II. QUANTIZATION
OF A CLASSICAL HAMILTONIAN

EXPRESSED IN TERMS OF QUASIMOMENTA

Let q=(q', q~, . . . , q ) be a set of curvilinear coordi-
nates well suited for the description of a dynamical sys-
tem, and let p = (p &,pz, . . . ,p ) be the corresponding
conjugate momenta in classical mechanics. Quasimo-
menta P=(P„P2, . . . , P ) are defined by
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so that if

g (q) =Det[g "(q)] (7a)

are supposed not to operate beyond the parentheses, so
that the AK are multiplicative (i.e., nondifferential) opera-
tors. Equations (1 la) and (1 lb) can be readily rewritten
in the form

and

g(q) =Det[g (q)]

2T1 = g g (q)PKPL+ g I'1(q)PI.
K, L =1 L=1

where

(12)

there is

g(q) =g(q)r '(q) . (8)

m

11(q)=y [Ip;+A;(q)][B(q)]'Kg '(q)]
i=1

(13)

In quantum mechanics, p; is to be replaced by the par-
tial derivative operator:

and

aP;= ih— , (i =1,2, . . . , m) . (9)

)
—

(
—1/2p ——1/2)+(r —

1p r) (14a)

In keeping, for the quasimomentum operators, with the
same definition as above

—1/2
i Ag

—', = —ifiA,*(q) .
Bg

If a classical Hamiltonian is known in the form

(14b)

P» = g [B(q)]»p, (K =1,2, . . . , 1n) (10} H = T(q, P)+ V(q) (15)

it is established that [18,19], as long as the Euclidean
volume element of the configuration space

d& =dx'dx ' ' ' dx =[g(q)) '/ dq'dq dq

m

X [PK+AK(q) ]g (q)PL
K, L =1

(1 la)

where

is used for the calculation of the matrix elements as in-
tegrals, the kinetic energy operator must be written as

where T(q, P) is written as in Eq. (5), its quantization
simply amounts to rewriting it as in Eq. (12), by means of
the quantities in Eqs. (13) and (14), that are to be explicit-
ly calculated. This is precisely the case for the classical
Hamiltonian derived in I, where Eq. (65) on the one
hand, and Eqs. (3) and (66a) on the other hand, are, re-
spectively, formally of the type (12) and (1) of the present
article. [In the following, we will use an abbreviation for
equation numbers from paper I: Eq. (I-65) denotes Eq.
(65) of I, e.g.]

For more details on the PAH coordinates and quasi-
momenta, see I.

AK(q}=B'K(g" P;g '")+(P;BK) (1 lb)
III. THE QUANTUM-MECHANICAL

PAH HAMILTONIAN

Here, the derivative operators appearing in parentheses We actually have, from Eq. (I-65},

[g"(q}]=

s(q) 0
1
, b(q)

p

0

0

1

, d(q)
p

0

0

1

, e(q)
P

0

0

0

0

—,e(q)
1

p

—d(q)
1

p

0

0

—,b(q)
1

p

(16)

where each element in the matrix above denotes a 3 X 3 diagonal matrix, respectively,
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1 0

s(q)= 1

P'

0 0 1

p sin 0

(17a)

and

b(q) =

d(q) =

cos 8+sin Hsin P
(cos 8—sin 8 sin P)

sin 8 sing

(cos 8—sin 8 sin P)

1

sin Hcos P

cos 8+sin 8 cos P
(cos 8—sin 8 cos P)

sin28 cosP
(cos28 —sin 8 cos P)

1

sin 8 cos 2P

sin2$

sin 8 cos 2P

(17b)

(17c)

e(q) = 1

sin Hsin P
1

cos 0

(17d)

p, 8, and P are the three spherical coordinates which allow the parametrization of the three mass-weighted gyration ra-
dii of the system (see I, Fig. 1). The following result is readily obtained:

16n
—2

g(q)=
Z 4 Z 2

[p
" 'sin" 8 sin" 28 cos2$ sin" 2P(4 cos 8 cos28+ sin 8 sin 2P ) ]

Here, n =N —1 is the number of Jacobi vectors describing the internal conformation of the system, and N is the num-
ber of particles. In the matrix of Eq. (16), there are n —3 diagonal blocks (1/p )e(q).

In addition, we have from Eqs. (I-62) and (I-66a)

= —iA'[B(8„8„.. . , 8, ,)]T.

algae,
algae,
algae,
a/ae~
a/ae,

'
a/ae.

'

8/807
algae,

a/ao

a/ag. —,
e/ae.". ,

'

8/BO „

(19a)

where the (3n —6)-dimensional matrix [B(8„82,. . . , 83„7)] actually is
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0
—4 D4. " @.A

0
0 0

—4 D -:" 4.A45 4.A 0

DT, T @ AT 4-A . 4-A5n nn

All blocks, and all matrices in the blocks, are still 3X3 matrices. B(0„02, . . . , 03„7) appears, in the expression of
B(q), the overall matrix transforming the momenta into quasimomenta, as follows:

&3X3 03 X (3n —6) o3x3

o3x3 03 X(3n —6)

&(q)3nX3n O(3n —6)X3 B(0)r02r ~ . r 3n —7}(3n —6)X(3n —6) 0(3n —6) X 3

'(1' P)3x3

(19b}

—sin0&cot02 cosO&
sin0,

sin02

This corresponds to the fact that (i) the operators in the
left-hand column vector of Eq. (19a) are actually the
quasimomentum operators to be used, (ii) the 3 X 3 unit
matrix in the upper left corner of B(q) in Eq. (19b) is for

P, = isaiah—, P, = ieaxae—, and P, = iratay, which
are unaffected by the transformation, and (iii) Q ( y, p)
in the lower right corner is for the overall-rotation
angular-momentum vector operator definition.

In the present article, 0 replaces co* of I. 0 ' is equal
to

J
J,

Bray
= —iAQ '(y, P) BIBP

araa
(21b)

K is the so-called pseudo-angular-momentum vector
operator (see Refs. [20] and I), which concerns the inter-
nal motion of the system (the hyperangles 0„03, and 0,
are actually internal coordinates), whereas J is the usual
total-angular-momentum operator for the overall rota-
tion of the system (Eulerian angles a, P, and y ). This re-
sults in

Q '(0, , 02)=
cosOi—cosO cot0 —sin0
sin02

(20) J,= —iA
ar

(22a)

This matrix stands for the transformation of angular
(quasi) velocities into angular (quasi) momenta, namely,

K„ 8/BO,

t, = —irQ-'(0„0, ) Brae, (21a)

8/BO

as well as

J = —A
1 B B a2

+ —2 cosP
sin p By Ba a'Ya(3'

C}2 a+ +cotp
ap'

(22b)

and similar expressions for K, by substituting 0, , 02, and

03 for y, P, and a.
In addition, according to I, Eq. (19a) must be read with

cosO&cos03 —sinO, cos02sin03

4 ( 0) 0$ 03 }= —sine, cos03 —cose, cos02sin03

cosO)sin03+ sinO, cos02cos03 sinO, sin02

s1nO)s1n03+ cosO)cos02cos03 cos01s1n02 (23)

sin 02sin03 —sin02cos03 cos02

:- (02, 03 }=@ ( 0„02,03).Q '( 0„02)

sin03

sin02
cos03 —cot02sin 03

cos03
sin 03 cot02cos03

sin02
(24)
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Aff ( 84 85 83f —7 )

f—1

X 131-s
ft 4

r f' f —13f —S fl fit fit f+cot83f 'y r,~..',r,fl
sin83f 7 ftt fl+

f—1

y r/ reS111 3f s f 4

f—1

g 13/—713f' —s
f'=4

1

f—1

sin83f s g sin83J
j=4

f—1

sin 83,.
j=4

0

f—1

SIn83f SS11183f 7 g S11183.
j=4

0 0

(4(f (n), (25a)

Af f ( 84i 85i ~ y 83f —7 )

=(—1)f"

pf' f
3f —8

—I'3/-s

r',Jt',
sin 83f

I kf' —7

sin83f 8

t

+cot8 f g I / —I fl
fit 4

f—1

+cot,8 f g I f~ I f ~
f"=f'+1

—r'3/', rff f,

cot83f 8F 3f 8
f'f

f—1

sin83
j=4

0

0

' —1

+cot8 f. I' f g I'3f I f'f' f »(" f",/'
ftl 4

cot83f 7

fI

g sin8»
j=4

pf' f f—1

+cot8 f g I' f. I fj:
sln83f 8 flf f +

cot83f. Sr(jf,
ft

1

SII183f 7 g SII183jj=4

0 0

(4(f'(f (n ), (25b)

i.e., all A matrices are 3 X 3 triangular matrices with respect to the second diagonal. Finally, the D matrices appearing
in B, Eq. (19a), are

Df(84, 85, . . . , 83f 7)=(—1)f—
0

-I 3/-s
I 3/-7 f—1

+cot8f y r3/ 1(jf
sin 3f 8 ft 4

I 3j-s 0

0

0 0

0 (4(f (n) . (26)

The following notation is used throughout:

cot83f
3f—i

sinO&
j=k+1

(k (l —2) (27)

in keeping with the convention that, in the denominator g:k+ I (argument) is 1 if k = l —1, whatever the argument is.
Let us come back to the quantization problem. Since (i) B is block triangular [see Eqs. (19)],and (ii) 4 is an orthogo-

nal matrix, we have

t '=DetQ '(8„82)Det A44. Det A„„DetQ '(y, P) .

Now

(28a)
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and

1
DetAff = . . . . (f &5)

sinO3f 7sln O3f 8 slnO3f 9slnO3f ]osin03f „-sin04

1
Det A44=

sinO~sin O4

so that

1 1 1

sinp sin82 sin83„7sin 83„

sinO3 9sin O3„rosin 03„» sin" 89sin" "88sin" 87sin" O6sin" O5sin" O4

and Eqs. (8) and (18) yield (n & 3)

[g(q)] '~ = p
" 'sin"8 sin" 28cos2gsin" 32$(4cos28cos28+sin Hsin 2P)

X sin82sin" 84sin" 85sin" 8&sin" 87sin" 8ssin" 89

X Sin 83 ] ]sin 83„—&csin83„—9sin 83„—ssin83„—7sinp

g clearly does not depend on 8, , 83 83„$ y, and a, whence, from Eq. (14b)

3n —1

P

(28b)

(29)

tg+2(3) t2g22g4cos8+2cos28 —sin 8 sin 2$
g
—n co n co sm

2 44cos 8 cos28+ sin 8 sin 2P

A&=2 (n —3)cot2$ —tn2$+
sin 8 sin4$

4 cos 8 cos28+ sin 8 sin 2P

A) =A =0,
1 3

A2 =cotO2,

A3f —8 (n f +2)cot83f s

A3f 7 (n f + 1 )cot83f——7 (4 f n)

A3f 6= (n f)cot83f

A*=A*=0
y

A&=cotP .

(30)

Now, for the Euclidean volume element of the
configuration space,

dr, = [g (q) ]
' dpd Hd Pd H, d 82 d 83„6dy d P d a,

if n ~ 3, i.e., for systems with four particles or more, the
PAH Hamiltonian is written as

I

dimensional hypersphere embedded into the 3n-
dimensional configuration space of the n mass-weighted
Jacobi vectors describing the system, after separation of
the center of mass. In applying the quantization rules
given in Sec. II above, [A3„&]&can be written as

8, =f', + V(p, g, p, g&, gz, . . . , 83 6) (31a) [A3„,],= fi
2 +As +—

~ ~ +A~
88 ~8 sin 8 BP

with the following kinetic energy operator:
A. 2

8 3n —1 8 [ 3n —1]i

ap p ap+ p

(31b)

g =x,y, z
b (J +Ps)+2d J Kg

n

+es g ( 8'sf + Csf8'sf )
f=4

(31c)

EL3 being the Laplacian. [A3„,], is the so-called
"grand-angular-momentum" operator, for the (3n —1)-

where the bs, ds, and es's depend on 8 and P only [they
are given in Eqs. (17b), (17c), and (17d), respectively], and
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Ae and A& are given in Eq. (30).
Obviously, the part of ~, that is linear in

Bl88„.. . , BlB83„-6,as it comes out of Eq. (12), i.e., the
I (q) coefficients in Eq. (13), has been entirely reex-
pressed in terms of the quasimon1entun1 operators Kg
and N f (g =x,y, z; f =4, 5, . . . , n), defined in Eq. (19a).
All the difBculty was therefore concentrated on the
derivation of the coefficients C f(q). Long and tedious
calculations (demonstration not given here) have yielded

the following result:

C'f

Cf =( —1)fifi(n —f)4(8„82,83) Cyf

C;f

(32)

where the Cgf's depend on 04, 85, ~ ~ ~, 03„6,but are in-

dependent of n:

Coxf
r3j-6 3 I fl+cot83f 7+ I'3j 6I3fl 7—

Sill 3f —8 S111 3f —7 fl 4

f—1

+Cot83f —s y r3j
f'=4

rf' f—1r3f'-s f'f' f"/'+cot83f' '7 y r3f'7r3f' ssin 03f. fit fl+]

r3j-7 f—1

C f, 8
+cot8 f, y r, ,r,f'

s1n03f 8 ft 4

C;f=I33j s

(33)

with the convention that gz k+1 (argument) is 0 if k =i —1, whatever the argument is. The few first applications of
the above formulas yield

cot86 cot85C'„4=, C'4= . , C;4=cot04,
sin84sin05

'
sin84

'

cot09 cot85cot86cot08 cot04cot86cot87C'5=. . . + +
sin 06sin07sin08 sin07 sin8&

cot88 cot87
Cy5 +cot04cot05cot87 C;5=

sin 05sin07 sin84

cot8, 2 Cot8scot89 Cot83cot86 Cot811
C:,=. . . . + . +

sin06sin09sin8, 0sin0» sin06 sin08 sin0&0

cot07cot09 cot84cot06+ . . + . . cot81p+cot85cot86cot87cot8scot81p
sln06s1 08 sln05sln07

cot0» cot87cot88 cot04cot05C'6=. . . + . + cot0,0sin 85sin08sin0, O sin85 sin87

cot8&0
C;6=

sin04sin07

(34a)

(34b)

(34c)

thus allowing us to express the PAH Hamiltonian opera-
tor up to n =7, i.e., eight particles [recall that C 7 is iden-
tically zero if n =7, see Eq. (32)].

It should be emphasized here that all the effort so far
has allowed us to write an exact quantum-n1echanical ex-
pression of the Hamiltonian operator for any N-particle
system described by means of a special set of curvilinear
coordinates, the so-called PAH coordinates. Here the
important word is "exact." Indeed, even if, in a few
cases, this Han1iltonian operator can be used as such, it is
not easy to manipulate just because the quasimomentum
operators Ngf (g =x,y, z; f =4,5, . . . , n) defined in Eq.
(19a) are themselves rather complicated expressions in
terms of 0,, 02, . . . , 03~ 6 It is therefore very important

to go on studying the algebraic properties of the opera-
tors Ngf in order to derive a representation in which the
matrix elements of the kinetic energy operator would be
calculated in a rather straightforward manner, at least for
the angular part (8,$, 8„82, . . . , 83„-6,y, p, a) of the
problem.

This aim we have not yet been able to reach in all gen-
erality. We have been able only to propose appropriate
exact answers in the cases where n =3 and 4, i.e., for four
and five particles. This preliminary approach will be
developed in Sec. V below. Before doing it, it is
worthwhile proposing a change of the normalization con-
vention for the wave function that significantly simplifies
the expression of the PAH Hamiltonian operator.
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IV. ALTERNATIVE CONVENTION
OF NORMALIZATION OF THE %'AVE FUNCTION,

AND SIMPLIFIED EXPRESSION
OF THE PAH HAMILTONIAN OPERATOR

Up to now, the wave functions %&(q) onto which the
Hamiltonian 8, operates, are supposed to be normalized
with the help of the Euclidean volume element, expressed
as

$2 m m Q2

H, = — g g g'J(q), . +I', (q) . + V(q)
Bq'Bq j Bq'

(39)

then we have for H&

f2 m m Q2
H&= — g g g"(q) . . +I &(q)

Bq'Bq j Bq'

dr, =dx'dy'dz' dx "dy "dz"=[g(q)] ' dq,

dq=dpdOdgdO~d82 d83„6dydPda

(35a)

where

+V&(q)+ &(q) (40a)

where (x',y', z') denote the mass-weighted Cartesian
components of the ith Jacobi vector in the principal-axis
system. [g(q)] ' is given in Eq. (29).

The quantities that are physically relevant are (i) the
norm:

m

I I(q) =I', (q) —g g'~(q)g (q),
j=1

f2 m

V&(q) = — g —I', (q)g, (q)
4 1 J

(40b)

1=f [%,(q}]*%',(q)dr, ;

(ii) the spectrum of the eigenvalues:

H, V, (q) =E+,(q);
(iii) the matrix elements:

H12 f [+1(q)]1[H1[q 1(q)]2]«i

If we change the wave function according to

+&(q)= [g(q) ]'"q'&(q)

(36a}

(36b)

(36c}

(37)

m

+ Z g "(q)[-'4 (q)k (q) —0 (q}]
j=1

(40c)

g, (q)=[1/g(q)]B((q)/Bq' and g, (q)=[1/g(q)]B g(q)/
Bq'iraq J are, respectively, logarithmic first and second
derivatives of g(q).

Let us apply this transformation to the particular PAH
coordinate problem, with [see Eq. (29) for comparison]

where g(q) is any real function different from zero, except
(possibly) on sets of measure zero, we preserve (i) the
norm, in changing the volume element, i.e.,

1=f [%r(q)]*%)(q)dr),

if, and only if

d ~&
= sin0 sin02sin" 04sin" 05sin" 06sin" 07

X sin" 08sin" '09 sin 03„8sin03 7

XsinPdpdOdgd8, d82 d83„6dydiada (41a)

or still
«r=[Nq)] '[g(q)] '"dq, (38a)

(ii) the spectrum, in changing the Hamiltonian operator, g(p, O, P)= p
" 'sin" 'Osin" 28cos2$sin 2P

1.e.,

Hg'P g( q ) =E+((q); Then we have

X(4cos Ocos28+sin Osin 2P) . (41b)

if, and only if

Hg= [Pq)]'"&l [Pq) l
'"

(iii) the matrix elements, i.e.,

H12 Vgq 1 ( %gq 2

(38b)

(38c)

3n —1
ps= As —cotO, gp= A~,

P
(3n —1)(3n —2)

PP 2

aw,*
(gg=(Ag cotO} + —+

sin 0
H& being the sum of the potential energy function V(q),
which is a multiplicative operator, and of the kinetic en-

ergy operator T& which is purely difFerential (recall that
it is proportional to the Laplacian), an extra potential
term appears in the expression of f'&, i.e., a
nondifferential term, namely [18],

V&(q) =([g(q)]'~'~, [g(q)] '") .

More explicitly, if we rewrite H, in the form [see Eq. (12)
with no quasirnomenta]

and

aA,*
4~=(AP'+

g

so that

2T = g2 + ", —+2V(pr, $8)
[A3„,]r

2

where

(42a)
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[A3„,])=X (0,$}+
g =X,P, Z

n

bs(0, $)(Js+Es)+2ds(0, $)Jsks+es(0, $) g (g /+C/g/)
f=4

(42b)

and

2 (0,$)= —A' +cote +
Be &0 sin 0 Bp

(42c}

where

BA,*
F,(0,$)=1+(A,*) +2 (i.=e,p) .

$2
V (p, e, p)= (3n —l)(3n —5)

Fp(0, )
+Fs(0,$)+

sin 0
(43a)

is the regular angular-momentum operator in spherical
coordinates, whose eigenvalues are A l(l +1) and eigen-
functions are the spherical harmonics P& (0,$). In clas-
sical mechanics, 8 and P are spherical angles parametriz-
ing the system gyration radii, see I, Fig. 1 and Eq. (31), so
that 0E [0,m/2] and QE[0,m. /2]. In quantum mechan-
ics, the Hamiltonian operator must be invariant, not only
by translation and rotation, but also by inversion of the
momenta and the positions [with respect to the center of
mass, i.e., in the body-fixed (BF) frame], and finally by
permutation of the positions of identical particles [21].
The group of the Hamiltonian is the direct product of the
groups to which the transformations above belong. For
deformable systems, the point-group irreducible represen-
tations are no longer adequate symmetry labels;
permutation-inversion groups must be used (whose point
groups are subgroups}, so as to appropriately describe the
interferences between equivalent permuted structures
[21,22]. In the present case, this can be achieved in ex-
tending the domain of definition in (0,$) to 0& [0,m. ] and

P C [0,2n ] [20]. Therefore the Pi (0,P } are regular
spherical harmonics.

In addition, the following extra potential term appears:

V. GENERALIZED ANGULAR-MOMENTUM
OPERATORS: FOUR- AND FIVE-PARTICLE SYSTEMS

Equation (19a) can be rewritten as follows:

'a/ae,

fc, = —ion-'(0„0, } a/ae,
a/ae,

(44)

on the one hand, and on the other hand

The physical meaning of the extra potential term is the
following. By playing the role of a potential although be-
ing of kinetic origin, the extra potential term V& sets up
(virtual) energy barriers that prevent the wave function

from expanding over certain regions of the
configuration space. This counterbalances the absence of
the Euclidean weight function [g (q)] ' on those re-
gions where it is zero or very small. In particular, 4'& is
strictly zero in all those regions of the configuration space
(of measure zero), where singularities arise (for example,
when the molecule becomes linear or planar}. This is a
confirmation of the convergence of the matrix elements of
the kinetic energy operator as integrals, which is physi-
cally necessary since a particular conformation of the sys-
tem (e.g., linear or coplanar) is a priori not singular. For
further details on the domain of definition in 0 and P, and

the particular configurations of the system, see Appendix

A.

zf

r

xf a/ae,
= —ih'4(0, , 02, 03). —Dg(04, 05, . . . , 03/ 7):" (02, 03) 8/802

a/ae,
P

f 8 /803/ s

+ g A~./(0, 0„.. . , 0/ ) 8/80/ (4 f n}
f'=4

0 /883 f'~

where the 3 X3 matrices D& and A&,& (4 &f ' ~f ~ n) are given in Eqs. (26) and (25) respectively.

(45)

A. Four particles [20]

In the case of four particles, n =3, Eq. (42b) is

[&s]g=X (0,$)+ g [bs(0, $)(J +k )+2d (0,$)J k ] .
g =X,g, Z

(46)

Here, all the operators are well known, along with appropriate standard representations: (i) 2 operates on 0 and P:

X ~l, m ) =R l(l +1)~l,m ) (47)
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where 1 is a positive or zero integer, m a degeneracy integer index, m F [—1, +1), and ( 8,$ ~ 1, m &
= 'P& (8,P) are spheri-

cal harmonics; (ii) k operates on 8&, 82, and 83. It is the so-called "pseudo-angular-momentum" vector operator [20],
which concerns internal deformation properties. Being algebraically an angular-momentum vector operator, there is
for it the usual standard representation [ ~K, k & ] such that [23,24]

K ~K, k&=AK(K+1)~K, k&,

K, IK, k &=A'klK, k &,

K+~K, k & =(K„+iK»)IK,k & =W&K(K+1)—k(k —1)IK,k —1&

K ~K, k & =(K„iK—)~K, k & =%&K(K+ I ) —k(k+1)~K, k+1&

where K is a positive or zero integer, k E [ E, +I—C), and (, 8„82,83~K, k & =2Px (83,82, 8&) denotes a Wigner matrix ele-
ment (for the kinetic energy, and for it only, p is an integer degeneracy index); (iii) J operates on y, P, and a. It is the
rotational angular-momentum vector operator, with the standard representation I ~Jj & ] such that

J ~J j & =Pi J(J+1)~Jj&,

J, IJj & =&jlJj &,
(49)

J+ Jj &=[J„+iJ»]~Jj&=Pi/J(J+1) j(j 1)IJj 1&

J IJj &—=[J iJ»)IJj &=&&J(J+1) j(j +1—)lJj +1&

where J is a positive or zero integer, j E [—J, +J], and ( y, p, a
~Jj & =2)J'(a, p, y ). r is a degeneracy index, denoting the

space-fixed Z component of J, which is physically immaterial because of space isotropy.
With the help of the operators defined above, Eq. (46) can be rewritten in the form

b +b„ b +b„ b —b„[P2] —g2+» (J2+K2)+ b» (J2+g'2)+» (J2 +J2 +g'2 +@2 )+2d Jg
2

+ " (J+K +J k+)+ (J+K++J K ) .
2 + + 2

The following equation is readily derived from Eqs. (47)—(50):

b +b
[A, ]&~1,m, K, k,Jj &= l(1+1)+ [K(K+1)+J(J+1)]

(50)

b +b
+ b, — (j +k )+2d, kj ~l, m, K,k,Jj &

2

b —b+ [ &[K(K+I)—k(k+1)][K(E+1)—(k+1)(k+2)]~l,m, K, k+2,Jj &

+ &[K(K + 1)—k (k —1)][K(E + 1)—(k —1)(k —2)]

X~1,m, K, k —2,Jj &

+ &[J(J+I)—j(j+1)][J(J+1)—(j+1)(j+2)]
X ~l, m, K, k,J j+2&

+ &[J(J+1) j(j —1)][J(J+—1)—(j —1)(j—2)]

X l»m K k,Jj —2&)

dz +dy+ [ &(K —k}(K+k+1)(J+j)(J' —j+1}~l,m, K,k+1,Jj —1&

+&(K+k)(K —k+1)(J j)(J+j+1)~l,m, K—, k —1,Jj +1 &]

d~ dy+ [&(K k)(K+k+1)(J j—)(J+j+l)~l,m, K—, k+1,Jj +1&

+&(K +k)(K —k + 1)(J +j)(J—j+ 1)I l, m, K, k —1,Jj —1 & ] .

After integration over all the angles, we obtain

(51)
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(1',m', K', k', J',j '~[As]&~l, m, K, k,Jj )

b I'Im'm+ b
I'lm'm

5~x5JJ 1(l+1)5~'m5I'i+mm [K(K+1)+J(J+1)]

b I'lm 'm
z

b I'lm'm+ b I'Im'm
X

(k +j )+2dP™mkj 5k k5'

b
I'Im'm

b
I'lm 'm

+ x y

4 I [ &(K +k +2)(K +k + 1)(E—k)(K —k —1)5k k+2

+&(K +k)(K +k 1)(K k +2}(K k + 1)5k k 2]5&

+[&(J+j+2)(J+j+1)(J j)(J——j—1)5, +z

+&(J+j)(J+j —1)(J—j +2)(J —j +1)5,', ,]5„„]
d I'lm'm+ d I'lm'm

X y

d I'Im 'm
d I'lm 'm

X

[ &(K k}(K+k + 1 }(J+J')(J j + 1)5k k+~5&&

+&(K+k)(K —k+1)(J j)(J+j—+1)5k k, 51 J +, ]

[ &(K —k)(K+k+1)(J j)(J+—j+1)5„„+,5,', +,

+&(K+k)(K —k+1}(J+j}(J—j+1)5k k )5J~ (]
'

(52)

where

bs' =f dP f si n8d 8[PAL (8,$)]*

xb, (8,$)Pp(8, $) (g =x,u, z»

and the same for ds~~™m. The matrix representing [As]&
is therefore diagonal in K and J. As far as the quantum
numbers k and j are concerned, the only nonzero cou-
pling matrix elements are (i) kj~kj (i.e., diagonal), (ii)
kj~k+2j and kj~kj +2, (iii} kj~k+lj %1, and (iv)
kj~k+1j+1. This indicates that the matrix has a block
structure, with only few blocks that are not identically
zero (see Fig. 1). Each block kj~kj'' which is not iden-
tically zero is a priori a full matrix (with indices lm and
i'm' for the rows and the columns). Indeed, all the in-
tegrals b'' and d'' are a priori nonzero, i.e., all

couplings lm~l'm' can be effective.
See Appendix B for the radial close-coupled equations.

where, from Eqs. (45)

8'
4

A@4
= —i%4(8|,82, 83) ~ (54a)

and

B. Five particles

For five particles, n =4, we have [see Eqs. (42b) and
(46), and recall that Cs4 is then identically zero]

[A]]]~=[As](+ g e (8,$)g 4 (53)
g =x,y, z

cosO3 a8' 4= —cotO4 . —sinO3 cotO2cosO3
sinO2 BO, 2 3

cotO5

sinO4 BO3

a
sinO4sinO~ BO6

'

sinO3 a . a
y4 CotO4 . +COSO3 CotO2slnO3

smO2 BO 2 3

a
sinO4 BO5

(54b)

8' c}

BO

It is easy to check that
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cot05
[n 4 &4]=— . 8'4+

sin e4 a03

[n,4, n 4]=cote4n, 4—
cose3 a—sin 03 cot02cos03
Sin 02 ae, ae, ao3

(55)

sinO& a
[&y4, 8',4]= —cote48' 4+ +cos03 —cot02sin03

sine ae, ae ae

Now, with the help of relations of the type

+xx +yy +xy +yx @zz ~ @yx+zz @yz@zx +xy ~

coi05 cot05
(fi'„44 „)=cote44,+ 4, (&,44, )=-

sin 04
' " '

sin04
(6 44,„)=0, . . .

the following relations are obtained for the commutators of the quasimomentum operators t 4..g4'

[k„,A„]= —A' = i AK—, ,
1

sine, a . a[N 4, N, 4] = A. — +cose, —sine, cote2
sine ae ' ae ' ae,

= —i fiK

cose)
[+,4, A'„4] = —A . —sine,

sine ae ' ae

= —tAK

This remarkable result, rewritten in the form

a—cose, cot02
1

(S6a)

[N„,A'„]= [K„,K, ],
[A'„,8'„]=[t„K,], (56b)

[N,4, N„4]= [K„K„]
(recall that K is algebraically an angular-momentum vector operator), is at the origin of the construction of a new stan-
dard representation for the angular part of the problem, that greatly simpli6es the structure of the matrix representing
the kinetic energy operator. Indeed, whatever f, we have also

[E„N„f] =0, [K,A'„f ) =+iAA,f, [K„'k„f]= i AP f, —

[K„,N f ]= i AN f,—[K,8' f ]=0, [k„8'f ]= +i AiV „f, '

[K„,N,I]=+tAN f, [K,k,f]— ihk, f, [k„R,f ]—0 .

(57)

Equations (56b) and (57) yield

[N 4+K Ay4+Ky] +2iA(N 4+K )

[N 4+K,N, 4+K, ]= + 2i A( N„4+K„),

[N 4+K N 4+K ] +2iA(Ny4+K )

[(N4+K), N 4+K ]=0 (Vg E [x,y, z]),
[Rs4+K, N .4+Kg ] = —0 (Vg, g'H [x,y, z]) .

(S8a)

(58b)

(58c)

This strongly suggests introducing, for the angular part
of the problem (in 8,, 82, . . . , 86), two new vector opera-
tors replacing K and N4, respectively,

L+ =
—,'(N4+K),

(59)
L =

—,')N4 —K) .

Equations (58) become

(60a)

(60b)

[L„*,Ey*]= +i AL,

[L ,L,+]= +iAL„——-
[L, ,L+ ]=+ iAL-—
[(L+—),Lg~] =0 (Vg H [x,y, z]),
[L ,L ]=0 ( Vg, g' E—[x,y, z]) . (60c)

Equations (60) definitely allow us to state that (i) both L+
and L are, algebraically, angular-momentum vector
operators; (ii) (L+), (L ), L,+, and L, make up a com-
plete set of commuting observables.

We have now in hand all the elements of the new rep-
resentation. By replacing K and N4 by, respectively,
L+ —L and L+ +L, Eq. (53) is rewritten as
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[A2, ]&
&——'(8,p)+ g [ b, (8,$)J2+[e,(8,$)+b (8,$)][(Lg )'+(L, ) ]

g =x,y, z

+2d (8,$)J (L+ L—
g )+2[eg(8,$) b—s(8,$))L~+Lg ] . (61)

From here on, we introduce for L and L the angular-
momentum standard representations, [ ~

L +, I + ) J and

I ~L, I ) ], respectively. Therefore, in considering care-
fully the difference in the commutation relations for L
and L [see Eq. (60a)], we have

(L*) iL, I ) =Pi L (L +—I)iL— , I ),

L, iL*,I +—) =Al+iL +—
, I ),

L+, ~L +, I +-) =-(L.++ -L;+)~L +,I-
=R[L+(L+——+ 1)—I +—(I +—+ I )]'i iL —,I +—+ 1),

L-+ IL+-, I'& =(E:—I&;-)~L', I*&

=fi[L*(L*+1)—I—(I +—+1)]' ~L*,I*+I) .

[Af&]& can be straightforwardly rewritten in such a way

that only (L ),L, , E~+, an—d L* appear in its expression

(analogous to Eq. (50) for [As]&). Next, a general expres-

sion can also be given for the current matrix element

(I',m', L+', I+',L 'I ',J',j '
[Att]& I, m, L+,I+,L,I,Jj ),

in terms of all the quantum numbers, and also of b„' '

and so on [analogous to Eq. (52)]. In this representation,
J, L+, and L are obviously conserved quantum num-
bers, as far as the kinetic energy operator is only con-
cerned. The kinetic coupling scheme in

( I+I jl+'I j'') (analogous to that schematically
represented in Fig. 1) can be given as well. This we shall
not do here for the sake of brevity. But it should be em-
phasized that the problem is nevertheless entirely solved
for five particles.

VI. DISCUSSION

We have attempted to treat the six-particle problem
(angles 8; up to i =9) in following the same approach as
above for five. The intermediate calculations, done by
hand, turned out to be overwhelming, and we have not
been successful, most likely just because of a few mistakes
in the calculation. It nevertheless allowed us to observe
many algebraic structures for the operators jtIg and
a=5. We have reached a point, in the development of
this algebra, at which, were it not for the aforementioned
calculation errors, we can conjecture a recursive demon-
stration. With all the caution that a conjecture requires
(we clearly do not claim that it is a demonstrated result),
the conjecture is the following.

For N particles, n =N —1, Eqs. (42) being applicable,
[A3 t]g can be reexpressed in terms of new quasi-
momentum vector operators that are linear combinations
of K, N4, . . . , N„, according to the irreducible represen-
tations of the (n —2)-dimensional cyclic group, C„2.
For example, for six particles, n —2=3, the linear com-
binations could be

L"~ Nq+N4+K,
~E
L ' ~N5 —N4,

L ' ~ Ng+N4 —2K .

+2

-2-1 0 +1+2-2 -10 +1 +2-2 -1 0 +1 +2-2-1 0 +1+2-2-1 0 +1+2

-2 d
0

-2 0

0

0 x

-2

-1+ x

-1 0

+2

+ x

x

0
x

0

0 0

+2

+1 0

+ x d x +
+ x d

+

+ 0

0

+ X d ' x +

+ x ' d

-2

+ x d

+ 0

x d

+ x d

x +

+2 0

+2

0 d 0

+ x d

+ o

FIG. 1. Schematic illustration of the block structure (with
respect to the quantum numbers j and k) of the matrix
representing [A, ]& in the basis [ ~l, m, K,p, k, J,rj ) ). For [A, ]&,J and K are conserved quantum numbers, and r and p are pure
degeneracy indices. The various nonidentically zero blocks are
(i) kj~kj (diagonal blocks, d); (ii) kj~k+2j (0 ): internal de-
formation couplings; (iii) kj~kj+2 ( + ): overall rotation terms;
(iv) kj~k+ 1j+ 1 ( X ): Coriolis couplings; (v) kj~k+ 1j+1
(+): Coriolis couplings. 5k and 5j, as row (6k15jl) and
column (5k25j2) indices, allow one to identify the blocks
(k +6k&j+5ji~k +6k2j +5j2)~ The array is arbitrarily limit-
ed to ( ~5k ~, ~5j~ ) ~ 2 for the sake of brevity. Each block that is
nonzero is a priori full, i.e., all coupling matrix elements
1m~i'm ' can be nonzero.
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After multiplication by appropriate constants, the new
operators are algebraically pure angular-momentum vec-
tor operators. From that point on, a11 the rest of the
work would be long and perhaps tedious, but straightfor-
ward.

For demonstrating the conjecture, two steps are prob-
ably necessary. (i) Reattempt to solve the problem for six
particles in playing with coordinates and the rules of
differential calculus. This will be the starting point of a
possible recursive demonstration. Indeed, this strategy
has always worked until now. But, this time, owing to
the very intricate character of the intermediate analytical
operations, advantage should be taken by using one of the
powerful computerized routines based on symbolic ma-
nipulation that allow practical analytical calculations
(MAcsYMA, MAPLE, MATHEMATIcA, etc.). (ii) Reinvesti-
gate, from the very beginning, the vectorial structure of
the problem described in I. A particularly interesting ap-
proach of that sort has been recently proposed by Robert
[25]. Then the quantization should be studied along the
line of argument of Lie algebra, i.e., within a pure linear
algebra context.

The quantum-mechanical treatment of the PAH
description of the N-body systems is therefore still an
open question. This description, as far as the kinetic en-

ergy is only concerned, seems to be optimal, i.e., it leads
to a representation in which many quantum numbers are
conserved. The present article has simply aimed at (i)
putting the problem in a physically and mathematically
appropriate way, and (ii) solving it for four and five parti-
cles. The latter case is the one for which the general X-
particle regime really applies, as marked by the appear-
ance of the first N -type operators. Four Jacobi vectors
describe this system; the fourth one is necessarily linearly
dependent on the first three [25].

Last but not least, it should be emphasized that the
standard representation developed in the present paper
provides a quantum finite-basis representation (FBR) in
which the kinetic energy matrix is probably optimally
sparse. Combined with a discrete variable representation
(DVR) for the potential (which is local, i.e.,
nondifferential), it will make up an attractive collocation
scheme for more-than-three-particle systems (cf. pseudo-
spectral methods [26—35]. This double discretized repre-
sentation for a quantum dynamical problem is very advis-
able since the fast Fourier transform and the inverse are
now commonly implemented on supercomputers [36].

a =psingcosg

a =psingsing

a, =p coso

p&[0, 0D]

In the quantum treatment above, in order to make sure
that the Hamiltonian operator has all the prescribed in-
variance properties [21], the domain of definition of 8 and

P has been extended:

8E [0,~] and PC [0,2m] .

However, for any Jacobi r,'.

(i =1,2, . . . , n =N —1), we still have
vector

r,', ~psingcosg,

r,
' ~ p sing sing,

r,', ~ pcosO

For four particles, n =3, we have [see Eq. (41a)]

«&=sing sin 82sinp dpi gd pd g,d g2d 83d }d pd ~

If the wave function (4&)„ is written in the form

yz planar

r z linear

x linearJE

so that [recall that the BF frame is the principal-axis sys-

tem (PAS)] (a) if g=m. /2, the system is xy planar; (b) if

P =0 or n, the s.ystem is xz planar; (c) if P =~/2 or 3n /2,
the system is yz planar; (d) if 8=0 or ir, the system is z

linear; (e) if g=m /2 and / =0 or n., the system is x linear;

(f) if g=m. /2 and P=m. /2 or 3n./2, the system is y linear.

Figure 2 gives an illuminating illustration of all the par-
ticular system configurations, as determined by the 8 and

P values.

APPENDIX 8:
RADIAL CLOSE-COUPLED EQUATIONS

APPENDIX A:
LINEAR AND PLANAR CANFIGURATIQNS

y lin

In Eckart's classical treatment [2], the three gyration
radii of the system, a, a, and a„are positive length-
dimensioned quantities, to which the x, y, and z com-
ponents of all Jacobi vectors are proportional, see I, Fig.
1. In addition, in I, a spherical parametrization of the
gyration radii has been introduced, which achieves the
hyperspherical description of the system:

zx planar

FICr. 2. Spherical representation of the range of variation for
the angles 8 and P, in the quantum problem. In this representa-

tion, the planar configurations of the system, in the xy or yz or
zx planes of the PAS, correspond to circles in the xy, yz, and zx
planes, respectively; and the linear configurations along the x or

y or z axes of the PAS correspond to points on the x, y, and z
axes.
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g &j(~,P r ) g &i (8 0) g &2K+ 1~K (83 82 ei )+I » k(P)
&2J+1 k

8'
& I m Ik,p k

where E is the total energy, J is the conserved rotational quantum number, and r is an index accounting for the (2J + 1)
degeneracy of the level

~ J,E ) owed to space isotropy, then the close-coupled equations for the radial wave functions
Rt .»~k(p) a«, cf. Eq. (52),

$2 Q2 g llmm+ g llmm

E+—V" (p)+ l(l+1)+ [K(K+1)—k +J(J+1)—j ]2 gp2 2

+b llmm(k2+ j2)+2d llmmkj Qj (p)

I', m'(%1, m)

b I'lm'm+ b
I'Im'm

V'~™~(p)+ [K (K + 1)—k +J (J+ 1)—j ]

+.bI'Im'm(k2+j2)+2dl'Im'mkj Qf
'

(p)

$2 y
I'Im'm

b
I'lm'm

+
4P2 I 2 [ &(K +k +2)(K +k + 1)(K —k)(K —k —1)%j»pk i2(p)

+&(K +k)(K +k —1)(K —k +2)(K —k + 1)W ( ~qk i(p)

+&(J+j+2)(J+j+1)(J—j)(J—j —1)%]+»~k(p)

+&(J+j)(J+j—1)(J—j+2)(J j+1)&)—»zk(p)]

+(d„'' +d'' )[ v'(K+k+1)(K —k)(J+j)(J j +lb' Ji »~k+i(p)

+v'(K +k)(K —k + 1)(J+j+ 1)(J j)R/r+'»~k —i(p) )

+(d) ~ d" )[ V—(K +k + 1 )(K k)(J+j+—1 )(J j)&]r+'», k
—+ i(p )

+&(K+k)(K —k+1)(J+j )(J j+—1)&'I '»pk i(p)]

+
2 g Q ~ (2K + 1 )(2K + 1)V»'Ep'pk'k(P)+f'm'»'p'k'(P

877 I' ' g' p'

where

Vi&'
'

(p)= f dP f "sinede[P) '(8, &)]'V&(p, e, p)PP(e, g),
V»'» k k(p)= f dp f sinede['P) (8&$)]*5) (8&$)f"de,f "sine,de, f"de,[~»" (8, ,8„8,)]'~K(81&82& 3)

0 0 0 0 0

X V(p, 8,$, 8„82,83) .

It should be emphasized that, although they are on the
same footing in the kinetic energy terms, the quantum
numbers J and K on the one hand (j and k on the other
hand) are appearing in a completely different way in the
potential energy term (e.g., J is conserved, whereas K is
not), just because the potential energy function V depends
on 8„82, and 83 (which are internal coordinates), but not
on a, P, and r (the Eulerian angles), because the potential
V is by definition rotation invariant. It is an indication
that the standard representation introduced in this paper,

I

which gives for the kinetic energy a sparse matrix (in
which the quantum numbers K and p are conserved), has
not been built for representing the potential energy in a
simple way. This once again suggests that a double rep-
resentation is advisable for the dynamical treatment of
polyatomic systems (collocation methods [26—35]: a grid
expansion of the wave function (DVR) allows one to take
advantage of the local character of the potential, whereas
a state expansion (FBR) is to be used in order to make the
kinetic energy matrix as sparse as possible.
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