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Solution for an arbitrary number of coupled identical oscillators

F. Michelot

(Received 23 July 1991)

We propose a solution to the problem of solving the Schrodinger equation for an arbitrary number of
identical one-dimensional harmonically coupled oscillators raised by Fan Hong-yi [Phys. Rev. A 42,
4377 (1990)]. The relationship between the Fock spaces associated with the uncoupled and coupled os-
cillators is given as well as the coordinate representation of the eigenstates. In view of further applica-
tions, the Lie algebraic properties of the model are examined, and the generalization to three spatial di-
mensions is made.

PACS number(s): 03.65.Ge, 31.15.+q, 03.61.Fd
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Many problems in molecular, atomic, and nuclear
physics rely upon the solution of Schrodinger-type equa-
tions for coupled harmonic oscillators. In particular, in a
recent paper [1) a solution for four hartnonically coupled
identical oscillators was proposed and the generalization
to the case of an arbitrary number of oscillators left as a
challenge for the future.

In this paper we show that the solution can be obtained
through only one simple, clearly defined, coordinate
transformation. The computations can be made entirely
in two Fock spaces; but the connection with
Schrodinger-type representations is also given. In view of
further applications, we indicate how the use of Lie alge-
braic techniques and of the permutational symmetry of
the problem allows us to classify the degenerate eigen-
states. Also, the straightforward generalization to three
spatial dimensions is established.

Although the problem treated here is very different
from the one considered by Kramer and Moshinsky [2] in
their study of the dynamics of an n-nucleon system, their
approach was quite useful to us and should be borne in
mind for applications to specific physical problems.

II. THE HAMILTONIAN

Let d be the number of coupled oscillators; then the ex-
tension of the previously considered Hamiltonian [1]is
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which satisfy

[a;,a ]=[a;,a. ]=0, [a;,a~ ]=5;
We then have

(2.3)
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where I is the identity operator and g' means that the
summation is made with the condition i &j; also for con-
venience we set
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At this point it is important to note that H is obviously
invariant in the permutation group Sd of the "particle"
indices. Also a basis for the Hilbert space of states & is
given by the eigenstates of Ho,

=1 2m 4

=Ho+H', (2.1)

d d n.

In„. . . , n, &= g In, &= g (n, !) '"a, 'lo, & . (2.6)

where Ho is the Hamiltonian for d identical one-
dimensional harmonic oscillators (HO) or equivalently
for a d-dimensional isotropic harmonic oscillator (IHO).
Both Ho and H' can be expressed in terms of the usual
dimensionless annihilation and creation operators

Likewise we could use the "x representation"
d

Ix„.. . , xd &= g Ix, &,

both bases being related by

(2.7)
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(2.8)

where the y„are the usual HO eigenfunctions. In the

following, when there is no ambiguity, we shall set

and

8p= — P=-
i Bx,

' ' i BX,

Straightforward computations with the preceding rela-
tions lead to

~n, , . . . , nz&=~n&, ~x„.. . , xz&=~x&, (2.9)

and the vacuum state will be denoted ~o &, where the dot
means repeated zero.

and

d p2

2m
(3.7)

III. EIGENVALUES AND EIGENSTATES

Let I be the representation of Sd generated by the set

[x; I (or [a; I, or [a;tj ). Within a class (1 ', 2 ', . . ., d )

of Sd, the contribution to the character is equal to the
number of cycles of length one,

X (1 ', . . . , d ")=v, .

The reduction of I is obtained by standard rules [3]

kd "H'= Q X
r=1

Thus

d —1 P PH= g +—'mao X + +—'mao X
2m ' " 2mr=1

=H1+H2 .

(3.8)

(3.9)

I =[d]+[d —1 1] . (3.1)

This suggests that the Jacobi coordinates, as introduced
in Ref. [2], should be appropriate since they are classified
according to the irreducible representations of Sd. These
can be written

' 1/2
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CO= CO +
m

(3.10)

In the new coordinate system H is the Hamiltonian of
two uncoupled IHO, one of dimension d —1 with fre-
quencies
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(3.2}

[X„P,.]=i%5„, s,s'=1, . . . , d . (3.11)

in each dimension, the other being one dimensional and
of frequency co.

The transformation (3.2) being orthogonal, we neces-
sarily have for the Jacobi coordinates operators and their
conjuguate rnornenta

We note that

X&C[d] and [X„]F [d —ll] (3.3)

X1

and that these new coordinates are naturally sym-
metrized in the whole chain Sd DSd 1D DS2. If we
set
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Thus, new dirnensionless annihilation and creation opera-
tors can be defined by standard rules
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Eq. (3.2) can be written

(3.5)
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A being an orthogonal d Xd matrix. Then the transfor-
mation law for the conjugate momenta is

So the Hamiltonian (3.9) becomes

p„=A'P~= A 'Px,
with

P1

(3.6) H=kco N+ +fico(N„+ —,'),d —1

where the new number operators are defined by

(3.13)

Px= Px= Nq=b~bq, N= g b, b„= g n„. (3.14)

Pd Pd The new Fock space is spanned by the eigenstates of H
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(n „.. . , nz „nz &
= ~n, nz &

d= g(n, !} ' b,t ~o, ) .
s=1

(3.15}

IV. THE EIGENFUNCTIONS

First we note that the "Xrepresentation" is completely
determined

The eigenvalues are given by

and

s=1

E„s =A'co n+ +fico(nq+ —,'},cj —1

where we set n =+~:,'n„.

(3.16} d

(X„.. . , X ~n„. . . , n )= g y„(x,)=p„(X), (4.1}
s=1

where the q& (X, ) are the usual HO eigenfunctions,
n s
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The H„are Hermite polynomials.
The Jacobian for the transformation from the x; to the

X, being one, the eigenfunctions

qr„( x)=( x„. . . , zx~n„nz, . . . , nz) (4.3)

are readily obtained from (4.1) and (4.2) with the substitu-
tion given by Eq. (3.2}. As a check, one can verify that in
this way the last equation of Ref. [1] is recovered (up to

'

I

I

an unessential phase factor} by setting d =4 in our
preceding results.

V. RELATION BETWEEN THE TWO FOCK SPACES

For most practical applications it is more interesting to
work in second quantization; in addition, this allows us to
see more clearly the Lie algebraic properties of the prob-
lem. The two sets of boson operators we introduced are
related by
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(o &="U~o & (5.3)

can be determined with the simple following arguments.
Let &„denote the subspace of & associated with the ei-

The corresponding equations for the annihilation opera-
tors b„, bz are deduced by taking the adjoint of (5.1).
Then in order to relate the two Fock spaces (3.15) and
(2.6) one only needs to relate the two vacuum states, re-
spectively, defined by

a, ~o; ) =0, i = 1, . . . , d

(5.2}

b, i
&o=O, s=l, . . . , d.

The general form of the operator '"U which connects the
two vacuum sates

genvalue A,(n)=%co(n+d/2) of Ho. From Eq. (2.4) it is
clear that

where ~y„) and ~%„) belong to &„and ~%„+z) to &„+z.
Thus H can be diagonalized by considering separately the
subspaces of & associated with even and odd values of n:
an eigenket of H is a linear superposition of kets ~ql„)
with n even or odd. In particular, for the ground state

~o ) only even values are involved.

Moreover, the states ~o ) and ~o ) are totally symmetric
in Sz, i.e., of symmetry [d], thus "U can only be a linear
combination of even powers of operators invariant in Sd
built from the [a, ]. From the known symmetry proper-
ties [Eq. (3.1)] of the [a,. ] in Sz, it is easily shown that
only two operators of degree two and symmetry [d] exist,
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the simplest ones being

d 2 d

y a,' and y 'a,'a,'. (5.4)

&olo &
= &0 l'"Ut' Ulo &=1,

with "U~=y* e "
00

(5.14)

Thus the most general form for the operator "U satisfy-
ing the preceding conditions is

gt +p
&oIo&= y~l' y (

—1)'", (oIA'A "Io), (5.15)
t,p =0 t Ip 1

QO d
(o) U
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P

ij =1
(5.5)

but (5.9) implies

(ol A'A "lo)=(ol A'A'Io)b„ (5.16)

The complete determination of the coeScients y is
made in three steps.

(i) Equation (5.3) implies

b, lo) =0=[b„"U]lo)+Ub, lo), s =1, . . . , d . (5.6)

The computation is simplified if we choose s =d [Eq.
(5.1)] since then (5.6) reduces to

and
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which allows to write (5.5)

Expanding the commutator with the known form (5.5) of
"U leads first to a recursive relation

With these relations we obtain

1 (2t+d —3)!!
t! (d —3)!!

which is a convergent series since A, d & 1. Thus, within
an arbitrary phase

(o)U y ( 1)(y
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and finally "Ucan be written
(d —1)/4

(5.18)

(ii) To determine yo, it is more efficient to use

Hlo & =E(o)lo) =[H 'U]lo )+"UHlo )

than (5.6) for other values of s,

(5.10)

A being defined in (5.9}. We note that in the limit k ~0
(no coupling), co~co and "U~I.

VI. LIE ALGEBRAIC PROPERTIES

E(o ) I
o ) = A' —+ fico

2 2
(o)Ulo ) (5.11)

2
(t +1)y, , =Ay„+ d'(t +d —1) lot Pot —1
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with A oi =A yoo and A. =(co—co)/d (a)+co), from which we
readily deduce

and

The two terms on the right-hand side of (5.10) and their
action on the vacuum state lo ) are easily determined and
so we simply give the recursive relation that we obtain

The study of the Lie algebraic properties, considered in
this section, is not of great help for the present problem
since the degeneracy of the levels, when n increases, is
very high as soon as d )3. But they are important in
view of further developments in which the model Hamil-
tonian considered here would be a zeroth-order approxi-
mation of a more complicated system.

As it is well known [4,5] the symplectic algebra
sp(2d, R) is of special importance for the study of d-
dimensional IHO. Within our notations its d(2d+1)
generators can be written

(6.1)

It admits two infinite-dimensional unitary representations
which, respectively, span all the states associated with
n=g;n, even or odd, hence the e. ntire space % of our
problem. The sets

(o) U (5.13) b, b... b, b, , b, b, , s,s'=1, . . . , d (6.2)

(iii) The last coefficient is determined, up to a phase, by
the normalization condition

are also the generators of an isomorphic sp( 2d, R ) alge-
bra; from (5.1) the two bases (6.1}and (6.2) can be related
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and the coefBcients of the transformation are real. Furth-
ermore, (6.2) admits two symplectic subalgebras,

Si =sp(2(d —l), R ), S2=sp(2, R),

co being still given by (3.10). H is now the sum of two un-
coupled IHO, one of frequency co (respectively, co ) and di-
mension 3(d —1 ) (respectively, 3)~ The eigenvalues and
eigenstates are readily obtained [Eqs. (3 ~ 15) and (3.16)]

respectively, spanned by the generators (6.2) when
s,s'= 1, . . . , d —1 and s =s'=d.

In addition, any element of S1 commutes with any ele-
ment of S2. Their unitary subalgebras u(d —1 ) and u(1)
are the degeneracy algebras of our two IHO of frequency
co and m. An algebraic chain for our problem is thus

sp(2d, R ) Dsp(2(d —1 ),R )esp(2, R ) Du(d —1 )eu( 1) .

(6.3)

E =fico n+ +%co(nd+ —', ),3(d —1 )

n, nd

/n n~)= Q(n )'. b /o ),
a, s

where now

d —1

n= g n =g g n „,

(7.7)

(7.8)

VII. EXTENSION TO THREE SPATIAL
DIMENSIONS

We shall only briefly sketch how the extension to three
spatial dimensions can be done very straightforwardly
from the one-dimensional case. A natural extension of
(2.1) is given by the model Hamiltonian

H= g + —,'mco r, +—g (r, —r ), (7.1)

where now r; = (x;, y;, z; ) are the vector positions of the
individua1 particles. The Jacobi transformation is equally
well defined [2]; (3.2} can be taken in vector form.
Equivalently (3.5) becomes

X= Ax, Y = Ay, Z = Az (7.2)

Instead of one, we have now three sets of boson operators

The Hamiltonian H (3.13} is a linear combination of
the two linear invariants of u(d —1 } and u(1) and the
eigenkets (3.15} span an irreducible representation [n 0 ]
[nd ] of u( d —1 )eu( 1). One could further classify the
states in the invariance groupe Sz, obviously all states ~o,

nd ) are of symmetry [d], i.e., totally symmetric. For the
other oscillator the appropriate symmetries are given by
the reduction of the symmetrized Kronecker products of
the [d —1 1] irreducible representation of S& associated
with the fundamental state

~ 1, od ) . Within the zeroth-
order model we have, this is not a necessary step, but it
could become so if further interactions were to be added.

a=X, Y, Z a r=1

(7 9)

nq= g n d .
a=X, Y,Z

Likewise, the transformation connecting the two vacuum
states is

~o ) ="V(o),

(o) y (o) U (o) U (o) Ux y z

(7.10)

each term in the product being given by (5 ~ 18) in which
A is replaced by A, (r:x,y, z}

From an algebraic point of view there is much more
freedom than in the one-dimensional case considered in
Sec. VI. In addition to the Sd symmetry, the Hamiltoni-
an (7.1) exhibits an O(3} symmetry associated with the
conservation of the total angular momentum

d d
L= g I, = g r Xp, (7.1 1)

From the set of boson operators (7.3) we get now a
sp(6d, R ) algebra and the subalgebras S, and Sz of Sec.
VI are replaced by

S', =sp(6(d —1 ),R }, S2 =sp(6, R) .

b „bIi„a,p=X, Y,Z, s =1, . . . , d,
satisfying

(7.3) We can also introduce the degeneracy algebra of (7.5)
which is clearly

[b „bs,. ]=5 P„. . (7.4) u(3(d —1))eu(3}, (7.12)

They are given for fixed a by the same equations (5.1}as
in the one-dimensional case. So, without any calculation
we can write

with respective generators given by

b arbor, r, r'= j, , d —1

(d —1)H =%co N +3 +%co( Nd +—,
' ),

where [Eq. (3.14)]

(7.5)

b~obpd, a,P=X, Y,Z

(7.13)

N NX+NY+Nz~ Nd =Nxd +Nrd +Nzd ~ (7.6)
each admitting an o(3} subalgebra. Hence a possible
chain is
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sp(6d, R) Dsp(6(d —1),R )esp(6, R) &u(3(d —1))eu(3) & [u'(3)eu(d —1)]u(3) D [o'(3)eu(d —1)]o(3), (7.14)

where the last two elements in the chain, obtained by the
usual contraction process [2]

d —1

g b „bit„and
a=X, Y, Z

are, respectively, the generators of u'(3) and u(d —1).

VIII. DISCUSSION AND CONCLUSION

We hope that our method for solving the problem of an
arbitrary number of harmonically coupled oscillators will
find applications in several areas of quantum physics; also
the exphcit realization of the transformation between the
zeroth-order and the coupled bases should be useful. One
interesting feature is that the appropriate degeneracy
algebra is not the usual [2,5] unitary subalgebra of the in-
itial sp( 2d, R ) [or sp( 6d, R )] algebra spanned by the d
mode boson operators of the uncoupled oscillators. This
comes from the mixing of annihilation and creation
operators induced by the transformation to Jacobi vari-
ables as it is apparent in Eq. (5.1).

At this point we may note that in their extensive study
of the correlation diagrams for rigid and nonrigid three-
to six-body systems, several authors [6,7] used a Hamil-
tonian similar to that given by Eq. (7.1). The motion
with frequency to [Eqs. (3.13) and (7.5)] is associated with
an oscillation of the center-of-mass vector, the corre-
sponding spurious excitations of which are commonly el-
iminated [2,6,7]. The Hamiltonian, associated with the
3(d —1) remaining internal degrees of freedom, is taken

I

as a model for an ideal nonrigid system and the starting
point is the degeneracy algebra [u(3(d —1)) in our nota-
tion] of this limiting case. The connection to the rigid
limit is accomplished by introducing suba1gebras associ-
ated with conservation laws inferred from the physical
properties of an ideal rigid system. To some extent, our
approach is complementary since it is situated higher in
the dynamical chain [Eqs. (6.3) and (7.14)]. The opera-
tors lying outside the degeneracy algebra allow laddering
between states of different degenerate levels; these opera-
tors are commonly associated with transition moments
and their matrix elements can be easily computed either
in the zeroth-order or in the coupled basis. Also our ap-
proach allows other physical interpretation of the d-mode
boson operators. For instance, although the physical
meaning of the dynamical variables is very different, we
believe that, as suggested [8], a rather similar mechanism
is involved in molecular-spectroscopy vibrational prob-
lems when one changes from external symmetry coordi-
nates to normal coordinates. Also a possible application
would be the zeroth-order treatment of stretching modes
in molecules with d equivalent bonds, which are not too
anharmonic, and for which algebraic models have been
proposed [9—11].
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