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Realism and the quantum-mechanical two-state oscillator
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We consider how a class of realistic models in which an individual system, while undergoing transi-
tions, is at any instant definitely in one or the other state can mimic the prediction of quantum theory for
two-state oscillations. We show explicitly the way in which the measurement must be invasive for such

models, even at the microscopic level.

PACS number(s): 03.65.Bz

In recent years, there has been considerable debate
[1-6] about an argument given by Leggett and Garge
[7,8] claiming to show that the conjunction of two gen-
eral assumptions of macrorealism and noninvasive
measurability leads to an inequality imposing constraints
on time-separated joint probabilities pertaining to oscilla-
tions in two-state systems. This inequality is shown to be
violated by the predictions of quantum mechanics as ap-
plied to rf superconducting-quantum-interference-device
(SQUID) rings at the macroscopic level. The relevant de-
bate has so far focused on the following issues: (i) wheth-
er the assumption of noninvasive measurability (that it is
possible, at least in principle, to determine the state of an
individual system with an arbitrarily small effect on its
subsequent dynamics) is satisfied in the particular case of
a measurement of the flux state of an rf SQUID and (ii)
the validity of the assumption of noninvasive measurabili-
ty, in general, at the macroscopic level. In this paper we
use a specific class of realist model for the two-state oscil-
lator, thus following Bell’s exhortation [9] to “test gen-
eral reasoning against simple models.” We demonstrate
that the incompatibility is not between quantum theory
and realism, but occurs essentially with the additional as-
sumption of noninvasive measurability. We give an expli-
cit example of how quantum results may be recovered in
a straightforward manner for a realist model by violation
of noninvasive measurability.

We begin by considering a system, oscillating between
two states | 4 ) and |B ) which are degenerate eigenstates
of the Hamiltonian H:

HylA)=Eyl4), (1a)

H,|B)=E,|B), (1b)
and

(A4|Hy|B)=(B|H,|4)=0. (1¢)
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Oscillatory transitions between | 4 ) and |B ) are induced
by H' where

(A|H'|BY=(B|H'|A)=AE (2a)
and

(A|H'|A)=(B|H'|B)=E’. (2b)
If we take, at t =0,

lp(0))y=14), 3)
then from

(H0+H’)I¢(t))=iﬁ%|1/z(t)) @
we obtain
l(t)) =exp[ —i(Ey+E")t /%]

X [cos(AEt /#)| A ) —i sin(AEt /%)|B)] , (5

hence the following:

[{ A1) |>*=1(1—coswt) , (6a)

[{Bl¢(t))|*=1(1—coswt) , (6b)

where ® =2AE /#.

Equations (6a) and (6b) predict experimentally veri-
fiable probabilities for finding the system in one or the
other of the two states | 4 ) and |B) at a given instant .
A key feature inherent in the quantum-mechanical calcu-
lation of these probabilities is that before any measure-
ment the system is at any instant in a state that is neither
| A) nor |B) but a superposition of these two states with
time-dependent coefficients. Here the crux of the issue is:
Are the quantum-mechanical results compatible with the
“realist” assumption that an individual system, while un-
dergoing oscillatory transitions between | 4 ) and |B ), is

4267 ©1992 The American Physical Society



4268

at all instants either in |4 ) or B ), independent of the
act of measurement? Compatibility would require that
the integrated behavior of an ensemble of such identical
systems should yield the results (6a) and (6b).

We begin by noting that if y ,(¢) and yg(f) denote
probabilities for finding the system in |4 ) and |B), re-
spectively, at an instant ¢, then the realist description
would imply the following rate equations for describing
the oscillations of the system between | 4 ) and |B ):

vy (t+dt)=y, (t)(1— W dt)+yg(t)W,dt , (7a)
yplt+dt)=yg(t)(1—W,dt)+y ()W dt , (7b)

where W, is the rate of transition (transition probability
per unit time) from |4 ) to |[B) and W, is the rate from
|B) to | A). Note that these transition rates are defined
essentially in the realist description and have no counter-
part in the quantum-mechanical treatment; the underly-
ing assumption is that there exist elements of reality that
determine the values of these transition rates pertaining
to an individual system. From Egs. (7a) and (7b) we ob-
tain the differential equations

dy

th :_leA +W2yB ’ (83)
dyg
dr =—Wypt+Wyy, . (8b)

The question of compatibility between quantum mechan-
ics and realism in the context of the two-state oscillator,
therefore, reduces to the following one: Consistent with
the quantum-mechanical expressions for y ,(¢) and yz(?)
given by Eqs. (6a) and (6b), respectively, is it possible to
have physically reasonable W, and W, that satisfy Egs.
(8a) and (8b)?

A straightforward way to examine the above question
is to write down the solutions of Eqgs. (8a) and (8b) for y 4
and yp in terms of W, and W,, subject to the initial con-
ditions

y,(t=0)=1, yg(t=0)=0. )

If, for the moment, we assume that W, and W, are con-
stants, this solution is

Vo ={Wy+Wiexp[— (W, + W, )t |}/ (W, + W),
yp=W {l—exp|— (W, +W )t} /(W,+W,) .

(10a)
(10b)

It is then obvious that there are no real values of W, and
W, that make Egs. (10) compatible with Egs. (6). In
passing, we note that consistency is possible if W, and
W, are complex and if we regard the real parts of the ex-
pressions in (10) as the physical quantities. However, we
reject this “solution” as being incompatible with the real-
ist conception, because W, and W,, even though not
directly observable, have the same ontological status in
this realist model as actually observable quantities (we
could not make a classical system with this behavior).

We are therefore forced to drop the restriction that the
W’s are independent of time. Then we ask whether it is
possible to find suitable expressions for W, and W, such
that the solutions of Egs. (8) agree with the right-hand
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sides of Egs. (6). Thus we put

y4(O)=[C4[¢)*=1(1+cosot) (11a)
and

yp()=[{(B|¢)|*=1(1—coswt) . (11b)
Differentiating with respect to ¢ gives

Y4 = —twsinot (12a)
and

Yp=1wsinot . (12b)

Inserting (12) into (8), we find that W, and W, must
satisfy the following relation:

o sinwt =W ,(1+coswt ) — W,(1 —coswt) . (13)

(There is only one equation here because both models en-
sure particle conservation.) We are interested in solu-
tions of (13) for which both W, and W, are non-negative.
Possible forms are

A+sinwt

W, =o—— 1
1m@ 1+ coswt (14a)
and
Wy=o—" (14b)
1—coswt

for any positive A satisfying A+sinw? >0. For example,
with A=1—1sinwt, we have

W 1+ 1 sinwt
= p—— 1
1m@ 1+ coswt (15a)
and
1—1sinwt
W,=o——mm. (15b)
1—coswt

With such time-dependent expressions for W, and W,,
we have a realistic model which agrees at all times with
the predictions of quantum theory for the distribution of
states 4 and B. What this means is that we could con-
struct a large number of mechanical two-state devices
such that the proportion in, say, state A at any given
time is given by Eq. (6a), apart, of course, from statistical
fluctuations. An example would be to use a ball bouncing
about in a closed container with two parts ( A and B)
separated by a membrane with a hole in it. The time
dependence of the transition rates could be modeled by
having the sizes of the containers vary with time. That
this is possible should not surprise us; it is simply the
two-state analog of the hidden-variable model of de
Broglie—Bohm. The fact that, here, the model is stochas-
tic (it contains transition probabilities) rather than deter-
ministic, as in de Broglie—Bohm, reflects the fact that in
a two-state system only one ‘“‘trajectory” is possible. Of
course, the classical construction referred to above has an
underlying origin for the stochasticity, namely, the ran-
dom trajectories of the ball.

That the W,’s have to depend on time is also not
surprising in view of the de Broglie—Bohm model. It
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should really be thought of as a dependence on the wave
function, which also depends on time, and merely reflects
the dependence of the quantum potential of the de
Broglie—Bohm model on the wave function. The particu-
lar choices of Egs. (14) and (15) make W, and W, infinite
at particular times. It may be shown that this is a general
requirement of Eq. (13) if one insists on W, and W, being
continuous as well as non-negative. However, this does
not have unphysical consequences since the relevant
products in Eq. (8) remain finite.

It is this time-dependent feature of the macrorealistic
model that causes some problems in trying to reconcile it
with all predictions of quantum theory. As we have seen,
by construction, there is no problem when we look at the
probability of a single result. However, if we ask for the
probability of obtaining, say, 4 at time ¢, given that we
have measured A4 at time 7, <?, then at first sight the
model seems to give a different result to quantum theory.
It is this fact that is exploited in the Einstein-Podolsky-
Roson-like proof of Leggett and Garg [7,8].

In orthodox quantum theory, according to the stan-
dard method of calculating joint probabilities, we start
again with the state | 4 ) at t=t,, and therefore obtain

(16a)
(16b)

ya=+[1+cosw(t—t,)],
yp=+1[1—cosw(t —1t,)]

[cf. Eq. (11)].

In our macrorealistic model the natural procedure is to
solve Egs. (8), with the same W, and W, as before, but
with y ,=1 at t=t¢, (not at t =0). To see what this im-
plies, we replace Eqgs. (8) by

Y =W, +W,yy,+W,, (17)
where we have used y , +yz =1. If we substitute

y4=3(1+coswt)+F (18)
in this equation, and use (13), we obtain

F=—(W,+W,)F . (19)
The general solution of (17) therefore has the form

»4=1(1+coswt)+C exp [_ [, +W2)dt] (20)
1

for any C.
Given the above condition at ¢t =t¢,, we now have

¥ 4=1(1+cosot)+1(1—coswt, )exP[_j‘t‘( W+ W, )dt].
1

2n

The results here depend on the precise choice of W, and
W,. However, it is easy to see that no choice allows (21)
to agree with (16a). To see this, we simply put the two
expressions equal, which give

cosw(t —t, )coswt

=(1—coswt, Jexp

—[fowi+wyar| . @2
1

Since, for some values of ¢, the left-hand side of (20) is
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negative, the equation clearly cannot be satisfied for all ¢
(unless, of course, t; =27n /w for integral n).

An alternative way of seeing that our macrorealistic
model cannot reproduce the predictions of quantum
mechanics is the following. First assume, as is required if
the model is to reproduce the predictions of quantum
mechanics, that both (11) and (16) are solutions of the
rate equations (8). Putting (11) in (8) gives (13) and put-
ting (16) in (8) gives

osino(t —t)=W,[1+cosw(t —t,)]
—W,[1—cosw(t—t,)] . (23)

Now, (13) and (23) are simultaneous equations which can
be solved for W + W, to give

W1+W2=wcot§(2z—t1) . (24)

This solution is unsatisfactory since it takes negative
values for some values of 7, whereas only positive values
of W, and W, are physically reasonable.

We have now established, with our simple model, the
alleged discrepancy between macrorealism and quantum
theory. It is here, however, that we have to introduce the
idea of noninvasive measurability. The result at this
stage refers to abstract mathematical quantities, so we
need to ask whether they have significance for actual ex-
periments. This means we have to “look” at our system
to see whether it is in state A or state B, i.e., introduce
some measurement procedure. To this end, we enlarge
the system by supposing that, at any given time, we can
send a “photon” through the oscillator. We also suppose
that this photon will not interact with |4 ) but is, say,
deflected through 90° by [B ) (see Fig. 1). Then the linear
combination a| 4 ) +8|B ) leads to the state

l¥)=al4)|1)+BIB)|—) (25)

in an obvious notation.

The properties of the oscillator, according to orthodox
quantum theory, are now obtained by considering the
mixture of | A ) with probability |a|? and |B ) with prob-
ability |B|2. This is because, in a suitable measurement
situation, the two photon states are orthogonal, and
hence there is no interference between the two terms in
Eq. (21). Thus if we have observed the state | 4 ) at time
t;, i.e., we have seen the |l) photon, we must use only
the | A ) state at ¢ >¢,. Hence we obtain the effect of col-
lapse of the wave function, and have the previous result
[Eq. (6)].

Note that we are assuming that the photon is a small
perturbation on the “dynamics” of the quantum oscilla-
tor. In principle, this is always possible—certainly so if
the oscillator is a macroscopic system. In this sense, the
measurement may be said to be noninvasive.

We now consider the macrorealistic model. Again it
may be natural to assume that the photon has little effect
on the system, so we would still obtain the contradiction
noted above. This would be the noninvasive case. How-
ever, we do not have to do this. We could instead design
the model so that, if the photon at time ¢, leaves at P (see
Fig. 1), it automatically resets the timing mechanism to
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State A State B

FIG. 1. How a photon is used to measure whether the system
is in state A or state B.

start at time ¢,. With such a mechanism, then the realis-
tic model will again agree completely with the results of
quantum theory, as is evident from Eq. (22). Similarly, if
the photon leaves at Q, it resets the timing mechanism to
start at time (7/w). With such a mechanism, then the
realistic model will again agree completely with the re-
sults of quantum theory.

We conclude then that we could actually construct an
object, working on strictly realistic, classical, principles
which would mimic the results of quantum theory.
Clearly, the model does not have noninvasive measurabil-
ity. Although the small exchange of energy with the pho-
ton might have a negligible effect on the basic system (i.e.,
on the ball in the container), it has an important effect on
the mechanism that is responsible for the timing and that
determines the values of W, and W,. This is how the
model gets around an interesting objection (Leggett and
Garg [8]). They note that if the photons come sufficiently
frequently, then they forbid the transition (this is the
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watched-pot or zero effect [10]), in which case there is no
exchange of energy since the photon only interacts with
| 4 ). How, ask Leggett and Garg [8], in a realistic model
can something that never interacts have any effect at all?
The answer here is that, though forbidding the transition
implies that y , and yp are not allowed to change, this
type of apparently noninvasive measurement can still
have an effect on other properties at the realist level,
namely, the values of W, and W,.

Whether we can regard a model of this type as a
“reasonable” realistic model is, of course, a separate
question. It appears more reasonable in the context of
the de Broglie-Bohm model, where it happens automati-
cally. This is because the quantum potential depends not
only on the system but on the combined wave function of
the system and the measuring apparatus, in this case the
position of the photon. If this is in the || ) state (as asso-
ciated with the | 4 ) state), then the only relevant part of
the wave function of Eq. (21)is | 4 )|{). It is this that is
used to calculate the quantum potential acting on the os-
cillator in the | A ) state. It is, therefore, clear that the
modification of the quantum potential accounts for the
effects due to the apparently noninvasive measurement.

We conclude that the experimental corroboration of
the quantum-mechanical predictions for two-state oscilla-
tions pertaining to macroscropic systems (such as an rf
SQUID ring) will not refute macrorealism per se, even
though such results would have an important bearing on
the quantum measurement problem as emphasized by
Leggett [11].
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