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Possibility of bound states obtained by perturbation theory
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It is well known that bound states cannot be obtained by Rayleigh-Schrodinger or Wigner-Brillouin
perturbation theories. Here we apply a recently developed perturbation theory to the hydrogen atom,
treating the full Coulomb potential as a perturbation. In first order we obtain a correction to the well-
known Lifshitz method. The third order gives almost the exact result.

PACS number(s): 03.65.Ge

I. INTRODUCTION

As far as we know, Wigner [1] was the first to try to
calculate the bound states of the hydrogen atom by per-
turbation theory. He found the first order in the poten-
tial to vanish, the second order to give E= —0. 1093
DRy, and all higher orders to diverge. The reason for
this defect was shown by Macke, Ziesche, and Hausmann
[2,3] to be a nonanalyticity of the series expansions of any
quantity (such as E) at zero Coulomb coupling constant.
Hausmann [3] succeeded in overcoming the divergencies
of the perturbation theory, obtaining poles of the scatter-
ing matrix by solving approximately the homogeneous
Born integral equation. His method, however, is restrict-
ed to one-dimensional problems with potentials of finite
range.

Perturbation theory nowadays has experienced re-
viewed interest in solid-state physics in connection with
the increasing importance of quantum. wells, superlat-
tices, etc. It is tempting to treat, e.g. , the cation
difference in a GaAs-Ga/A1As superlattice as a small
periodic perturbation over a homogeneous GaAs crystal
and to understand band structures and phonon dispersion
curves by folding those of the corresponding zinc-blende
structure. This often is done in qualitative discussions.
However, due to the importance of subbands, resulting
from bound states of single quantum wells, any quantita-
tive application of perturbation theory to superlattices
makes sense only if bound states can be described at least

approximately.
Another problem of interest related to the present

work is the calculation of the density of states in impure
semiconductors. With increasing concentration of, e.g. ,
shallow donors, the hydrogenlike bound states are ex-
pected to broaden into, e.g., Lorentzian-shaped impurity
bands, which then overlap with the conduction band. In
order to interpret optical experiments, a theory is needed
which is able to describe all bound states and results in
extended band tails of the main and of the impurity
bands. Band tails, however, cannot be obtained by the
well-known coherent-potential approximation [4]. Be-
sides, to our knowledge, this theory has never been ap-
plied to, and can hardly be used with, realistic donor po-
tentials [5]. Klauder [6] proposed a simplified version of
the coherent-potential approximation in which the so-

called multiple-occupancy corrections are neglected, but
which can be applied to realistic potentials. In this
theory band tails are missing again [5].

The formation of extended band tails in impure semi-
conductors has been studied extensively by Lifshitz (see,
e.g., [7]),but his method is based on an approximate solu-
tion of the impurity problem, which results in only one
bound state. Hence, the problem of obtaining excited
bound states in approximate theories is of interest for the
description of impure semiconductors, and will be con-
sidered in this work, too.

Recently, one of us [8] developed a perturbation theory
based on series expansions of the numerator as well as the
denominator of the one-particle Green's function. This
perturbation theory was originally introduced in order to
obtain correct spectral weights in contrast to those of the
Wigner-Brillouin perturbation theory, which is
equivalent to a series expansion of a denominator —the
self-energy, only. Subsequently, it was proved at the ex-
ample of a 5-like potential [9] that this kind of perturba-
tion theory yields bound states. In [9], however, the po-
tential Fourier components V( k =0) and
V(kAO):—V(k =0) have been treated in different ways.

Here we prove that the perturbation theory [8] gives
the correct Koster-Slater [10] result for the 5-like poten-
tial if V(k =0) and V(kAO) are treated uniformly. Then
it is applied to the hydrogen atom with the full Coulomb
potential as a perturbation. It is proved that the first or-
der gives a correction to the Lifshitz approximation for
bound states [7] and that already in third order almost
the exact result is reproduced. The Coulomb potential
being one of the worst possible cases, it can be concluded
that this perturbation theory can also be successfully ap-
plied to, e.g., superlattice band-structure calculations.

II. GENERAL THEORY

The expansion coefficients a„of the solution

p=g„a„1b„of the Schrodinger equation
Hg=(Ho+ V)/=ED into an orthonormal basis g„of
eigenstates of the unperturbed Hamiltonian Hog„=s„g„
are given by

Q[E—e„ )5„ —V„ ]a =0,
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with V„=(P„,Vg }. This homogeneous linear system
of equations has solutions only at the eigenvalues of
HP=Ef which are determined by

det [(E—E„)5„—V„]=0 .

Equation (2) is equivalent either to d„= d(q„. . . , q„)

has nondiagonal elements only, knn =0. Using the expan-
sion theorem of determinants, we obtain from (3},

00 m
( 1)n0=1—gW+g, d„,

q=1 n=2

det(5„—W„)=0

Vnm
with W„ or toE e„)—

(3) qn

Sq1q1 ~ ~ n Fq1qn
Wq2q, . . . Wq2q„
8'q„q, . . .8'q„q„

det(5„—k„)=0, (4) From (4) we still obtain an alternative expansion

where

Vnm

ao
( 1)n0=1+ g, e„

n=2
nm

n nn with

e„=
kq2q1

kq1q2 kq1qn

0 kq2q
(6)

q&Aq2% .Aq„=1
kqn q1 kqn q2

Vnn

E —en n

1 Vnn Vmm Vnni Vmn + o ~ ~

2! „(E—e„)(E—s )

(7)

and

The solutions of (6) are identical with those derived in [8]
from the perturbation theory for the one-particle Green's
function. Up to the second order in V Eqs. (5) and (6),
respectively, result in

V„m VmnE e„—V„„=—
(~ )

(E (9)

The solutions for E of either (7), (8), or (9) contain, of
course, higher orders in the potential V than the second
one. It has still to be shown that the second-order expan-
sions of these E coincide with the expressions of the con-
ventional Rayleigh-Schrodinger perturbation theory.
This is evident for the Wigner-Brillouin result (9), the de-
viations from

1 Vnm Vmn

2! „~ (E—e„—V„„)(E—e —V ) Vn V„E=s„+V„„+n nn
(

(10)

Equations (7} and (8) are symmetrized forms of the
Wigner-Brillouin equations

being of the third and of higher orders.
In the case of (8},we obtain for E =sI,

1 (E—c,i
—VII)V„V „

2! „~ (E—E„—V„„)(E—E —V )

Vnl Vl„ V„V „(E EI —VII)—
—&„—V„„) ! „~ ( —E„—V„„)( —E —V )

(n, m&l)

nl InV V

n (Al ) ~l ~n
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The same is true in the case of (7).
In comparison with (10) Eqs. (9), (7), and (8) can be

considered as special partial resummations of the pertur-
bation series for E. Such a resummation, however, is
necessary in the case of degenerate eigenvalues due to the
divergency of the Rayleigh-Schrodinger series.

As shown in [8], the special Wigner-Brillouin resum-
mation does not result in correct spectral weights in con-
trast to (7) and (8) as well as to the Rayleigh-Schrodinger
result (10). Hence, in the case of degenerate eigenvalues,
only the perturbation expressions (7) or (8) give reliable
results.

The reason for this defect of the Wigner-Brillouin per-
turbation theory is the following: Suppose n is a discrete
variable and is restricted by n =1, . . . , N. Then the ei-
genvalue equation (2) as well as, e.g., (8) give the correct
number of N eigenvalues. The N nonlinear equations (9)
yield a total number of M)N eigenvalues, however,
where M depend on the number of nonzero independent
V„. If we have, e.g., a total number of N electrons
within the system, the Wigner-Brillouin states can be oc-
cupied only by N/M ( 1 electrons in the mean, the densi-

ty of states being given by

p(E) = g a„5(E E„) wit—h a„&1,

where the E„are the solutions of (9). This was proved
analytically in [8].

Vm
2A'

(13)

for the bound state in an attractive 5 potential in one di-
mension [3].

IV. HYDROGEN ATOM

Choosing as the orthonormal basis set the functions
' 1/2

2
g( k(r)=k — g( ~

(kr),

we obtain from (1),

almk g almk' Vl(k
k'

(14)

with

V&(k, k') = f dr r j&(kr) V(r)j &(k'r )
2kk'

(15)

in the case of a spherically symmetric potential
V(r) = V(r) s-lik. e bound states then are obtained from

V{k,k)
E—A'k'y2m

dk, V( k, k ) V(k', k') V(k, k') —V(k', k )
z J 0 0 g2k2 g2kr2

2m 2m

III. ONE-DIMENSIONAL EXAMPLE + 0 ~ ~

In [9] it was shown that in the simplest case of a linear
chain of N atoms with s„=—coska, k =2m n /N,
n =0, . . . , N and N ~~ with a 5-like potential
V„=V/N for all n and m, (8) results in bound and anti-

bound states at E=+Ql+ —,
' V in contrast to the exact

result

1=—g ~ E=sgn( Y)+I+ V
V 1

N „E—c.„x

with

00

V(k, k') =—f dr sin(kr ) V(r)sin(k'r ) .
0

In first order (16) and (17) can be written as

Rk
277k

(17)

(18)

of Koster and Slater [10].
The reason for this difference can be traced back to the

difFerent treatments of the diagonal V„„=V/N and the
nondiagonal V„=V/N matrix elements in (8): The di-
agonal elements are taken into account exactly, the non-
diagonal ones being treated perturbationally despite the
fact that all are identical. This shortcoming, however
can be avoided, as follows.

With V„„=—V/N all d„ in (5) vanish, the eigenvalues
being given by

0=1—V/N g 1

E—c.„
In the same way we obtain in the one-dimensional case,
with s=A' k /2m and V(x)= —V5(x),

with

c(k)=
3 fd rj o{kr)V(r) .1

(2m. )
(19)

Lifshitz (see, e.g., [7] and [11]) solved the eigenvalue
problem of the Schrodinger equation approximately un-
der the assumption that the potential vanishes with in-
creasing r much more rapidly than the resulting wave
function. This assumption becomes correct for 5 poten-
tials, which cannot be treated in three dimensions due to
the divergency of

f d k [1/(E —A' k /2m )],
however. The result of Lifshitz is an equation formally
equivalent to (18), but with c(k) being given by [11]:

0=—1+ V f'-dk
2m —00 E—g k /2~

(12) c(k)=
3 fd rV(r)e

1

(2m )
(20)

which can be integrated to give the exact result In the case of the Coulomb potential, (18) with (20) re-
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suits in E= —2 DRy instead of E= —0.5 DRy.
We conclude that the approximate Lifshitz method is

correct in first order in V if c(k} is given for s states by
(19) instead of (20). But (18), together with (19},cannot
be applied to the Coulomb problem directly due to the
divergency of the integral f "dx(sin kx )/x in (19). This

0
divergency reflects the fact that the kernel of the homo-
geneous Fredholm integral equation corresponding to (1)
is singular in the Coulomb case (see, e.g., [12]). This
difficulty can easily be circumvented by treating the prob-
lem within a finite three-dimensional spherical box of ra-
dius R and then taking the limit R ~~.

We restrict ourselves to s states and use atomic units
m =A=e =1. The complete set of s-like basis functions
in a sphere of radius R with an infinite potential well is
given by

0
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4 ~ ~ ~ ~

V„=——[ci[(n —m)m ]—ci[(n +m)n ]],1
(21}

sin(n nr/R ).
v'2mR r

with n =1,2, . . . , ~. The potential matrix elements are
then given by [1]

FIG. 1. Binding energy of the lowest bound states of the hy-

drogen atom in a finite sphere of radius R according to the
second-order Wigner-Brillouin perturbation theory ( ) and
according to the perturbation theory presented here in second
(—~ —~ —~ ) and third ( ) order. E& is measured in DRy and
R in Bohr radii.

where ci(x) is the cosine integral

.
( ) f& coax 1

d
0 X

The unperturbed (kinetic} energy values are
'2

e„=(Q„,HO/„) =
—,
'

(22)

(23)

third order deviate from the exact result Ep=
2 DRy

by only 22% and 12%, respectively. In the fourth order
we obtained only a very slight improvement of the third-
order result.

The Wigner-Brillouin perturbation theory results in a
vanishing with increasing R binding energy. The reason
for this defect is the following: According to Eq. (21),
Vn vanishes with increasing R as

Up to the fourth order, (5) results in
1

Vnm (26}

M
nm mn

En Em

M

n~m~l En Em El

The asymptotic behavior for large R of the sum in Eq. (9)
can be obtained from (26) together with the asymptotic
integral representation of g" &1/(E —e ). With
hk =m /R andk =m b,k, we obtain for negative E,

nmalk

where

E =E—~
Im.

l ' R

2

(24)

—V11 (25)

Vnm Vml Vlk Vkn Vnm Vmn Vlk Vkl

En Em ElEk
i E—c, ~ =~ IEI+ —,'(mm. /R )

R " b,k
~ .=, IEI+-,'k

R ~ dk
o IEI+—'k2

R
&12IEI

(27}

and M~ao. (24} can be solved numerically for E, in-
creasing M for a given R (measured in multiples of the
Bohr radius} until convergency is obtained. This typical-
ly is fulfilled for M ~ 5R.

Figure 1 gives the numerical results of the Wigner-
Brillouin perturbation theory (9} together with those of
Eq. (24) in the second and the third orders. In both cases
the binding energies are measured relative to the first un-
perturbed kinetic energy n = 1, according to Eq. (23), and
not relative to ,'(n/R ) + V&&, ac—co.rding to Eq. (25).

With increasing R, the binding energies in second and

Therefore we get

Vnm Vmn 1

&
(E—e ) ~ R&2IEI

(28)

and limz „Eb,„„z(R)=0. Hence, the Wigner-Brillouin
perturbation theory does not result in a bound state for
R ~DO.

The situation in the case of Eq. (24) is quite different:
Each sum in the nth order has a nonvanishing limit for
R —+ Do with an energy dependence proportional to
(&IEI) ". Hence, independent of the order taken into
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account, the value E =0 cannot be a solution of Eq. (24).
The evaluation of Eq. (24) up to third order results in

only one (s-like) bound state: For E & —,'(m. IR ) + V&&, all
E„are negative, hence, all terms in the second- and
third-order sums increase monotonically from zero to
+ ao with increasing E from —0D up to ,'(v—rlR ) + V&&.

In the third order the binding energy of the second one
moves to larger absolute values due to additional positive
contributions on the right-hand side of Eq. (24). Only the
occurrence of negative contributions in the right-hand
side of Eq. (24) in fourth and higher orders can result in
an oscillating-with-E behavior around the value 1 and,
hence, in additional bound states.

Figure 2 shows the right-hand side of Eq. (7) up to the
fourth order (for the case R =20 and M =4, convergency
is not yet achieved}. The oscillating behavior for negative
E can clearly be seen.

We conclude that several (s-like in our case) bound
states occur only due to sufficiently large negative contri-
butions to the right-hand side of Eq. (24). This condition
can be reformulated in the following way: (24} can be
rewritten in the form of a decomposition into partial frac-
tions:

E
(29)

in (24) no multiple poles occur. Analogous to Eq. (27},
the sum in (29) transforms into an integral for R ~~.
With E'= —,'k, we obtain

1= ~ A (E')dE'
0 E—E' (30)

where the right-hand side has the usual form of a spectral
representation. As the A„ in (29), the function A (E')
contains contributions of all orders in the potential,
among them negative contributions starting from the

-0.6 0.6

FIG. 2. Right-hand side of Eq. (8) up to the fourth order for
the Coulomb potential in a three-dimensional spherical box of
radius R =20 with M =4 (E in DRy).

fourth order. If A (E') has a fixed sign, the integral in
(30) is a monotonic function of E and one obtains one
bound state at best [in the case of a negative A (E') j.
More than one bound state can occur only if A (E')
changes its sign at a certain E', which can never be the
case up to third order. That is the reason why, e.g., the
Lifshitz approximation (18) with (19) results in one bound
state only for most potentials, including the Coulomb and
the screened Coulomb one.
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