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We examine the problem of determining the phase difference between two optical fields, first for classi-

cal and later for quantum fields, by reference to two simple measurement schemes that yield the sine

and/or cosine of the phase difference between classical fields. We show that certain difficulties exist even

within the framework of semiclassical radiation theory when the field is very weak, and particularly
when amplitude and phase fluctuations are correlated. We find that a clear distinction has to be made

between the measured values of the sine or cosine and the values that can be inferred from a series of re-

peated measurements. A corresponding distinction can be made also for a quantum field, although the

interpretation is not the same. The dynamical variables chosen to represent the cosine and sine that

emerge from the discussion of the measurement schemes commute when the sine and cosine are obtained

together, but not when the measurement yields one or the other. These sine and cosine operators have

well-defined values only when there is a large dispersion of the photon number. We arrive at expressions

for the moments of the measured and of the inferred sines and cosines that differ from most previous
treatments. The expressions are applied to optical fields in several different quantum states. Only for the
Fock state and for the so-called phase state, which was treated recently at some length by Pegg and Bar-
nett [Phys. Rev. A 39, 1665 (1989j],do the measured and the inferred moments coincide. Our analysis of
the problem of phase measurement leads to the conclusion that the appropriate dynamical variables for
the measured sine and cosine depend on the measurement scheme, and that different schemes correspond
to different operators.

PACS number(s): 42.50.Wm, 03.65.BZ

I. INTRODUCTION

The problem of identifying the dynamical variable that
corresponds to the phase of a quantized electromagnetic
field has been debated ever since Dirac's first paper on
the quantum theory of radiation [1]. In that paper Dirac
concluded that the phase is canonically conjugate to the
photon number, so that the phase has a well-defined value
only when the photon number is very uncertain. Howev-
er, as was pointed out by Louisell [2], the variable
identified by Dirac as the phase operator is not strictly
Hermitian. Later an alternative approach to the problem
based on the use of Hermitian operators that are analo-
gous to the sine and cosine was developed [3,4], which led
to roughly the same conclusions as Dirac's for a well-
defined phase. However, the sine and cosine operators do
not commute, so that they do not both describe the same

phase angle, and this has been widely regarded as an un-

satisfactory feature of these operators.
Numerous attempts were made in the following years

to introduce alternative dynamical variables to represent
the phase of a quantum field [5—17]. In particular, Bar-
nett and Pegg [11],in the course of a wide ranging discus-
sion and comparison of different phase operators, intro-
duced a so-called "measured phase operator" that is re-
lated to certain simple homodyne experiments. Later
Pegg and Barnett [13,14] defined a Hermitian phase
operator via a limiting procedure, from which the sine
and cosine expressed in terms of unitary operators can
also be derived. A number of authors have recently com-
pared the properties of squeezed states in the framework

of several alternative operator forms [16—21].
There have also been a few experiments dealing with

the measurement of phase [22—25]. Some authors have
attempted to test the validity of the different phase opera-
tors by making comparisons with the experiments
[19,21,26—28], but no clear conclusion favoring one or
another definition seems to have emerged. Despite the
earlier introduction of the measured phase operator [11],
most discussions of the phase have generally been more
concerned with mathematical questions.

In the following we approach the phase problem in a
somewhat different and more pragmatic way, by examin-
ing two typical experimental procedures that are known
to yield the phase difference between strong classical
fields. Although these schemes are not new and have
been discussed before [25,29—36], and indeed the closely
related topic of optical homodyning has a substantial
literature [32—36], nevertheless the emphasis in these
treatments has not been on the problem of extracting the
phase.

We start by treating the problem of phase measure-
ment in classical optics. We find that it is natural to
make a distinction between the direct results of measure-
ments which we refer to as the measured phases, and the
results of calculations based on a long series of measure-
ments, from which the correct phase ensemble may be in-
ferred. Although it has often been taken for granted that
the problems encountered in determining the phase are
peculiar to the quantum domain, certain difficulties relat-
ed to phase measurement appear even in classical optics.
For example, the usual measurement procedure that
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yields the phase for strong fields gives the wrong answer
for weak fields, even when the average is taken over many
measurements. Moreover, there seems to be no pro-
cedure that is valid for inferring the phase of a very weak
field, even in semiclassical radiation theory, when phase
and intensity fluctuations are correlated. Some of the
difficulties one encounters in the quantum domain are a
reflection of similar problems in classical optics.

Because all measurements are related to differences of
phase between two fields, we regard the phase difference
as a more fundamental quantity than the absolute phase,
as was also emphasized by Nieto [26]. We examine two
closely related but distinct measurement schemes for
determining phase differences between classical fields,
that were also discussed by Loudon [29] and Walker
[25,30] and show that they correspond to diff'erent quan-
tum dynamical variables. The operators we choose to
represent the cosine and sine of the phase difference are,
in a sense, the primary variables, whereas the phase
difference is derived from them. For the one measure-
ment scheme in which either the sine or the cosine is
measured, the corresponding sine and cosine operators do
not commute, whereas for the other scheme that yields
the sine and cosine together, the corresponding operators
commute. In both cases the sine and cosine operators,
however, commute with the total photon number. Just as
in the classical domain, so also in the quantum domain
one is led to make a distinction between measured sines
and cosines and the ensemble of values that can be in-
ferred from the measurements, and these lead to different
expectations. We apply our formalism to several
different quantum states, and calculate the means and
dispersions of the cosine and sine. We find that the re-
sults are consistent with Dirac's conclusion that a well-
defined phase requires a large dispersion of the photon
number. In the special case of the coherent state, we
present graphs for the expectation of the cosine and for
the dispersions and show that they differ significantly
from those based on the Susskind-Glogower and the
Pegg-Barnet t operators.

Our discussion of the phase problem leads us to the
general conclusion that probably there is no one dynami-
cal variable that universally represents the measured
phase of the electromagnetic field, or even the sine or
cosine. Rather it appears that the definition of measured
phase ought not to be divorced from the measurement
process that is used to determine it, and different mea-
surement schemes lead naturally to different operators.
This is the main distinction between our approach and
most other discussions of the merits of different phase
operators, which were generally concerned with other,
more mathematical questions, and less with the relation
to experiment.
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tween two classical light fields is almost invariably deter-
mined from some kind of interference experiment, in
which two light waves come together. Any phase
difference then shows up in the resultant light intensity.

Let us consider the arrangement shown in Fig. 1 in
which two incident quasimonochromatic light beams are
combined by a symmetric 50%:50%beam splitter orient-
ed at 45' to each beam, and the resultant light intensity
emerging from each output port is measured by a photo-
detector. Let V, (t) and Vz(t) be complex analytic signals
representing the two TE-polarized input waves at two in-
put planes which are equidistant from the beam splitter.
Let us first focus on the simplest situation in which
arg Vz —arg V, =(()z—

((), is strictly constant in time. This
will be the case if the two waves V, (t), Vz(t) are actually
derived from a single wave with the help of another beam
splitter, and in that case the light intensities
I, (t)=

~ V, (t) ~, Iz(t) =
~ Vz(t) ~

are also strictly correlated
in time. Let V3(t), V4(t) represent the two output waves
at the two detectors, which are also equidistant from the
beam splitter. Let r, t be the complex-amplitude
reflectance and transmittance of the beam splitter from
one side and r', t' from the other side, with
~r~

= ~r'~ =
~t~

= ~t'~ =1/&2 and argt+argt' argr-
argr'=+—n. [37]. We may relate V3 and V4 to V, and

V2 by writing

V3=(tV, +r'Vz),

V4=(rV, +r'Vz) .

It follows that the instantaneous light intensities at the
two detectors are given by

II. PHASE MEASUREMENT
OF A CLASSICAL FIELD

(D)

Before considering the problem of phase in the quan-
tum domain, let us examine how one would determine
phase differences in classical optics, by reference to some
simple measurement schemes. The phase difference be-

FIG. 1. Outline of a scheme for measuring the sine or cosine
of the phase difference between two optical fields at input ports
1 and 2. When a quarter-wave phase shifter is inserted in chan-
nel 1 as shown, the output modes 3 and 4 are renamed 5 and 6.
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W3 =
—,
' [ W(+ W2

—2W(2sin($2 —p(+0„' —0, —n'/2)],

W4=-,'[W~+ W2+2W~2»n(42 0]+0I 0 +~/2)]

where we have put

I

W~ =a f— IJ(t')dt' (j =1,2, 3,4) .

(4)

From these relations we can express the sine of the phase
difference $2

—
P& in the form

W4 —W3
sin[$2 —P, + (0', —0, +0'„—0„)/2]=

12
(6)

Obviously, the constant 0', —0, +0'„—0„vanishes for a
symmetric beam splitter.

If the light intensities are fluctuating in time and T is
not too long, then W, and W12 may be different in suc-
cessive measurement intervals T. On the other hand,
when T is sufficiently long compared with all correlation
times of the light, then W and W12 may be regarded as
very good approximations to a (I~ ) z T and
a( [I,(t)Iz(t)]'~ ) z T. Here ( ) T denotes the time aver-

age, which is equal to the average over the ensemble for a
physical (ergodic) process. Under these circumstances
W and W12 will not fluctuate significantly from measure-
ment to measurement. In any case, whether T is long or
short, (W4 —W3)/2W, 2 will have the same value every
time when P2

—P, is constant.
Because the sine is double valued within the range

from 0 to 2n, Eq. (6) still . does not determine the phase
difference completely. But with the help of a second
measurement that yields cos[$2 —P, +(8,' —8, +0',
—0„)/2], we can arrive at a unique value of $2

—P,
within the interval 0 to 2m. . If a quarter-wave phase plate
is inserted in beam 1, as indicated in Fig. 1, immediately
after the sine measurement, then P, is effectively replaced
by P, +m/2 in each of the equations above. Let V3, V4

become V5, V6 when the phase plate is inserted. Then we
obtain by the same argument as before, in place of Eqs.
(4),

splitter 0'„—0, n—/2=0.
Let T be the measurement time interval. We may

represent the photoelectric signals produced by detectors
D3 and D4 during the time interval Thy the quantities

8'3=a I3 t' dt',
t+T (3)

W„=aI I,(t')dt' .

a is the detector quantum efficiency, which we take to be
equal for both detectors, for simplicity. If the detectors
have different sensitivities, they can always be balanced in
practice by placing an attenuator in front of the more
sensitive one. We then have from Eqs. (2) and (3),

W5 —W6
cos[$2 —P&+ (0', —0, +0'„—0„)/2]=—

12

(8)

Hence both the sine and cosine of the phase difference
can be obtained from the two measurements, and so long
as W&2 is the same in both cases, as it will be for long T,
this determines P2

—P, unambiguously. Although W, z

may not be measured directly, we obtain, by squaring and
adding Eqs. (6) and (8),

4 W iq
= ( W~ —W3 ) + ( Ws —Wq )

so that

W~ —W3
sin( z —,)=

[(W, —W, )'+( W, —W, )']'" '

W~ —W6
cos( z —,)=

[( W, —W, )'+( W, —W, )']'" '

(9)

(10)
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which expresses sin($2 —
P&) and cos($2 —

P&) entirely in
terms of the quantities W (j =3,4, 5, 6). For simplicity
we have taken the beam splitter to be symmetric, in
which case the constant 8', —0, +0'„—0„vanishes and can
be discarded.

It is not strictly necessary to determine the sine and
cosine from two separate measurements made in succes-
sion, as we indicated above. With the help of a slightly
different arrangement shown in Fig. 2, they may be deter-
mined simultaneously [25,29,30]. By splitting both input
waves with beam splitters BS, and BSz, as shown, and
then mixing the two beams at beam splitter BS3 directly,
and at beam splitter BS5 with a quarter-wave plate insert-
ed in one arm, as shown, we can determine sin($2 —P, )

and cos(Pz —(()t) together. This requires the use of four
photodetectors D3,D4, D5,D6, and each measurement
then yields the four quantities 8'3, 8'4, W~, W6 at once.

If all the beam splitters are identical and 50%%uo:50%,

and the output waves are denoted by V3, V4, V5, V6, refer-
ence to Fig. 2 shows that

W =—'[W + Wz+2W, icos($2 —P&+0'„—0, —m/2)],

W6= —,'[W, + W2 —2W, icos($2 —P, +0I —0„+n/2)],

from which it follows that

Vacuum

FIG. 2. Outline of a scheme for simultaneously measuring
the sine and cosine of the phase difference between two fields at
input ports l and 2; BS means beam splitter.
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III. PHOTOELECTRIC COUNTING MEASUREMENTS

In the foregoing we have identified W (j =3,4, 5, 6)
with the photoelectric signal registered by detector j in
time T. Actually when classical light of intensity I falls
on a photodetector, it results in photoelectric emissions
that occur at an average rate proportional to I, but at
random times. The number of photoelectrons emitted
from the photocathode in any time interval T is of course
an integer, and it represents the best information about
the light intensity available from the measurement. In a
quantum treatment this number is closely related to the
number of absorbed photons, but in a classical treatment
we avoid any reference to photons. Let m (j =3,4, 5, 6)
be the number of photoelectric emissions registered by
detector j in the time interval T, and let us express the in-
tensity I in units such that aI. gives the average rate of
photoelectric emissions by detector j. Then mj is actual-
ly an integer random variable that fluctuates from trial to
trial even when W- does not. m obeys a Poisson distri-
bution with mean

f+T(m. ) =af I, (t')dt'=W~ (j=3,4, 5, 6}
t

(12)

and standard deviation [((b,mj) )]' =QW, . When
the Wj's fluctuate also, we have to perform an additional
average over the ensemble of W to obtain the moments
of mj.

Strictly speaking, the discrete numbers m, rather than
W, constitute the "signal" registered by photodetector j.
Of course when W. )&1, so that the fractional fluctua-
tions [((6m ) ) ]'~2/, (m. ) = I/QW are very small,

V3 =(tt'V, + rr'V2 ),
V4=(r'tV, +r'tV2),

V5=(irr'Vi+tt'Vz),
V6=(irt'V, +rt'V2),

from which we have in place of Eqs. (4) and (7), since
I
r

I

= lr'I =
I tl = It'I = I/&2,

W3 =
—,
'

[ Wi + W2 —2+W, W2cos( $2
—p, )],

W4 =—'[ Wi + W2 +2Q Wi Wzcos($2 —
Pi )],

W5= —,'[Wi+ W2 —2U Wi Wqsin(6 Oi)1

Ws =-4[ Wi+ W~+2V'Wi W2»n($2 —pi)]

This time the phase angles 0„0,, 8„,8„do not enter ex-
plicitly, because of the condition 8, +8,.—8„—8„=+~.

Apart from the absence of 8, —8, —n /2, the additional
factor —,

' in front, and the interchange of W3 and W4 with

W5 and Ws, these equations are very similar to Eqs. (4)
and (7) above, and they yield the same information. We
merely need to interchange sin and cos and some signs in
Eqs. (10). Hence the arrangements shown in Figs. 1 and
2 are effectively equivalent for the determination of the
phase difference of two classical fields, so long as the
phases and the light intensities are the same. In Sec. III
below, we assume that the arrangement of Fig. 2 is used.

CM =COSM(4'2 $1)

=(rn4 —m3)/[(m4 —m 3) +(m6 —m5)~]'~~ .

(13)

A single measurement of m3, m4, m~, m6 then determines
the phase difference P2

—P, . The subscript M serves to
remind us that sin(Pz —P, ) and cos(Pz —P, ) are obtained
directly from the measurement, because sometimes the
measured and the true values can be quite different, as we
shall see.

The situation is quite different when the phase
difference is not fixed but fluctuates, as it usually does, so
that W3, W4, W5, W6 also fluctuate from one trial to
another. There now exists a whole ensemble of phase
differences, and one may be interested not only in the
mean but also in the higher moments or the probability
distribution of P2

—P, . Moreover, if a single measure-
ment of the phase is to be meaningful, the measurement
time T cannot be arbitrarily long, but it must be shorter
than the coherence time or the reciprocal bandwidth
I /b, co to ensure that $2

—Pi does not change significantly
during the measurement.

Let us suppose that the instantaneous values of the
phases $„$2 and the light intensities I, , I2 are not corre-
lated as the field fluctuates. As W3, W4, W5, W6 are of
the same order as W&, W2, it follows that the numbers

m3, m4, m~, m6 are large whenever W„W2&&1. So long
as the numbers m~ are suSciently large, they are accurate
representatives of the W, (j =3,4, 5, 6}, and we may use
Eqs. (13) to determine the phase from the measured pho-
toelectric counts, as before.

But for some optical fields W, , W2 ~1, and then WJ.

and m are small also. An example is provided by a field
from a typical thermal source, and it is not dimcult to see
why. It is implicit in our calculations that the optical
fields look approximately like plane waves across the sur-
faces of the detectors. Hence the beam cross section
must be smaller than the transverse coherence area, and
we have already noted that the measurement time T must
be shorter than the longitudinal coherence time. Hence
the ( WJ ) must be smaller than the average photon num-
ber in a coherence volume, and this is known to be much
less than 1 for typical thermal fields [38,39]. Under these
conditions the measured numbers m . are no longer
representative of W, but fluctuate wildly from measure-
ment to measurement. Then Eqs. (13) may lead to mea-
sured values for sin($2 —P, ) and cos(Pz —P, } that are dis-
tortions of the true values, even on the average.

In order to understand why that is, we should note that
when W„W2 && 1 the most likely values of
m 3 m 4, m &, m 6 resulting from a measurement are all
zero, with an occasional 1 registered by one or another

then the measured numbers m (j =3,4, 5, 6) of photoelec-
tric counts are excellent representatives of W . We are
then justified in replacing W, by m. in Eqs. (10) to a very
good approximation and we may write [after making the
changes in Eqs. (10) that apply to Fig. 2]

s~ =
sinM (p2 —p, )

= (m6 —m 5 )/[(m4 —m 3 ) + (m6 —m ~
)~]'~2,
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m3 m4
W3 g, 84

'l
e ' e

m3. m4.f

mg m6-~ Ws4 e e
f

(14)

where & ) denotes the average over the ensemble of the
fields. The most likely combination of outcomes
m3 m4 ms =m6 =0 has probability

p(0, 0,0,0)= &exp[ —( Wz+ W4+ W5+ W6)] )

=
& exp[ —( Wi + Wz ) ]), (15a)

detector. The joint probability p ( m z, m 4, m ~, m 6 ) is
known to be given by the ensemble average product of
four Poisson distributions [39]

p(mz, m4, m5, m6)

m4 Pl 3

t(m~ —m, &~+tm~ —m, &
]'~ )

&w, &
—&w, &

—(Wt+Wl))
&1 —e

&QW, W, )

&w, &+&w, &

&

—(W&+Wl))
&1 —e

&QW, W, &

2

t(m, —m, &'+(m, —m, &'&'&')

&w, ) —&w, )

ggp(rn, , m, , m „m, )

m3m5

( &V3 &V4 &

'
t &V) &Vq &

' —(gy, i w,
))

m 3.m 3. m s.m s.f

3 5

= &Io(2+W3 W4)IO(2+ W5 W6)e ' ' ),
(15b)

where Io(z) is the zero-order modified Bessel function,
and the renormalization factor then becomes

1 —&Io(2+Wz W4)IO(2+WSW6)e ' ' ) .

For sufficiently small & W, ) this is indistinguishable from
1 —

& exp( —Wi —Wz ) ) .
When & W~ ) && 1 (j =3,4, 5, 6), Eq. (14) yields approxi-

mately

p(1,0,0,0)=& w, ),
p(0, 1,0,0)=& w, &,

p(0, 0, 1,0)=& w, &,

p(0, 0,0, 1)=& w, &,

(16)

with all other combinations of m3, m4, ms, m6 having
much smaller probabilities. %'e then obtain, on averag-
ing the right-hand side of Eqs. (13) with the help of Eqs.
(16), renormalization and using Eqs. (11)

but as this leaves sin((I)z —$1) and cos(pz —(I), ), given by
Eqs. (13), undefined, we shall discard these all-zero out-
comes, and concentrate on the other possibilities. The
corresponding probabilities then need to be renormalized
by dividing p(mi, m4, ms, ms), given by Eq. (14), by
& 1 —exp[ —( W, + Wz )]). More generally, any combina-
tion m3=m4 and ms=m6 leaves S~,CM given by Eqs.
(13) undefined, and these data should be discarded in the
calculation of the moments of C~,S~. The probability
of such a combination is given by

Now Q Wi Wz & ( Wi+ Wz )/2, so that the average yield-
ed by an ensemble of measurements in the weak-field lim-
it is sinaller than the true average & sin(P, —Pz) ) or
&cos(gi —(t&z)). Moreover, we readily find by a similar
argument for the mean squares, that in this weak-field
limit

2(m4 —mz)

(m~ —m, & +(m6 —m, & )

(m6 —m5)

(m4 —mz) +(m6 —m5)z

no matter what the correct ensemble average
&cos (Pz (t&i)) and—&sin (Pz —Pi)) may be. It follows
that the ensemble of measured sin(gz —

(I&, ) and
cos(gz —

(I), ) values generated by the use of Eqs. (13) may
be quite different from the true ensemble. This appears
to be the price one is obliged to pay for measuring a very
weak field.

Nevertheless, there is a procedure for recovering the
correct ensemble of sin(Pz —P, ) and cos(gz —P, ) and
their moments from photoelectric counting measure-
ments, even in a weak field. However, we cannot use Eqs.
(13). Instead we return to the defining relations (11),
from which it follows that, when the phases and the in-
tensities are not correlated,

&(w, —w, )")
& C")=

& cos'(y, —y, ) ) =
(W, Wz)"

&S,")= &sin"(y, —y, ) &

&(w, —w, )")
p —1,2, 3, . . .

&(w w )""&

(19)

The subscript I of SI,CI reminds us that we are dealing
with theinferred, as distinct from the measured, values of
the sine and cosine. Of course, the moments of 8'- may
be unknown, but with the help of Eq. (14) they can be re-
lated to the factorial moments of the counts m .

(j = 1, . . . , 6), which can be measured, by [39]
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Provided (( W, W2)"~ ) is known, the true moments of
the sine and cosine can be derived from measurements of
m 3 m 4, m ~, m 6. In particular, when r =2, since
(SI )+(Ci ) =1, we can express ( W(W2) entirely in
terms of the measured counts,

&W W )=&m' '& —2&m m &+&m' '&+&m' '&

—2(m6m, ) + (m',"& . (22)

But for odd values of r it is less obvious how
(( W) W2)" ) may be determined, and one would need to
conduct an auxiliary measurement.

So far it has been assumed that the fluctuations of the
phases and the intensities are not correlated. Let us
briefly examine the situation when they are correlated.
In that case, intensity and phase averages cannot be
separated. If we average Eqs. (11) over the ensemble we
obtain

& W &
=

—,'[& W, &+ & W &
—2~1, ~cos(argr„)],

(23)
( W4 ) =

—,
'

[ ( W, ) + ( Wz ) +2 I )2 icos(argl )2)],
where I )z=aT( V) V2) is the scaled mutual coherence,
from which it follows that

( WJ") =(m. (m~. —1)(m —2) . . (m r—+1))
=(m'"'), r =1,2, . . .

& W,"W;)=
& m, '"'m,"), i Wj .

From Eqs. (19) and (20) we then obtain for the inferred
moments of the ensemble of sines and cosines

r
&C")=g(")(m'" '( —m )'& &(W W )"")

s=0
(21)

{Sr) g (r)(m(r —s)( m )(s)) (( W W }r/2)
s=0

and (25) really refer to different problems. Of course in
the special case ( W, ), ( W2) »1 when CI=CM,
Sl =SM, one can use Eqs. (13) directly to generate the en-
semble of SI and CI. But when ( W) ) or ( W2 ) is small
there appears to be no way to disentangle the phases from
the intensities nor to determine even the mean inferred
values (SI) and (CI).

Let us briefly summarize what we have established so
far. When the phase difference $2

—
((), is constant, we

can make the measurement time T as long as we wish.
Then m3, m4, m5, m6 can be large and excellent represen-
tatives of W3, W~, W5, W6, and then Eqs. (13) yield the
values of sin((I)2 —P) ) and cos(Pz —P, ) from a single mea-
surement of m3, m4, m5, m6.

When the phase difference is fluctuating, the measure-
ment time T needs to be shorter than the coherence time
I/ha), and this imposes limits on W~ (j = 1 to 6). So long
as W, , Wz »1, Eqs. (13) again yield the values of
sin((I)2 —P)) and cos($2 —P) ) at each trial, and a succes-
sion of trials generates the ensemble of sin($2 —

(t), ) and
cos((I)2 —P)). But when W, «1 or W2 «1, Eqs. (13)
yield measured values that differ from the true sine and
cosine, and the succession of measurements does not gen-
erate the true ensemble of sin($2 —(It)) and cos((I)z P)).—
In that case we need to make a distinction between the
ensemble of measured values S and CM and the true en-
semble of sin($2 —P() and cos($2 —

(i)) ), or the ensemble of
inferred values SI and CI. Their moments can be quite
different. We need to turn to Eqs. (21) for the inferred
moments of SI and CI, and these contain information
about the true ensemble, provided the intensities and
phases are not correlated. With this restriction Eqs. (21)
should hold for both weak and strong fields. Finally,
when phases and intensities are correlated and ( W) ) or
( W2) is small, there appears to be no way to extract
even the mean values (Sz ) and ( CI ) of the phase ensem-
ble from the measurements.

&W, &
—(W, &

cos(argl, z) = (24a)
IV. PHASE MEASUREMENT OF A QUANTUM

FIELD—SCHEME 1

and similarly

&W, ) —&W, &

sin(argl ) z) = (24b)

&m, &
—(m, &

cos(argI )2)=
[((m4) —(m, )) +((m ) —(m ) }']'

(25)

By using Eq. (20) we can replace ( WJ ) by the measured
average ( m, ), and by squaring and adding we can deter-
mine ~I )2~, so that in terms of measured variables we
may write

We now analyze the same measurement processes that
we have been discussing in classical terms for a quantum
field. We start with the measurement scheme embodied
in Fig. 1 and allow ourselves to be guided by correspon-
dence with the classical treatment. For simplicity we
limit ourselves to a single-field mode at each input and we
label Hilbert space operators with a caret. Let Q, , a2 be
the photon annihilation operators that characterize the
field at the two input ports, and let &3,84 be the corre-
sponding operators at the two output ports. These vari-
ables obey the commutation relations

[a, ,8 ]=0=[a,,a ], i,j =1,2, 3,4

&m, ) —(m, )
sin(argl )2) = [(&,) —&, ) )'+((, &

—(,) )']'"
and

[8, , & ]=5, , i j =1,2 or i j =3,4 .

(26)

However, sin(argI „)is not related in any obvious way to
the true or inferred value (sin($2 —

P) }), so that Eqs. (21)

The mode amplitudes &, are completely analogous to the
classical field amplitudes V,. (i =1,2, 3,4), and as before,
inputs and outputs are related by
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(27)

85 = (tf&) + r &2 ),
86 =(lf&) + t tip ),

(29)

which are consistent with Eqs. (26). From Eqs. (27) we
obtain

R, =8 t31,=(~t~'R, + ~r~'R, +t'r'ft haft, +tr"8 t,1,),
(28)

&4 84&4 (vari Ri+iti 82+r t 0 it}2+rt a pQi)

If a second measurement is made with a quarter-wave
phase plate inserted in beam 1, we relabel the correspond-
ing output operators 85,86. These are related to 8, ,82 by

so that the sine and cosine operators given by Eqs. (33) do
not commute. This may be regarded as a reflection of the
fact that the experimental arrangement of Fig. 1 allows
us to measure either the sine or the cosine, but not both
at once. The failure of S and C to commute should not
therefore be regarded as "unsatisfactory, "but rather as a
sign that the quantum description is consistent with the
experiment. We also observe that

[S,R, +R~]=0=[C,&, +R'2], (35)

so that measurement of either the sine or the cosine of
the phase difference is compatible with measurement of
the total photon number, just as for the original
Susskind-Glogower phase operators [3,4].

Finally, we note that C', S obey the relations

R'5 =((t) R', + )r( R~ it'r—'tt, & 2+itr" tt2t&, },
R, =([r('R, + (t('R, ir't'—ft ta, +irt "ft ta, ),

(30)

and they satisfy similar commutation relations. Equa-
tions (29) lead to the result

[S,R, ) =i(K, /K2)C',

[S,R2] = 'i (K,—/Kq )4,
[C', R) ]= i(K2—/K) )S,
[O', R2]=i(K2/K( )S,

(36)

and Eqs. (28) and (30) together are completely analogous
to the classical Eqs. (4) and (7) when ~t~= ~r~= 1/&2.
The 8'~ are replaced by the photon numbers 8 .

Let us suppose first that the photodetectors D3,D4 and

D5, D6 count the photons at the appropriate port with
100% efficiency, for simplicity, so that the photon num-
bers n and the photoelectric counts m coincide. From
Eqs. (30}the differences yield

(31)

and

i(8„—8, , ) y . i(8,,—8, )5=« le 1 2 ~ (32)

(33)

and comparison with the classical relations (6) and (8)
suggests that for this experiment we choose the former as
representative of the sine of the phase difference and the
latter as representative of the cosine, except for a scale
factor. In the classical treatment, we argued that the
scale factor should be the same in both cases if the sine
and cosine measurements were made in rapid succession,
so that neither the phases nor the field intensities had
time to change in between. Such an assumption is not
meaningful, however, in the quantum treatment, because
a measurement of a quantum-mechanical variable in gen-
eral changes the state of the field. Even if the state is the
same, 6'3, &4 and 8'~, 86 now refer to quite separate mea-
surements in general. A11 one can expect is that the
operators chosen to represent the sine and cosine of the
phase difference are of the form

which are similar to the Susskind-Glogower relations
[3,4] and imply that there are uncertainty relations be-
tween the sine and cosine and the photon numbers.
However, because sin($2 —P, } or cos((f2 —P, ) separately
do not determine tftz

—P„we shall not pursue this mea-
surement scheme and rather turn to the alternative
scheme of Fig. 2.

V. PHASE MEASUREMENT OF A QUANTUM
FIELD—SCHEME 2

We have seen that the measurement scheme illustrated
in Fig. 2 allows both sine and cosine measurements of the
classical phase difference to be made simultaneously. Let
us now explore the quantum-mechanical implications of
this scheme. We assume that identical 50%:50% beam
splitters BS& and BSz are used to split the input fields

8& &2 in two, which are then combined by beam splitter
BS3 directly, and by beam splitter BS5 after a quarter-
wave phase plate is inserted in the one arm. Four detec-
tors D3,D4 and DS,D6 count the photons simultaneously
in each measurement interval T, and the quadruplet of
photon numbers counted represents the outcome of one
measurement. One significant difference between the
quantum and the classical descriptions of the measure-
ment scheme in Fig. 2 is that in the quantum treatment
one cannot ignore the vacuum fields, represented by &,0
and &20, that enter at the two unused input ports, as indi-
cated.

Reference to Fig. 2 shows that at the beam splitters
BS] BS2 we generate the output fields

where EC, ,E2 are constants.
It is interesting to note that from the definitions (33)

the commutator

[C',S ]=2iK, K~(R'2 —R', )%0,

b, =(t&, + r'a, o),
c i

= ( 18i + t dio ),
b2 =(t'd~+r&2O),

c2 = (r'&~+ tQzo ),

(37)
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and at the output end

&3 =(t'b1+rc2),

a4 = (tc2+ r'b1 ),
it5 = (ir'c, + tb2 ),
&6=(it'c, +rb2) .

(38)

CM= —,'[(&,+21&,0}(&2+2i&20)+H.c. ](C +S 2)

SM =
—,
' [(—id1+1'1)& io}(a2 'Qft20 )+H. c. ]

X(C +S }
' ri=—e

(43}

83 = ( tt '
tt, +rr'&2 + r 't '&,0 + ran&20 )

a4=(r ta1+r t&2+r & 01+t &20}

it5 =(rr'i', + tt 'a2+ir't 'a 1p+ ran&20 )

as =(irt'tt, +rt'&2+it' tt, o+r &20),

(39)

and from these we readily find after some algebra, with

i(8, —8„,)
&4 83 2 [(I 1+e 8 1P)

Each &;,b;, c, is a single-mode beam operator, satisfying
the usual boson commutation relations. By combining
Eqs. (37) and (38) we obtain

for the operators corresponding to the measured cosine
and sine, with the normalization factor standing on the
left or on the right. Evidently from the definitions
C'M+S M= 1 and

[CM, SM ]=0, (44)

which may be taken as a reflection of the fact that the
measured cosine and sine are compatible this time, and
that the values are obtained simultaneously.

From the definitions (40) we may readily show that C
and 0 commute with the total input photon number
8 1 +R2 +&1p+ &20 and it therefore follows also that

X(82+e ' " 820)+H. c.],
. I(e, —e„,]

e6 —e5=+-,'[( —ia1+ie ' ' a 1o)

I(e, —e„,]
X(ti2 e " 820)+H ~ c ~ ]

(40)

[~M~ ~1+~2+ ~10+~20] [ M~~1 +~2+ ~10+~20 ]

(45)

C:—8'4 —R'3,

S =66 &5

(41)

We readily find from Eqs. (40) and (41), that

As always, we allow the classical treatment to serve as
guide in the choice of the corresponding quantum-
mechanical operator. Comparison with the classical Eqs.
(11) indicates that these quantities should be related to
the cosine and sine of the phase difference, respectively,
except for a scale factor.

Let us introduce the abbreviations
[ M & ~1 +~2 1

= —[CM ~ fi 10 + tt 20 ] ~

[SM ~1+~2] [SM ~10+~20]
(46)

and although the right-hand sides are not zero, their ex-
pectations are zero. The corresponding uncertainty rela-
tions

Hence measurements of CM, SM are compatible with
measurements of the total number of photons at the in-
put. The role played by the vacuum operators 8',0, 8'20 in
Eqs. (45) is a minor one, for we may write

[C',S]=0 . (42)

We may now construct operators C.'M, SM corresponding
to the measured cosine and sine, exactly as in Eqs. (13)
above, by normalizing by (C +S2)'~ to ensure that
C M+S M =1. Because C' and S commute with each oth-
er, C also commutes with (C' +S )' and so does S.
We therefore write

&(ac )'&&[a(e, +e, )]') o,
((as )2)([n(e, +e, )]2&&0,

(47)

therefore impose no restrictions on the dispersions of
CM, SM, &, + it 2, just as if the right-hand sides of Eqs. (46)
were zero.

From the definitions of C and S we find after a little
algebra, that

& 2 2S &1&2+&1 W &2+&2&10+&20+&10+&1&20+&10&20+ I& 1 &2&20+ I 8 10& 1& 20+8 18 2&10820
f2 3 t t 2

+ 9~ 10~ 1~ 2+ I ~ 10~2~20+~ 10~ 20~2~1+ 9 ~ 10 2~1~20+ I ~ 20~ 2~ 1+ I ~ 2 ~1~10
2 3 f2 2 2 e t2

42 e3 t2 g3 t f 2 t+ 9 ~ 20a 1~2~10+ 9 ~ 20~1~10 9 ~ 20 2~ 10 '
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Q=R[R2+Ri+Rz and P stands for the sum of the

remaining 17 terms, all of which have zero expectation by
virtue of the fact that modes 10 and 20 are vacuum
modes.

Although Eqs. (43) define the operators corresponding
to the measured cosine and sine of the phase difference, in
analogy with the classical Eq. (13), the presence of the ir-
rational normalization factor (C' +S )

'~ can make it
difficult to evaluate expectations. We shall therefore de-
scribe one method for doing this. We recall that C~ and

S~ and powers thereof are all functions of 83, 8'4, R'5, 8'6,

which we represent collectively by I & I, so that for any
integer r

~M=f(Ri R4 Rs R6)=f(IRl» (49)

and similarly for S M. Now if P( I n I } is the joint proba-

(f( R „R'4,n, , R'6 ) ) =gf ( I n J )P ( t n I ),
In I

(50)

where the joint probability P( I n I ) is expressible in the
form [40—42]

P[(n[[=(:ii ' ', :) . (51)

After combining Eqs. (50) and (51},substituting for itj, & J
(j=3,4, 5, 6) from Eqs. (39), and recalling that modes 10
and 20 are vacuum modes and that 8'3+ R4+ &5
+~6 ~10 ~20 ~1 +&2, we obtain

bility of the set of eigenvalues n3, n4, n5, n6 in a given
quantum state, we can always determine the quantum ex-
pectation of f(R3, &4, &,, R6) from

8 t —it t2) '(it[ a2) ' (it—[+it z) '(I[+it2) "

n3 n4 n5 n6
InI 4 'n3! 4 "n4!

(iit [+&2) '( iB'[+&—2)
'

( it, i—& z—) '( —o[+id 2)
'

4 'n5! 4 'n6!
(52)

This expresses (f ( I R I ) ), which stands for ( C' I ) or (S ~ ), as the expectation of a normally ordered operator power
series in &„82,8 „82, without irrational operators. It therefore avoids some of the difficulties associated with the use of
Eqs. (43) directly.

As in the corresponding classical problem, we have to take note of the fact that f(n3, n&, n5, n6) is undefined when

n3 =n4 and n5 =n6 We t.herefore exclude this combination from the suin in Eq. (52}. By using Eq. (51) we may show
as in Sec. III, that the probability for n3 =n4 and n, =n6 is given by

P—(I [[[P 't' —& t'[[g' —I'[y2]'"[I [[[8~'+e t'[[[['+8 '[yZ]'"[e (52')

Hence the sum in Eq. (52} should be renormalized by di-

viding by 1 P. The correction —is unimportant in a
strong field, but becomes increasingly important in a
weak field, when P= (:exp( —R [

—R2 ):). Henceforth
this modification of Eq. (52) will be assumed to have been
made. We shall use the modified Eq. (52) below to calcu-
late the moments of C[[r and S~ in certain quantum
states.

Finally, let us consider the situation when the expecta-
tion (f(R3,R4, R„R6)) is to be compared with measure-
ments of the counts m 3,m4, m 5, m 6 from which

(f(m3, m4, m&, m6) ) is derived, when the detectors have

quantum efficiency a which is not necessarily unity. m

now stands for the number of detected photons. The joint
probability P( I m I ) can be obtained from Eq. (51) by re-

placing n by m. and a -a. =8. by aR' . The net effect is

that when (f( R'3, R~, &~, R6 ) ) is replaced by

(f(m3, m4, m~, m6)) on the left of Eq. (52), then each
matrix element on the right is multiplied by

m3+m4+m5+m6a ' ' ' ', and exp( —R[ —Rz) becomes
exp( —aR'[ —aR2). The same substitution is called for in
the probability P for m 3

=m 4 and m, =m 6, and in addi-
tion the argument of each Bessel factor I0 is multiplied

by a.

Vl. APPLICATION TO THE WEAK FIELD

Suppose that the incident field is so weak that
(n[), (R2) &&1. Then in the calculation of (C'I), for
example, after terms with n3=n4=n5=n6=0 are dis-
carded, the dominant contributions to the sum obviously
come from n3=1, n4=0, n5=0, n6=0 and n3 0,
n4 = 1, n 5 =0, n6 =0. Hence, to a first approximation we
drop all remaining terms in the sum, and we obtain from
Eqs. (52) and (52')
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84 —6'3

[(&4—h'3) +(h6 —&~) ]'
—(n

1
+ n7.]

(:(h']+n2+a ]a~+a 2it])e:)
4(:1—exp( —h'] —h'2 ):)

(:(n]+1]2—a,a~ —a ia])e:)—(81+-n2 )

4(:1—exp( —h] —h~):)

(a ', a, +&t2a] &

2((R'] )+(hp) )

(53)

where the ellipsis represents terms of higher order in
(h'] ), (h'2 ). Similarly

&s„)=
e6 —es

[(h. )2+( )2]1/2

i ( a—t]a, —a 2ta] )

2((n, )+(1] ))
(54)

(n4 n3 )—
[(h'4 —h', )'+(h, —n, )']

(:(h']+1],+a Qt], +) ,'& )]e ' ':)
4(:1—exp( —&] —hz):)

4(:1—exp( —h'] —h'2 ):)

2 7 (55)

The second moments can be evaluated in a similar

manner, and we find

quantities from one measurement by this process in a
weak field.

VII. INFERRED PHASES

In the classical treatment given in Sec. III above we
showed that, although the ensemble of cosines and sines
generated by successive measurements may be different
from the true ensemble for the underlying optical field, it
is nevertheless possible to infer the moments of the true
ensemble from a long series of measurements. We labeled
the corresponding moments the inferred moments
( c,"),(s,").

The situation is different in the quantum domain. For
a quantum-mechanical observable cannot have an "un-
derlying value" that differs from its measured value, and
indeed it is only as a result of the measurement process
that it acquires a value at all. Nevertheless, from the
mathematical point of view there may exist an ensemble
of values of an observable for the quantum state, irrespec-
tive of the measurement. We shall refer to the values
that are derived by a procedure analogous to that adopt-
ed in the classical treatment as the inferred values, and
label them by the subscript I. The significance of the in-
ferred values will appear as we apply the formalism to
particular quantum states.

We now attempt to derive expressions for (C'I ), and
(S I ). From the form of the semiclassical Eqs. (21) it is

apparent that when the moments of W (j =3,4, 5, 6) are
expressed in terms of moments of the measured pho-
toelectric counts m, then from Eqs. (20) moments of W
become factorial moments of m . When the n are re-
placed by their operator equivalents in the quantum
treatment, this feature is expected to be preserved. Re-
calling that factorial moments of the photon number
operator & are equivalent to moments in normal order
[42],

and also

sM

Now we have the general operator relation

g (rj @r

(56)
we are led to make the identification

(60)

so that from Eqs. (53) and (54)

(c &, &s ) &-,'. (57)

(:(e,—h, )":)
&c,"&=-

((W, W, )"")
(:[(az+g'a zp)(8]+g*Q ]p)+H. c. ]":)

2"((W W )" )

This places a lower limit on the dispersions of CM and

S~, because

((~c )') =(c' ) —«&'
((as )'&=(s' ) —(s &'-~,'. (58) (:[(a p g a p2)( ]]a]r) a ]p)+H. c.]:)

2"(( W] W2)" )

[&(&s )'&]'"/&s )
(59)

Hence both the measured sine and the cosine of the phase
difference are ill defined and are largely unobtainable

It follows therefore that the relative fluctuations of CM

and SM are always large, because from Eqs. (57) and (58)

[&(ac )'& ]'"i«„&~ 1,

g=e ' " (61)

for the inferred operator moments, provided
(( W, W2)" )&0, except that the operator (W, Wz)'~ in

the denominator still needs to be identified. Reference to
Eq. (20) suggests that when r =2 we take

8'i 8'~ = n i n, ,
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and this choice is made even more plausible when we ob-
serve with the help of Eqs. (40), after some algebra, that

&:(R,—R, )'.&+ &:(R,—R, )'. &
=

& R, R, ), (63)

because the modes labeled l0 and 20 are vacuum modes.
For this reason the &,0 and 820 operators play a negligible
role in the calculation of normally ordered moments, and
we have from Eqs. (61)

(:(a z&, +8,az):)
I&=

4((R, R, ))

&S', &=
(:(l3 z& i I& t&z ):)

4&(R, R, )&

(64}

UIII. APPLICATION TG THE PHASE STATE

As a first application of the ideas introduced in Secs.
V —VII, let us consider the state of definite phase le) dis-
cussed by several authors [13,29] previously, particularly
by Pegg and Barnett [13]. For a single-mode field this
state is defined by the Pock expansion, for infinite s

1
s

le& = g e'"'ln &i/s+1 „0 (65)

Strictly speaking, the limit s~ ao does not exist and we
shall follow Pegg and Barnett and take it as understood
that s is finite, but the limit s~ Do is to be taken at the
end of the calculation of expectations. We readily find
from the definition that

provided (R, hz ) does not vanish .Evidently from the

definition (C I )+(SI) =1. However, when r=l or
some other odd number in Eqs. (61), it is not so obvious
what the normalization factor in the denominator should
be. We have no relation analogous to Eq. (63) to guide

us, and there is, in general, no unique method for
identifying the operator that corresponds to a given c

number like Q Wi 8'z.
We shall now illustrate the formalism we have

developed by applying the equations to optical fields in

several difFerent quantum states.

S

(elRle)= yn- ,'s-,s+1
S

&elR'"le) =
s+1 „

&el'' le)-.-'.
V'R

(69)

In each case the discrete sums over s have been approxi-
mated by integrals, which should be excellent approxima-
tions for large s.

Now suppose that the input to the apparatus shown in
Fig»s the Product state lei & ilez &zlvac &iolvac & 0 We
start by considering the measured quantities ~,S~
given Eqs. (43), with C' +S given by Eq. (48). Because
the photon numbers &„&2 are electively infinite on the
average in the phase state, we shall retain only the dom-
inant term R, R'z in Eq. (48), and we therefore replace
(P 2 +S )

i /2 in Eqs (43 ) by R i /2R l /2

With the help of Eqs. (69) we then find at once that

&c ) =-,'&e, le', R, '"le, &&e, lR, R "le, )+c.c.

=cos(ez —8, ),
&S„)=-,'&e, liatR, '"le, )&ezla, R /zle, &+c.c.

=sin(ez —8, ) .

(70)

Similarly, we obtain for the second moments, with the
same approximations as before,

( C' I ) =cos (ez —8, ),
(SI ) =sin (ez —ei),

(71)

=cos (ez —8, ),
with the help of Eqs. (67) and (68). Similarly

(72)

so that the dispersions of C'~ and Ssr vanish, as befits a
state of definite phase.

If we turn to Eqs. (64) for the inferred second moments
we obtain

&e, l&ezle, 8,+u, &z+2&,&,a, &zle, &lez)

4&e, fR, le, ) &e, lR, le, &

(elale)= g g e"" "v'n &min —1&
n =Om =0

I8 S

s+1„g v'n

(S I) =sin (ez —ei) . (73)

If we attempt to construct ( CI ) and (SI ) from Eqs. (61}
by taking the normalization constant corresponding to
(@' k )'/ to be R

' R '/, we also find

~ 2s 1/2ei8
3 (66} ( CI ) =cos(ez —8, ),

(SI ) =sin(ez —8, ) .
(74)

S S

&818 18&= g g e"" ' v n(n —1)&m ln —2&
s+1 „
e2iO S

g v'n(n —1)s+1„
(67}

The moments of the inferred and measured quantities
therefore coincide for the phase state, which is of course
a special situation. As {(b,C~ ) ) vanishes and ((6&, ) )
(i = 1,2) is infinite for the phase state after we let s ~ co,
the uncertainty product is not defined.

Because the state le) defined by Eq. (65) has infinite
energy, it is not a physical state that can be realized ex-
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perimentally. States that correspond to a minimum
phase dispersion subject to some restriction on the aver-
age energy have been discussed recently [16,17,43], but
we shall not consider them here.

IX. APPLICATION TO THE COHERENT STATE

Let us start with the measured moments of C~ and

SM, and make use of Eq. (52), which is particularly suit-
able for calculating coherent-state averages, because the
operator on the right is in normal order. Recalling that
for a normally ordered operator:F(t„&, ;&&,& z):
[40,45,46],

Next we suppose that the input state to the apparatus
in Fig. 2 is given by the product ~u, ) ~v2 ) ~vac), o~vac) 2O,

where
~ u, ), ~ u~ ) are both coherent states labeled by the

complex numbers

& u
~ ( & u2~:F(u„a, ;a, ,8 2):~u, & (u, & =F(v „vf; v2, v2 )

(7S)

i9l
uy

= uy[e
we obtain immediately from Eq. (S2), on setting
f(&3 &4 Rs 86)=CM,

[(u, —vz)/2i ' i(u, +vz)/2i
& v21&vq lf(&s +4 &s +6)lu& &I "2 &=Xf«s n4 ns n6)

InI n3~ n41

I( &u, +—vz )/21 '
I( —v, +lu2 )/2I

X "1 2

n5I n t

As before, it is understood that the terms with n3=n4 and n5=n6 are to be excluded from the sum, and that the
answer is to be renormalized by dividing by [cf. Eq. (15b)]

1 —Iv(lu) —v2I/2)ro(lug+u21/2)exp( —lugI' —lu21') .

Rather than attempting to evaluate the average in general, we shall consider the special cases when /u, /, /uz/ )) 1 and
when /u, f, /u, /

«l.
(a) fu, /, /uz /

))1. When
/ v, /, ) v2 /

are large and unequal, each of the Poisson distributions in n s, n4, n s, n6 in Eq. (76)
can be well approximated by a continuous probability distribution G (n; M) in the variable n with known mean M and
variance 0 =M. We therefore rewrite Eq. (76) as a multiple integral,

& ui I &» lf(n3 +4 +5 ~6) lvi & lv~ &

= I Idnsdn~dnsdn6f(ns, n„ns, n6)G(ns, 'lv
~

—
v~ 1'/4)G«4, 'lv~+ v21'/4)

X G(ns; ( iu, +)v—2/4)G(n6; (

—u, +iv2[ /4), (77)

in which the random variables n3, n4, n5, n6 are al1 independent. As the n s are large numbers in general, we can expand
f ( [ n ] ) in a Taylor series in each of the variables n about its mean value & n ). Thus

f ( [ 3 ) f( [ & ) ] ) +g af ( [ & n & ] ) +, , a'f ( I & n & ] ) +
Bn, 2I Bn, Bn,

(78)

When this is substituted in Eq. (77) and the integrations are carried out we obtain, because the terms in b n; average to
zero,
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& ui I & uz If(&3,&„&,, &6)lu, & Iu, &

Iv, —u, l' Iu, +u, l I

—iv, +u, l'
I

—ui+iuzl'
4 ' 4 ' 4 ' 4

Iv, —v, l' gzf Iu, —u, l' Iv, +u, l'
I

i—u, +u, l'
I

—v, +ivzl'
2 4 g 2 4 4 4

, u, + uz I' azf Iu, —u, I'
I u, +u, I'

I

—iu, +u, I'
I

—u, + iuz I'
+1

4 Bn4z 4 4 ' 4 ' 4

, I

—ivg+vz ' gzf lv) —uzi' lv)+uzi' I

iv—)+uzi' I

—vg+ivzl'
2 4 Bn25 4 ' 4 ' 4

' 4

, I

—v)+ivzl' a f lvi —uzi' lvi+vzl' I

—ivg+vzl' I

—u, +ivzl'

4 (jn z6 4 ' 4
' 4 ' 4

+ 0 ~ ~

z(v)vz+v)vz )

If we now identify f ( &3, 8'~, 6'&, fi'6 ) with CM given by (h4 —n 3 ) /[( h~ —h3 ) + (66 —8'5 ) ) '~, we have

u, —v, l' lu, +v, l'
I iu, +—v, '

I

—u, +iuzl'
=cos(Hz —8, ),

(79)

(80}

lu, —u, l' lu, +v, l'
I

i v+— ul'zI —v, +ivzl'

4 ' 4

3cos(Hz —8, )sin (Hz —8, )

lu, v, l'

3 cos(8z —8, )[sin (Hz —8, )
—

—,
'

]

j=3,4

j=5,6 .

After substituting in Eq. (79) we arrive at

(CM & =cos(8z —8, ) l —
—,
' + (82)

Next we identify f(n3, n„, R'„8'6) with C ~ and proceed in the same way. ~e find

lu, —v, l' lu, +u, l'
I iu, +u, l' —

I

—u, +iu, l'
f«~, &, (e, &, (~, &, (fi, &)=f

=cos (Hz —8, }, (83}

lu, +u, l' —iu, +u, l'
I

—u, +ivzI'
an' 4 ' 4 ' 4 ' 4

8 sin (Hz
—8, )[cos (Hz —

8& }——,
' ]

U)Vp

8cos (Hz —8, )[sin (Hz —8, ) ——,']

j=3,4

j=5,6 (84)

so that from Eq. (79)

(C~&=cos (Hz —8, )

+ cos2( Hz
—8, ) + . . (85)

the dispersion of C~

((hC ) &= —,
' + sin (8 —8, )+0

Finally, after combining Eqs. (82) and (85) we obtain for and similarly we may show that
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((ASM) ) =
—,
' + cos (82 —8, )+0

Ui Up v

[((&C )'&+((&S )'&]'"[((bh )')]'"
=v'(I+P)/2 ((&, )»I) . (88)

It is clear from this that the greater the dispersion of the
photon number, the smaller is the dispersion of the
phase.

(b)
I v, I, I vz I

« 1. When ( h, ), ( &z ) « 1 we can make

The reason for the dependence of the dispersions of
((LCM) ) on sin(82 —8, ) and of ((ASM) ) on
cos(82 —8, ) can be understood as follows. It is well

known that the real and imaginary parts of a, 8 have
Gaussian distributions in the coherent state

I
v ), resulting

in uncertainties of the phase angle. The uncertainties of
the corresponding sine and cosine must depend on the
cosine and sine of the phase angle, because for phase an-
gles near zero the cosine is rather insensitive to angle
fluctuations, and for phase angles near rr/2 the sine is
rather insensitive to angle fluctuations.

Finally, it is interesting to note that if we focus on the
special case in which lv, I =13!v2! =(n, ) =((b&, ) ),
(P & 1), we can combine Eqs. (86) and (87) in the form

use of the general results for the weak field given by Eqs.
(53)—(59). We then obtain immediately

I Ui U2
(CM )=, cos(82 —8&)M

cos(82 —8, )

Iu, /v, I+ Iv, /v, I

(C' &=-,', (90)

and similarly for ( SM ), ( S M ) . In this case ( C'M ) and

(SM ) do not average to the expected values cos(8z —8, ),
sin(8, —8, ), but to some other values depending on
Ivl /v2!. We find

((~C )')+&(aS )')=1-
(!v, /v, I+ lv, /v, I

)'

3
4 (91)

which is consistent with the idea that the phase difFerence
is poorly defined when the photon numbers are small.

It can be shown that if the calculation is carried to the
next approximation, involving the detection of two pho-
tons, i.e., to 0(

I
v

I ), one obtains in place of Eqs.
(89)—(91),

cos(8z —8, )
(C )= (lv I' + lv I') —— +

I
v

1 /v2 I+ I v2/v g I
8 2&2 ' ' 4

I v, I'+
I v, I'

( C M ) =— 1+— cos2(82 —8 )+
4 !vi I'+ lv2I'

(92)

(93)

&(~cM)'&+((~sM)'&=I—,I — —— (lv, l'+,'v, l') —— +
(lv /v2I+lv2/v I) 4 +2 ' ' '

2 lv I
+ lv2I

(94)

In particular, when lv, I

= lv2! =
—,'(N), where (N) is

the mean number of photons, then

((LCM) )+((ASM) )=—,
' —0.083(N)+ . (95)

Figures 3 and 4 show plots of ( CM ) and of
((b CM ) + ( (b,SM ) ) as a function of mean photon nurn-

ber (fi& ) =
Iv& I

for different ratios lv2! /Iv| I
. It is ap-

parent from these that (CM ) does note always coincide
with cos(8z —8, ), and that the phase difference becomes
increasingly ill defined as the mean photon numbers
( &

& ), ( n 2 ) ~0. On the other hand, ( CM ) does not tend
to zero and ( (b, CM ) ) + ( ( ASM ) ) does not tend to unity
as (&, ), (fi'z)~0, so that the phase difference does not
become completely random, and some phase information
remains even in the limit. This conclusion may seem
strange, but it is a reflection of the fact that in the
present measurement scheme all-zero outcomes
(m, =m4=m, =ms =0) associated with the vacuum

0.6

0.4

V

0.2—

~ ~ ~ ~ s ~ ~ al ~ ~ ~ ~ I ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~

0. 1 1 10
I v1l

FIG. 3. The expected variation of (CM )/cos(8~ —8, ) with

mean photon number (n, ) =!u, ! for an input field in a two-
mode coherent state !u, , u~) for different intensity ratios (a}

lu ! /]1u| I

= li (b),'u .

'

/lug! =8.
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FIG. 4. The expected variation of the sum of the dispersions

( (hC~ )2 &+ ((hg~ ) & with mean photon number ( R] &
=

l v, l

for an input field in the two-mode coherent state l u „uz ) for
different intensity ratios (a) l u 2 l /l v, l' = 1, (b)

l u] l /l u ] l

' =8.

I V1I

FIG. 6. Comparison of the expected variation of
((hC~)'&+ ((hS~)'& in a two-mode coherent state lu, &, lu, &,
with mean photon number lu, l~=(R] & when lull =50 for the
present theory (NFM), the Susskind and Glogower operators,
and the Pegg-Barnett phase operator.

state are discarded. Needless to say, there are very few
discarded outcomes (ms=m4, ms=ms) when one of the
two incoming fields is intense and has a definite phase, as
is often assumed.

For comparison we show in Figs. 5 and 6 the corre-
sponding curves for ( C']]r & /cos(82 —8, ) and

((LCM) &+((AS]]r) & in the coherent state calculated
for the Susskind-Glogower operators [3,4] (which do not
commute), and for the Pegg-Barnett phase operator
[13,20]. Evidently there are differences from our predic-
tions, which are most pronounced when l v

l
5 1, and

should show up in experiments. The results of some re-
cent measurements [44] covering a range of lv l

from 10
down to 10 are found to be in very good agreement
with our theory. The results differ from those predicted
through use of the Susskind-Glogower and Pegg-Barnett
phase operators, because the experiments evidently do
not measure precisely these operators.

When we come to the inferred values given by the gen-

eral relations (61) and (64), we find immediately

(C lz&=cos (82 —8, ),
(S &=sin (8 —8, ) .

(96)

However, when r =1, if (k] k2)' is interpreted as
(&]Rz)', then the values (CI & and (SI & given by Eqs.
(61) can exceed unity and do not make sense. Only on in-
terpreting (@']k2 )' as a normally ordered operator

& ( 4] kt )]/2
& &:(R]&2)]/2: &

=
I v] I IU2 (97)

do we obtain the inferred means

(C'I & =cos(82 —8, ),
(S & =sin(8 —8, ),

(98)

which makes the inferred dispersions ((hC'I ) & =0
=((ASI) &, just as for the phase state. However, the
measured moments clearly distinguish between the
coherent state and the phase state.

CD

0.8
X. AN ENSEMBLE OF COHERENT STATES

0.6 '

cQ
v 0.4

0.2

~ ~ ~ ~ ~ as l ~ a ~ ~ ~ ~ sl

0.1

~ ~ ~ ~ ~ ssl

10
Iv I

FIG. 5. Comparison of the expected variation of
( CM l /cos(8z —8, ) in a two-mode coherent state lu, ), lu] &2

with mean photon number lu] l

= (R] & when lu2l =50 for the

present theory (NFM), the Susskind and Glogower operators,
and the Pegg-Barnett phase operator.

Let us suppose that the incident state for modes 1 and
2 has a density operator of the form

p= f y(v], U2)lu]ui &(U], U2ld v]d Up (99)

It has been shown [40,45,46] that there is a sense in
which any density operator p can be expressed in the
form (99) if sufficiently generalized functions of P(v] vz)
are admitted. Here we limit ourselves to ordinary weight
functions P(v]vz) that either depend only on lu, l, lvzl or
reduce to a product of functions of

l u, l,

luau

l, and of 8„8z.
Then we may readily show that when f(R3R4 R5 R6)'

stands for any moment of C]]r or SM as before, we have in

place of Eq. (76)
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1(u, —u2)/21 '
1(v, +u2)/21 '

I( iui+v2)/21
(f(g3'fi'4 85 n6)) = gf(n3, n4, n5, n6)

In I
n3! n4! n5!

2n6
1(

—v, +&u2/2)/
X

n6!
(100)

where ( )& denotes an average over u, , v2 with respect to the weight function p(u„u2). The exclusion of the cases
n3 =n4 and n5 =n6 from the sum and the consequent renormalization of the average is again to be understood. It fol-
lows that all the previous results for ( O'

M ), (SM ) in the coherent state 1u „v2 ) remain valid after we introduce the ad-
ditional averaging operation ( )&. Thus we have in place of Eq. (82),

(C ) =(cos(9 —8 )) 1 —— + +1 1 l
M (101)

and in place of Eq. (85)

( C ss ) —(cos (es —e, ()S—— + )S(cos2(es —e, ((S,
1 1 1

2 v, u2

and similarly for (S M ), (S M ) and for the dispersions ((b,CM) ), (ASM) ).

(102)

XI. APPLICATION TO THE FOCK STATE 1n, , n 2 )

Next we apply the foregoing to calculate the first two moments of C'M, SM when the incoming field is in the two-mode
Fock state 1ni, n2). From Eq. (52) with f(|2&,&4, 8'&, }2&}=C'M=0(C +S ) '~, we obtain

n4 —n3
M + + 2 2 i/2[(n4 ns) +(n6 n&—) —

]

X(n 1(8 —& ) '(8 +8 ) '(3 +8 ) '( —I —3 ) 'a 'I 'a

('( +12
X ( —&, +i32) '( —ia, +a2) '(&, +a2) '(a, —&2) '1n „n2 )

r &!r2t

3+ 4+ 5+ 6 t t I t4 n 3.n 4.n 5.n 6.

n4 —n3

. , [(n4 n2} +(n6—n, ) ]—
s s

n3 n4 n5 n6 n6 n5 n4 n3

$3 $4 $5 $6 $6 $5 $4
I

$3

I I I Ifl33 ll4$4n5$5n6$6 +f2 ll6$6 +115 $5+n4$4+n3$3+F2

I I I I
5 5 6 6 3 3 6 6 ( 3(i —1X
4

ll 3 + Pl 4 + tl
5
+ n 6r &!r2!n3!n4!n5!n6!

(103)

It is again to be understood that the case n3=n4 and
n, =n6 is excluded from the sum g~„}, and that we
divide by the renormalization factor 1 —P, with P given
by Eq. (52 ), whenever it differs significantly from unity.
The second equation follows from the first one after bino-
mial expansions of the eight factors (a i

—&z), etc.
Now the matrix elements under the sum evidently vanish
unless

$3+S4+$5+$6 S3+S4+S5+$6 (104)

so that

Hence the combination on the left or right must be even
because ( CM ) is real.

We now make the transformations
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$3~$4, $3~$4

ss~$6 $ s

n3~n4,

ns n6

(105)

in Eq. (103). Then the right-hand side merely changes
$3+$3+$6+$6

sign, because the factor ( —1) '

=( —1) ' ' ' ' changes to ( —1) '
$4 —$4+$5 —$5=(—1) ' ' ' ' and the two factors are equal by vir-

tue of Eq. (104). It follows that

sum of four 6 functions centered at 02 —0,
=o,m/2, m, 3n/. 2 .This is a reflection of the fact that the
phase measurement in that case has only four possible
outcomes. As the photon numbers increase, the probabil-
ity density becomes increasingly uniform over the range 0
to 2m. .

Finally, we have from Eqs. (64) for the second mo-
ments of the inferred phases

2n, n2
&n„n, ~C', ~n„n, &= „4n&n2

=&n„n2~S, ~n„n2), (110)

and

& )=o, (106) &c, ) =o=&s, ),
and in the same way we may show that &SM ) =0. More
generally, it is easy to see by a similar argument that

& C'I ) = &S I ) =0 when r is odd . (107)

Next we calculate &
C' sr ) and &S ~ ) by the same tech-

nique. The equation for & C ~) looks just like Eq. (103),
but with the factor

n4 n3

[(n4 n3) +—(n6 n5)—]'

replaced by

(n4 n3 )—
(n~ n3) —+(n6 —n5)

and the equation for &S M ) has (ns n5) i—n the numera-
tor instead. This time we make the transformations

no matter how the normalization factor in Eq. (61) is in-
terpreted. This time the measured and inferred moments
coincide.

XII. APPLICATION TO THE "SPLIT PHOTON"

ly& =nil &, lo&, +alo&, ll &, . (112)

We consider the situation illustrated in Fig. 7, in which
a single photon falls on a beam splitter BSO, and the two
beam-splitter outputs serve as the two inputs 8, ,82 to the
phase-measuring system of Fig. 2. This situation possibly
represents the simplest easily realizable example of the
phase-difference measurement of a nonclassical field, and
it exhibits some interesting features. If A, 8 are the com-
plex amplitude reflectivity and transmissivity of BSO, with

~R~ +~8~ =1, then the input state ~1(t) to the measuring
system has the form

$3~$s, S 3~$ s

I I
$4 $6 $4 $6

n3~ns,

n4 n6

(108)

We now use this state in Eq. (52), with f(I 8') )

identified with CM, C M, SM, SM in turn, as before. As
the diagonal matrix elements

,&11,&olc lo&, ll &. . .&01, & llc ll &, lo&, „

in the equation for & C M ). The factor (
—1) '

does not change for the same reason as before and
. $5 —$5+$6 —$6(i) ' ' ' ' does not change either, because the ex-

ponent is even. The only change in the equation for
&

C'
sr ) is that (n4 n3 ) in the n—umerator becomes

(n6 n~), which tur—ns it into the equation for &S I ).
Hence we conclude that

etc. , were already evaluated in Sec. XI, there remains
only the problem of calculating the off-diagonal matrix
elements. This is easily done by expansion of the normal-

ly ordered product of binomial and exponential factors in
Eq. (52), because only the lowest-order terms contribute.
As the procedure is similar to that used in Sec. XI, we
shall not go into details here. It is not difficult to show
that

&C' )=&S' )=-,', (109) 1 Photon

and a similar argument shows that & C ~ ) = &S~ ) for
any even r.

Equations (107) and (109) are consistent with the situa-
tion in which the phase difference at the two inputs is
completely random, but they do not prove it. Actually,
for small numbers n, , nz the phase difference is not com-
pletely random. It is not difficult to show that for the
one-photon state ~1),~0)z we have & C M ) = &S M ) =

—,
'

for all even r and 0 for all odd r, so that the probability
density of the phase difference effectively consists of the

to input 2

BS

to input 1

FIG. 7. Illustrating the generation of the two interferometer
inputs as ports 1 and 2 of Fig. 2 with beam splitter BSo from one
photon.
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&0I & IIC' lo&gll &2=-,'=z& Il&&olcMII&ilo&»

(113)

and when this is combined with Eq. (109) for the Fock
state we have immediately

&pic' iq) =-,'=&1(IS' ll(& . (117)

Hence we obtain finally

((&c' )')=&c" ) —&c' )'=-,' —
—,'(&8'+&'+)',

&(ES }'&=&S' &
—&S )'=-,'+-,'(Nut* —%*9)',

and

&(nc )'&+&(as )'&=1—I%I'ld'.

But for the state
~ g ) given by Eq. (112),

(e, &
= ~x~'=(e'&

(e, ) =i@i'=(e',),
so that

&(~e, )'& = ~x~'~e~'=((~e, )'& .

(119)

(120)

Hence we may write

[& (ac„)'&+((as )') ]+-,' [((ae, )'&+ ((ae, )') ]=1 .

(121)

This is a kind of uncertainty relation connecting the
dispersions of the measured cosines and sines and of the
photon numbers. Because both dispersions are bounded
from above, the relation involves an uncertainty sum
rather than uncertainty product. Nevertheless the usual
conclusion applies; whenever the combined dispersions of
C~ and S~ are as small as possible, the dispersions of the
photon numbers are as large as possible, and vice versa.

Actually, these results for the split photon are already
contained in Eqs. (92)—(94) for the weak two-mode
coherent state

~ v, ), ~ uz ) 2 when
~ u, ~, ~ u2 ~

((I, because

lu, &, lu, &, =IO&, IO&, +u, ll&, IO&, +u, lO&, ll),
+0(/uf ) . (122)

When the all-zero counting outcomes are discarded, then
this state is equivalent to order ~u ~

to ~g) given by Eq.

and when this is combined with Eq. (106) for the Fock
state, we obtain

& qlcM lq& =
—,'(&+*+&*e)=Re(%8") .

Similarly we find

(1(~S g& =Im(Ad') .

For the off-diagonal contribution to ( C'
M ) and (SI )

we can show that

,&ol, & ilc' lo&, II &,=0=,&ol, & lls' lo&, II &, ,

(116)

(112) if we identify JV, 9 with v, /(fu, f
+ fvz[ )'

uz/()v& [ +[u2/ )' . Finally, we note that
(1(~R', h2~6) =0, so that the concept of inferred phase
discussed in Sec. VII is not applicable to the quantum
state ~g).

XIII. DISCUSSION

We have approached the problem of identifying the
quantum-dynamical variable corresponding to the phase
difference between two optical fields, not via some
mathematical criterion, as is usually the case, but
through the measurement process that is known to deter-
mine it in the classical regime. In particular, we have al-
lowed ourselves to be guided by the correspondence be-
tween certain classical and quantum observables. Be-
cause experiments generally yield the sine and cosine of
the phase difference, rather than the phase directly, we
regard the measurement operators CM, S~ as the funda-
mental dynamical variables [26]. Although other mea-
surement schemes are worth studying in detail, it is al-
ready apparent from the two experimental schemes we
have analyzed that there is not a universal expression for
CM or S~; the two different measurement schemes lead
naturally to different operators. For a scheme such as
that shown in Fig. 2, in which values of the sine and
cosine are obtained together, the corres onding operators
CM, SM commute. On the other hand, M and SM do not
commute when sine and cosine measurements are mutu-
ally exclusive alternatives, as in the scheme of Fig. 1.
However, in both cases CM and SM commute with the to-
tal number of photons, which implies that phase mea-
surements and total photon-number measurements are
compatible.

Our analysis of the problem of phase measurement is in

accord with the long-established conclusion of Dirac [1]
that the phase difference is well defined only when there
are large dispersions of the photon numbers. Converse-
ly, the moments of the sine and cosine operators are con-
sistent with the phase difference being completely uncer-
tain when the photon numbers are definite.

In classical optics, it is necessary to make a distinction
between the measured and the inferred values of the sine
and cosine and their moments. In a weak field, in which
the average photon numbers counted in a measurement
are of order or less than 1, the ensemble of measured
values may be quite different from the true ensemble.
Nevertheless, classically it is possible to infer the correct
moments of the ensemble from the measured moments of
the photon counts, provided phase and amplitude Auc-
tuations of the fields are not directly correlated. Corre-
sponding relations can be derived for certain states of the
quantum field. Some of the same difficulties of phase
determination that one encounters in the classical domain
carry over into the quantum domain. For example, when
phases and amplitudes are correlated, there appears to be
no way to measure the phase difference for either weak
classical or weak quantum fields.

There has been a good deal of discussion in the past of
the most appropriate dynamical variable to represent the
phase of a quantum field, and many candidates have been
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studied. Our analysis suggests that this question may not
have a general answer with respect to the measured phase
operators, because difterent measurement schemes lead to
different operators. As in many other quantum-
mechanical problems, it seems that questions about the
value of a dynamical variable cannot be divorced from
the measurement process that generates the ensemble. In
our view the proper choice of a phase operator ought to
be based both on the measurement scheme and on the
correspondence with classical optics, because the concept

of optical phase arises and has a natural definition within
the domain of classical optics.
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