
PHYSICAL REVIEW A VOLUME 45, NUMBER 6 15 MARCH 1992

Thermodynamic properties of the Q-state Potts-glass neural network
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The Q-state Potts model of neural networks, extended to include biased patterns, is studied for exten-
sive loading a. Within the replica-symmetric approximation, mean-field equations are written down for
general Q and arbitrary temperature T The c. ritical storage capacity is discussed for Q=3 and two
classes of representative bias parameters. The complete T-a phase diagram is presented. A tricritical
point is found in the spin-glass transition for Q )6, depending on a. Contrary to the Hopfield model,
the critical lines do not converge to the same T as a~0. A stability analysis is made.

PACS number(s): 87.10.+e, 75.10.Hk, 64.60.Cn

Neural networks with multistate neurons have attract-
ed recent interest in order to study the storage and re-
trieval properties of grey-toned patterns and also to ex-
amine how these properties change if the number of
states increases. A model of this type based upon Potts
spins has been introduced in Ref. [1]. Its storage capacity
and retrieval of information have been discussed for un-
biased patterns in the limit of zero temperature. This
model has recently been extended to include a finite num-
ber of biased patterns [2). Other multistate models have
been considered in Refs. [3—11]. They are only con-
cerned with unbiased patterns. Finally, we remark that
Potts-type models are especially useful for performing
multiclass classification tasks [11,12]. A systematic study
of this Q-state Potts-glass neural network with extensive
loading of biased patterns at finite temperatures and for
an arbitrary number of states Q is quite tedious and, to
our knowledge, has not been given so far.

The purpose of this Brief Report is to contribute to
such a study. Here we mainly focus on the thermo-
dynamic properties of the model since they are of in-
dependent interest and, at least to us, partly unexpected.
A more detailed analysis is planned to be given elsewhere
[12].

Consider the Hamiltonian

These parameters determine the probability distribution
of the independent random variables k, which can take
the values 1, . . . , Q, as
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where (( )) denotes a quenched average over the patterns
[k ]. The measure Dz is given by
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Mean-field theory for the Hamiltonian (1) and (2) is de-
rived using the replica technique [13,14]. The calculation
of the free energy per neuron is quite tedious [12]. The
result is, within the replica-symmetric approximation
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where the [8 I are the bias parameters of the patterns.

with the Potts operator u =Q5 r
—1 and synaptic

I

couplings satisfying the symmetry constraint J;~p=Jp~.
The stable states are given by those configurations [0;]
that are the local minima of H. In the presence of noise,
taken into account by the introduction of a temperature
T =P ', there is a finite probability of having
configurations other than the local minima.

The stable configurations of the network must be
correlated with the p patterns [k,'], a= 1, . . . ,p fixed by
the learning process. The learning rule is given by

+ g (u„, —8 )(m, +h„)
v=1

+ g [ar(1+Bi)/Q]' (u, —8 )z, ,

with h the couplings of the external field terms, intro-
duced in order to describe the possible macroscopic con-
densation of a finite number s of patterns. The free ener-

gy (4) is a function of five order parameters: the macro-
scopic overlap with a condensed pattern,
m„=(( (uk, 8) )), where ( —) stands for thermal

average, the extended Edwards-Anderson (EA) parame-
ter, q =(( (u„. —8 ) )), the total mean-square ran-k, o.

dom overlap with the noncondensed patterns,
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r =g„&,(( (m„»&/a, the autocorrelation of the over-

lap, q=(( ((uk. —& ) »&, and the total autocorrela-

tion of the noncondensed patterns, i.e.,
r=y„„(((~„'& &&/~.

At this point, several remarks are in order. First, com-
pared with the Hopfield model and the Potts neural net-
work without bias, we find two extra order parameters,

i.e., q and r. This is due to the fact that in the replica ma-
trix for q, the diagonal term is now a function of o..
Secondly, the usual EA parameter has to be extended by
including explicitly the bias parameter in its definition.
For Q =2 this definition simplifies to the usual EA pa-
rameter scaled with the factor (1 B—, ).

The fixed-point equations for the order parameters are
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FIG. 1. The critical capacity a, as a function of a at T =O.

We note that in general two of the order parameters,
i.e., r and r, are algebraic. For zero bias also q becomes
algebraic. For T =0, P(q —q) equals a finite limit C [cf.
Eq. (8)] and P(r r)=C(1 —C—) '. In that case, Eqs.
(7)—(11) can be reduced to two coupled nonlinear equa-
tions. For zero bias only one single nonlinear equation
describes the relevant problem. A detailed discussion of
these equations is contained in Ref. [12].

By solving the T=O equations, e.g., for Q =3 and
Mattis retrieval states m „=m fi„„m%0, we get the criti-
cal storage capacities. We have selected two representa-
tive classes of bias parameters, i.e., B,=a(2, —1, —1)
and Bz=a(1,0, —1) where aE(0, 1] and B=[B
y = 1,2, 3. The form B, indicates that one state is
privileged and the other two states have equal probability
to appear. In the other case, Bz, all three states have
different probability [2].

In Fig. 1 the critical storage capacity a, at T=O is
shown for the Q = 3 B, and Bz system as a function of the

(10)

I

bias amplitude a. At this point we recall that in the
definition of the order parameter m, the overlap due to
the nonzero correlations between the patterns is subtract-
ed such that a, is a measure of the information content of
the system. In that way we can understand that
a, (a =1)=0 for B=B,. We also see that a, =0.415 for
a=0 [1]. Since B& is the most extreme choice of bias
structure possible [2], all Q =3 systems have a storage
capacity a, at zero temperature lying between the curve
for B, and the line a, =0.415. It should be possible, like
in the Hopfield model, to keep the storage capacity for
biased patterns at the level of unbiased patterns by intro-
ducing soft and rigid constraints on the mean activity of
the network or by adding a ferromagnetic term to the
learning rule (cf. Ref. [15], respectively, Ref. [16] in the
case of the Hopfield model). We finally remark that at
T=O both systems B, and B2 have an overlap m that is
very close to its maximum attained for a=O, for all
values of the bias amplitude a.

We next turn to the complete phase diagram shown,
for Q =3, in Fig. 2. Because it is so rich in structure we
restrict ourselves in this paper to a discussion in the case
of unbiased patterns. For biased patterns, the basic
structure of the phase diagram is roughly unchanged.
The stability properties, however, are different [12].

The transition from the disordered paramagnetic phase
to the spin-glass (SG) phase can be studied analytically
for general Q. Expanding the fixed-point equations (8)
and (10) in powers of r and q we determine the transition
temperature T and the nature of the transition. We ar-
rive at T =Q —I+[a(Q —I)]'~ . Furthermore, for
Q ~ 6 the transition is always of second order. For Q )6
we find that if a(a0=16(Q —1)(Q —6) the transition
is of second order, while for a) ao the transition is of
first order. For Q~ ~ the tricritical point ao~O mean-
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FIG. 2. T aphas-e diagram for Q =3. The solid lines indi-

cate the thermodynamic transitions.
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ing that the transition is of first order for all values of a.
We now turn to an explicit discussion of the Q =3 re-

sults (Fig. 2). Below the critical line T, the spin-glass
solutions appear. The fixed-point equations (7)—(11) are
solved numerically. This yields the other critical lines de-
picted in Fig. 2. When crossing the line TM from above
Mattis retrieval states show up as local minima of the free
energy. At this point the overlap with the built-in pat-
terns jumps from zero to a finite macroscopic value. So
the system functions as an associative memory and the
critical storage capacity for a given temperature can be
read off through the line TM.

When further lowering T, the retrieval states become
global minima of the free energy. This happens along the
line T, . The transition at T, is a first-order transition.
Several additional remarks are in order. First, in contrast
with the Hopfield model [14] the critical lines end in
different temperature points. The reason is that for finite
patterns, and thus a~O in the limit N~~, the Potts
model has a discontinuous transition at T„as has been
shown in [2]. Secondly, for a growing number of states Q
this "crossover" region for small a is expected to become
more extended, e.g. , for Q =4, TM =3.728 [17]. Third, if

we compare the values of ao with a critical storage capa-
city a, at T =0 for the Q-state model,
a, =Q(Q —1)0.138/2, we see that ao&a, for Q & 10.
This implies that if Q & 10 then the tricritical point is cer-
tainly situated outside the crossover region. Finally, for
low T we find weak reentrant spin-glass behavior, analo-
gous to what has been seen recently [18] in the fully
connected Hopfield model. The maximum value of a,
is obtained at a, (T~ =0.099)=0.416(2) while

a, (TM =0.021)=0.415(0).
To make this picture complete the free energies are

shown in Figs. 3 and 4 for values of a in different re-
gimes. On these figures we have also indicated the results
about the stability of the different solutions to the fixed-
point equations with respect to replica symmetric Auctua-
tions. These results have been obtained by studying a la
de Almeida-Thouless [19] the eigenvalues of the Hessian
matrix formed by the second derivative of the free energy
with respect to the order parameters m, q, and r. More
details are planned to be given in Ref. [12]. For small o;,
e.g. , a=0.005, the situation is the following. A paramag-
netic solution of the fixed-point equations exists for
T) 2. In the region 2(T (T =2. 1 it is unstable, for
T) T it is stable. At T=T it bifurcates and a spin-
glass solution shows up. The latter lies above the
paramagnetic solution but it is locally stable down to
T=O. At T=0 the SG order parameters are given by
C =3(3/4arvr)' and r =2+3(6/an. )'~ +(27/4~a).
At T = TM =2. 182 a Mattis state starts to exist. It is lo-
cally stable for TM )T )T, =2. 146 and globally stable
below T, .

A similar picture can be drawn for a=0.01 but the

temperatures T and T, are interchanged, i.e.,
2.141=T )T, =2. 127. For a=0. 10 the results of the
stability study are given in Fig. 4. From a 0. 199 on-
wards the Mattis line of free energies lies above the spin-
glass line. The results above are confirmed by studies of
the bifurcation of the overlap order parameter m in func-
tion of T for different values of a [12].

For Q & 6 and a & ao where the SG transition is of first
order, we expect that similar to the results of Gross,
Kanter, and Sompolinsky [20] there is a region around T
where both the spin-glass and paramagnetic solution are
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FIG. 3. The free energy f as a function of T for a=0.005.
The solid lines represent stable solutions of Eqs. (7)—(11). The
points 1 and 2 indicate Tg and T„respectively.
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stable. This is currently being studied.
Finally, to examine the internal consistency of the re-

plica symmetric theory we have calculated the entropy at
T=O,

S = —(a/2)[ln(1 —C)+C( 1 —C) '] .

Compared with the Hopfield model where S = —0.07
in the SG phase and with the Sherrington and Kirkpa-
trick model where S„=—0. 16 we find that S = —0.32.

C

For the ferromagnetic phase the Hopfield model leads to
S = —1.4X10 while we find S = —3.3X10 in

agreement with the statement about the Q =3,4 clock
model [3]. All this suggests that replica symmetric
breaking is still weak in the retrieval states for the Q =3

Potts model.
In conclusion, the Q-state Potts glass neural network

shows a very rich structure within the replica-symmetric
approximation. It is certainly interesting to study how
this model behaves when breaking the replica symmetry.
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