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Phase-slip dynamics in one-dimensional distributed systems
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The phase-slip process, which occurs as the instantaneous variation of the phase of the order parame-
ter on a multiple of 2m for one-dimensionally distributed systems, is studied in detail. The general
analytical results are supplemented by a computer simulation of the phase-slip process for the case of the
Ginzburg-Landau equation.

PACS number{s}: 47.10.+g, 47.20.Ky, 47.25.Qv

A great variety of physical phenomena, such as certain
problems of convective systems [1,2], superconductivity
[3],and phase transitions [4], are described by the follow-
ing type of equations:

where f(x, t) is a complex function of the space coordi-
nate x and time t and 8 is a differential operator with
respect to x. It is supposed that Eq. (1) is completed by
the periodic or rigid boundary conditions and that the
operator D is invariant with respect to arbitrary transla-
tion in the (x, t) plane.

By using two real functions, an amplitude R and a
phase tb with the relation f=R exp(i{b) instead of the
complex function P, one obtains from Eq. (1) a pair of
coupled equations of the form

R, =8~(R,P),
P, =5~(R,Q) .

(2a)

(2b)

In the one-dimensional case, Eq. (1) being formulated for
a finite segment —L &x &I. has a weak conservation
law: The total phase difference 4=/(L, t) P( —L,t)—
does not vary in time, as follows directly from Eq. (2b)
and boundary conditions. This conservation law may be
broken only at the so-called phase-slip moment when the
amplitude R at a certain point xps vanishes. At this mo-
ment the phase P(xps) is indefinite, so that its value may
be shifted on any multiple of 2n. . This process is well
known and has been discussed in many papers (see, e.g.,
Refs. [3,S—8]). Nevertheless, some important details are
yet unknown. For instance, while the phase change dur-
ing one phase-slip process may in general be equal to any
multiple of 2', computer simulations [8] show that usual-
ly it equals its lowest value 2m. . Another question is
which of the phenomenon peculiarities are connected
with the particular features of the concrete physical prob-
lem, and which ones are common for a great variety of
problems? In the present Brief Report we develop the
general analysis of the phase-slip process in order to fill
this gap.

The main point of our consideration is the assumption

that on the (x, t) plane, a phase-slip point (tps, xps) is a
singular one only if R and {b are taken as independent
variables. If instead of them we introduce u =Ref and
U
= Imp, the phase-slip point becomes a regular one.
In accordance with this, close to the phase-slip point

the functions u(x, t) and v(x, t) may be expanded into
powers of x and t as follows:

u =a„t+b„x+c„x l2+
U =a„t +b„x +c,x /2+

(3a)

(3b)

[the translational invariance of the Eq. (1) on the (x, t)
plane gives us rise to suppose without loss of a generality
that xps=O and tps=O] ~ Here a„„b„„andc„, are
constants.

It is natural to expect that close to the phase-slip mo-
ment a small vicinity of the point x =xps (phase-slip
core) is a range of rapid spatiotemporal variations of the
phase. In this case, studying the core structure, one may
consider the range far away from the core as infinity,
with boundary conditions of the form P(x, t)-~const+ at
x ~+ oo.

If the underlying boundary-value problem possesses
the invariance under the multiplication of P on exp(iso),
where $0 is an arbitrary constant [9], it may be used for
the elimination of the term b„x from Eq. (3b). As a result
of such a transformation, the curve u (x, tps) becomes
tangent to the x axis. A simple analysis shows that in
this case a variation of x from x = —ac to x = ~ at any
fixed t, depending on the sign of t, results either in (i) the
phase shift of 2m, or (ii) gives no phase shift at all (see,
e.g. , Fig. 1).

Let us introduce now for case (i} two quantities x+(t}
according to the relations P( +,xt)= +a j2, so that the
phase shift between these two points (equal to 7r) is the
half of the total one (2~). A characteristic width of the
phase-slip core hxps may be determined now as the dis-
tance between x+ and x; see Fig. 1(a). For case (ii) the
same quantity may be introduced as the distance between
the location points of the maximum and minimum of the
curve P(x) inside the phase-slip core; see Fig. 1(b). The
characteristic width bxps(t) for the phase slip in both
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FIG. 1. Spatial variation of amplitude R
and phase P of the complex order parameter P
obtained as a result of numerical integration of
Eqs. (4)—(6). (a) t = —0.2 (just before the
phase-slip moment), /=2m", (b) t =0.2 (just
after the phase-slip moment), 4=0.
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cases equals
~ a„t /c„~ '~ independently of the sign of t.

A case in which the system has no invariance with
respect to arbitrary rotations in the complex plane (see
Ref. [9]),and hence the coefficient b„does not equal zero,
differs from the one discussed only by the fact that now
the value of the phase at x = —~ cannot be considered
as an arbitrary constant but must be fixed. It is evident
that, at any fixed t, this results only in the shift of the
curve P(x) as a whole. In other words, all features of the
phenomenon in this case remain the same.

Thus we determined that, in the general case, the
phase-slip process gives rise to the phase shift equal to
2m. . Multiples greater than that of 2~ are possible only if
at least two coefficients in Eq. (3) vanish simultaneously.
Then the higher-order terms in the expansion must be
taken into account.

To illustrate these general speculations, a numerical in-
tegration of the one-dimensional Ginzburg-Landau equa-
tion,

(4)

Uo =R,sing, ,

where

(5b)

R, =[2[k +a tanh (ax)]]'~

P, =kx +tan '[(a/k)tanh(ax)],

u, =&2eksech(ax),

a=[[(1—3k )/2]j'~

(6a)

(6b)

(6c)

(6d)

with the following values of the constants: e= —10
k =1/3, so that a =&1/3, and the total phase difference
between the edges of the segment equals 2m. This choice
of the initial conditions corresponds to a slightly per-
turbed saddle-point solution of the Ginzburg-Landau
equation (see, e.g. , Refs. [5,10,11]). The perturbation, i.e.,
the term u, in Eq. (5a), is taken in such a form that for
this saddle-point solution it has a nonzero projection on
the unstable direction [11]. The results of this numerical
analysis are shown in Figs. 1 —3, and are in good agree-

for the finite segment —2~ & x & 2m with periodic bound-
ary conditions was carried out. According to the general
procedure, instead of the cotnplex function f, the pair of
the real functions u and U was introduced. The computer
simulation was done by the work station SUN3-260 (SUN
Microsystems, Inc. ) using the second-order Runge-Kutta
method for the time derivative and the explicit difference
scheme method for space.

The initial conditions were taken as follows:

0
gO

0

uo =R,cosg, +u, ,
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FIG. 2. Spatial variation of real (u) and imaginary (U) parts of
g for Eqs. (4)—(6) at the phase-slip moment.

FIG. 3. Characteristic width (hxps) of the phase-slip core as
a function of time. 6, t (0; 0, t )0.
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FIG. 4. Schematic drawing for the phase-slip process in con-
vective rolls. Here hxps describes the characteristic scale of the
modulated rolls.

ment with the analytical treatment described above.
Note that the functions u (x, tps) and u (x, tps) have no

singularities; see Fig. 2. The fact that the low
kx ps v Tt

~
at t )0 (after the phase-slip moment) is ap-

plied till much greater values of ~t~ result than at t (0
(before the phase-slip moment) (see Fig. 3) probably is not
connected with the phase-slip dynamics and is a particu-
lar property of the Ginzburg-Landau equation. The

slowest process determining the approach to an equilibri-
um steady state for this equation is a phase diffusion. It
results in the same law hx-&gt as an intermediate
asymptotic (until hx is small in comparison with the sys-
tem length 2L). An overlapping of these two asymptotics
may extend one at t ~0 into an intermediate range.

Finally, we would like to stress that the dynamics of
the phase-slip process discussed in the present Brief Re-
port may be directly visible in real systems. For example,
in convective fluids this process describes the annihilation
(or nucleation) of a pair of convection rolls [12]. A quali-
tative picture corresponding to this case is shown in Fig.
4. More quantitative comparisons with real experiments
in the electrohydrodynamic convections of liquid crystals
[13]are planned to be reported elsewhere [14].
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