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Straightforward derivation of the long-time limit of the
mean-square displacement in one-dimensional diffusion
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Considering one-dimensional diffusion as a sequence of exchange processes between occupied and va-

cant sites, the long-time limit of the mean-square displacement of the diffusants is shown to be easily cal-
culable as the net effect of the random walk of the vacancies.
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One-dimensional (1D) diffusion is the process of one-
dimensional propagation by activated jumps, where the
mutual exchange of the diffusants is prohibited. Trans-
port processes of this type may be observed, e.g., for mol-
ecules within molecular sieve crystals with parallel chan-
nels (1D zeolites), which most recently have attained
practical relevance for both molecular sieving and ca-
talysis [1]. The simplicity of the physical situation in
such systems is in intriguing contrast to the fact that
their theoretical treatment is generally found to be far
from straightforward [2—5]. One reason for this difficulty
is the correlation between subsequent displacements in
one-dimensional systems [6]. It will be shown that the
theoretical treatment can be simplified by considering the
random walk of the vacancies rather than that of the
diffusants. In this way, a straightforward determination
of the mean-square displacements becomes possible.

Interpreting the elementary steps of migration as ex-
change processes between occupied and vacant sites, the
displacement s (t) of an arbitrarily selected diffusant (mol-
ecule) during a time interval t may be represented as

s(t)=l g [f(m, (t))—f(m, (0))],

where I stands for the distance between adjacent sites
(coinciding with the step length), and where lm, (t).
denotes the separation between the ith vacancy and the
molecule under consideration. The function f(m) is
defined by the relation

f(m)= .
+—,

' for m &0

for m (0. (2)

Since the positions of the individual vacancies are in-
dependent from each other, with Eq. (1) the mean-square
displacement becomes

(s'(t)) =1'g ([f(m, (t))—f(m, (0))]') . (3)

The sum on the right-hand side of Eq. (3) represents the
number of vacancies that have passed the considered
molecule either from the left to the right or from the
right to the left. The same quantity may be expressed in
an alternative way by introducing the "conditional"
probability P ( m, m ', t ) that a vacancy, initially at posi-

d t =2(1—8)D„P(0,0, t), (5)

with D, denoting the vacancy diffusivity.
The diffusivity of an isolated vacancy is given by the

standard random-walk relation

D, ;„=l /(2r)

with ~ denoting the mean time between succeeding
jumps. As soon as a given vacancy is in contact with oth-
er vacancies, it cannot be distinguished from them any
longer. This is equivalent to an infinite transfer rate over
the vacant sites. Thus the mean-square displacement
(r, (t)) of a given vacancy under the influence of other
vacancies is given by the equation

tion m, will have migrated to m' at time t. Considering
suSciently large time intervals so that the sum may be re-
placed by an integral, one thus obtains

(s (t))=l (1—8)f I [P(m, m', t)

+P(m', m, t)]dm dm'

(4)

with 8 denoting the site occupancy. The factor (1—8) is
nothing other than the a priori probability of finding a va-
cancy at a given site.

In Eq. (1} the vacancy positions m, (t} are referred to
the position of an arbitrarily selected molecule. Since
with increasing values of the observation time the molec-
ular displacements become negligibly small in compar-
ison to the displacements of the vacancies, in the long-
time limit the vacancy coordinates m and m' may be like-
wise considered as being defined with respect to the
single-file system. In Ref. [7] a relation analogous to our
Eq. (4) has been used for considering the propagation of
polymer segments. The further treatment becomes
straightforward after differentiating this relation with
respect to time: Replacing the time derivatives of the
conditional probabilities on the right-hand side by Fick s
second law and taking into account that
BP /Bm = —t)P /t)m ', differentiation and integration
compensate each other, and one obtains
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Using the general relation

(r'(t) ) =2Dt (8)

integration 6nally yields

between mean-square displacements and diffusivities,
from Eqs. (6) and (7) one obtains

D„=D,„,/B. =1 l(2' ) .

Inserting this relation into Eq. (5) and using the standard
diffusion expression

1/2

which is exactly the previously derived relation [2—5].

(1 1)

P(m, m', t)=

Xexp[ —(1m —lm') l(4D„t)], (10)
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