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Interfaces driven by quenched random fields
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The growth of interfaces in a discrete solid-on-solid model driven by quenched random fields have

been simulated in (1+1)dimensions. It is found that the interface width initially grows with time t as
ln (t), and with a power law t'~ for long times. The crossover time increases sharply with increasing
randomness.

PACS number(s): 05.40.+j, 05.50.+q, 68.10.Gw

The scaling behavior of growing interfaces has recently
attracted extensive theoretical and numerical explora-
tions [1—4]. Few of these investigations consider the
effect of quenched randomness on the kinetics of interfa-
cial growth. The available experimental data [5] are,
however, normally obtained in porous media where
quenched randomness plays an important role. Similar
problems arise in the context of pinning and roughening
of domain walls by impurities [6—11],which is important
because below the critical temperature many static and
dynamic properties of systems with broken Ising symme-
try are dominated by the behavior of the domain walls.
The interfacial Auctuations are also important in deter-
mining the equilibrium and non-equilibrium properties of
wetting and wetting transitions [12]. In this paper, there-
fore, we report results of Monte Carlo simulations of in-
terfacial growth in a discrete solid-on-solid (SOS) model
driven by quenched randotn fields in (1+1) dimensions.
We have found that the interface initially behaves as
one-dimensional random walker driven by quenched ran-
dom forces, with the interfacial width w growing in time t
as ln (t); for longer times, the growth law crosses over to
w-t' consistent with a Kolmogorov-type argument
[4]. The crossover time t, increases sharply with the de-

gree of randomness.
The model used in our simulation is described by a

Hamiltonian

H= g J~h; —hj.
~

—g g [v(h, i)+p],
(ij) I I =0

where h,. is the height at site i of an array of columns
describing the position of the interface of a (d —1)-
dimensional lattice of size L" '. (i,j ) denotes a sum
over all nearest-neighbor pairs; v (h, i) is a random func-
tion of h and i uniformly distributed on the interval
[ —b„b, ]; and p is a constant independent of i and h.
Equation (1) is the strong-anisotropic limit of the
random-field Ising model [13]. Similar Hamiltonians
without quenched randomness have been used to study
equilibrium and nonequilibrium interfaces in pure sys-
tems [14], crystal growth [15], as well as wetting film
growth [16].

The standard Metropolis Monte Carlo method is used
in our simulations. The simulation process consists of
the following steps: (a} randomly pick a site i; (b) decide

with equal probability to try an increase or decrease of h;
by 1; (c) calculate the change of energy b,H due to the
change of h;, accept the change of h; with probability P,
where P =exp( hH /—T) for EH & 0, and P= 1 for
AH ~0. T is the temperature. The time t is measured as
the number of Monte Carlo trials per site (MCS). Period-
ic boundary conditions are employed in directions paral-
lel to the interface. The heights are initially set to h; =0
for all sites. The time-dependent interface width w(t) is
calculated as

w(t)= L ' "g [h;(t) —h(t)] (2)

where

h(t)=L 'd "gh, (t) (3)

is the mean position of the interface at t. The time is typ-
ically run up to 10 MCS. Finally, for given L, p, 6, and
T, an average is performed over several different realiza-
tions of the random-field configurations. The typical sys-
tem size L used in our simulations is 4000. Some runs on
larger L up to 10000 have been done. For all the results
shown in this paper, we do not see any size dependence.

The growth kinetics described by the Monte Carlo
simulations is equivalent to a stochastic process [17]
which, in the continuous limit, is described by a Langevin
equation

Bh =oV h+u(h, x)+p+g(x, t), (4)

where o. is the interfacial stiffness, which is generally pro-
portional to the coupling J; while u(h, x) and g(x, t) are
the quenched random fields and thermal noises, respec-
tively, with correlations

and

(v (x, h}v~(x', h')) =b, '5 ~5(x—x')5(h —h'),
(P(x, t)g~(x', t')) =D5 ~5(x—x')5(t t'), —

(5)

(6)

where the superscripts a and P represent diff'erent repli-
cas of the random-field configurations.

Maintain o. and 5' invariant after rescaling x—+xb,
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t~tb', and (h p—)t~(h p t)b, one obtains that z=2,
a=(5 —d)/3, and D~Db '"+"~ ~0. Therefore, we
expect that, at long times, the interface fluctuations will
be dominated by the random fields, and the interfacial
width scales as

L (5—d)/3 (8)

and

g
a/2 t (5 —d)/6 (9)

This is consistent with both the Imry-Ma argument [18]
and the Kolmogorov argument [4]. In particular, for a
(1+1)-dimensional interface simulated in this work, we
expect w t'~-growth law for long times. Equation (8)
has been numerically verified for d=2 and 3 by the
transfer matrix method [10,11], yet no effort has been
made to check Eq. (9).

For o =0 and p =0, Eq. (4) describes a one-
dimensional random walker driven by random forces.
The mean-square displacement is expected [19] to in-
crease with time as ln (t). Heuristically, t-exp(E /T),
where E-hw ' is the energy gain in the random fields,
thus

2

w — — ln (t) .
T 2 (10)

Now we turn to present our simulation results in (1+1)
dimensions. Without losing generality, we always take
J= 1. Figure 1 is a plot of log, o(w) versus log+(t) for
L=4000, T=1.0, b, =1.0. The different curves are for
p=0.06, 0.04, 0.02, and 0.00, respectively. We observe
that the curves for larger values of p reach a slope of —,

'

for long times. This confirms the prediction of the
random-field-dominated growth law w -t' . We have
done some longer runs for smaller systems to check that
the width goes to saturation after the t' regime. It is
important not to confuse this t' behavior with normal
random-walk behavior in pure systems. Here the t ' law
is due to the dynamics of searching through the random-
field configurations to minimize the energy given by Eq.
(2), while the t'~ behavior in normal random walk is
purely an entropy effect. For general dimensions d, the
interface growth law given by Eq. (9) is not the same as
normal random-walk behavior.

For early times, the curves virtually overlap with each
other. They fit to w-1n (t) nicely as displayed in Fig. 2,
which is a plot of w versus [log,o(t)] for @=0.06 and the
same L, T, and b as in Fig. 1. This logarithmic growth
can be easily understood by the fact that, at the early
times, the lateral correlation length is small, and there-
fore each column moves independently as a random
walker driven by random forces in one dimension [19).

We also observe that, as shown in Fig. 1, the crossover
time t, increases rapidly as p increases. Note that 6/p is
a measure of the relative degree of randomness of the to-
tal driving force @+v(h,x). The reason for this increase
is that, for larger p, the average position of the interface
moves faster, thus increasing the chances of searching
through the quenched random fields. The development
of the random-field-dominated fluctuations is basically an
optimization process in a multidimensional random sur-
face. For given 5 and T, the speed of optimization in-
creases with p as exp(lu/T). Therefore, we expect t, to
be given by

t, = t,o(J,b, T)exp( p/T) . —

~ ~ ~ ~
I

~ ~ ~ ~ I ~ l ~ ~
I

~ ~ I ~ I I ~ I ~2 Q

t,o(J,b, T) can be derived by the following argument:
The logarithmic law, which is the result of independent
growth, will cease to be valid when the energy due to the
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FIG. 1. For T=1.0, 6=1.0, and L=4000, logIp(w) is plotted
against log, p(t) for different p. The solid curves from top to bot-
tom correspond to p=0.06, 0.04, 0.02, and 0.00, respectively.
The data for larger p reach a slope of —,

' at long times. The data

in early times fit w -ln (t) well, cf., Fig. 2. The crossover time
increases with decreasing p. A dashed straight line of slope ~

is

included to guide the eyes.
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FIG. 2. The interface width w is plotted against log, p(t) for

p =0.06, T= 1.0, 6= 1.0, and L=4000. The dashed straight line
is a fit to the data.
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FIG. 3. A plot of log&0(w) vs log&0(t) for p=0.06, 6=1.0,

and N=4000 at different temperatures. The solid curves from
top to bottom correspond to T=1.0, 0.7, 0.6, and 0.5, respec-
tively. The crossover time increases with decreasing tempera-
ture. A dashed line of slope —,

' is included to guide the eyes.

FIG. 4. A plot of log»(w) vs log, o(t) for p=0.05, T= 1.0, and
N=4000 for 6=1.0, 1.5, and 2.0. The crossover time increases
with increasing h. A dashed line of slope —, is included to guide
the eyes.

coupling Jw is of the order of the energy gain in the ran-
dom fields Aw'i . Setting Jw -b,w'i and using Eq. (10)
one obtains

Q2
t,o(J, A, T)-exp (12)

Combining Eqs. (11) and (12), we have a general expres-
sion for the crossover time

Q2
t, -exp JT T (13)

Equation (13) implies that the crossover time increases
with decreasing temperatures for given JM and h. This is
demonstrated in Fig. 3 which is a plot of log&z(w) versus
log, o(t) for @=0.06 and 5= 1.0 at four different tempera-
tures T=1.0, 0.7, 0.6, and 0.5. The data for early times
again fit the ln (t) behavior well for all temperatures. De-
creasing the temperature makes it more diScult to over-
come local minima in the random-field configuration
space, thus increasing the crossover time. Comparing the
data for early times in Figs. 1 and 3, we see that the inter-
face width is sensitive to the temperature but insensitive
to the average driving force p. This is not surprising
since the early growth is mainly a process of local
thermal excitations.

The crossover time also increases with increasing 6 for

given p and T. This is shown in Fig. 4 where we plot
log|0(to) versus logic(t) for jtt=0.05, T=1.0, and b, =1.0,
1.5, and 2.0 respectively. This is again in qualitative
agreement with Eq. (13). It is, however, difficult to check
Eq. (13) quantitatively since precise values for t, cannot
be obtained from our simulations.

In conclusion, we have presented the results of Monte
Carlo simulations of interface growth in a discrete solid-
on-solid model with quenched random fields in (1+1)di-
mensions. In the early times, the correlation length in
the direction parallel to the interface is small; therefore
each column of the interface moves independently like a
random walker driven by quenched random forces, and
the interface width grows with a logarithmic law
w-in (t) As the co. rrelations among the columns in-
crease with time, the growth behavior crosses over to a
random-field-dominated growth regime in which the in-
terface width grows with a power law w —t ' . The
crossover time t, increases exponentially with an increas-
ing degree of randomness of the driving field. All these
results are consistent with simple scaling arguments. It
would be interesting to investigate these behaviors in
higher dimensions, especially for (2+ 1) dimensions.

The simulations were performed on the Emory UNIX
system. We are grateful for funding support from the
Department of Physics at Emory University.
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