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Using chaos to direct orbits to targets in systems describable by a one-dimensional map
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The sensitivity of chaotic systems to small perturbations can be used to rapidly direct orbits to a
desired state {the "target"). %e formulate a particularly simple procedure for doing this for cases in
which the system is describable by an approximately one-dimensional map, and demonstrate that the
procedure is effective even in the presence of noise.

PACS number{s): 05.45.+b

Recent work [l] has demonstrated that chaotic orbits
can be rapidly brought to a desired state (the "target") by
the application of tiny, judiciously chosen perturbations
to an available system parameter. In this paper we point
out that the technique is particularly simple for the case
in which the chaotic dynamics can be described by a
one-dimensional map. Experimental implementation
should be especially feasible in this case. We demonstrate
the practicality of the technique on a particular system in
the presence of noise.

Suppose that we are given a chaotic, continuous time
system whose dynamics are found to be approximately
describable by a one-dimensional map. In practice, the
reduction to the map,

X„+( =F (p,X„),
where p is some parameter, might proceed by a combina-
tion of the delay coordinate and surface of section tech-
niques. An approximately one-dimensional description
usually applies if the continuous time chaotic attractor
has a fractal dimension that is slightly above 2 (the
Lorenz system is an example). We imagine that the pa-
rameter p can be varied by some small amount about its
nominal value p, p =p+5p, and we seek a value for the
small perturbation 5p in the range, —hp 5p 4p,
which will take us from a current state of the flow, g„ to
the vicinity of a final target state, y„ in a short amount of
time. Here the quantity hp is the maximum allowed size
of the perturbation. We trace the flow forward in time
from y, until the first intersection with our surface of sec-

BF5X)= 5p .
Bp (p, x, )

(2)

Note that ~5p~ is restricted to be less than or equal to bp;
this defines an interval hX, . This interval will typically
grow with each successive iteration of the map until it en-
compasses the desired point X, as shown [2] in Fig. 2.
This is sure to occur when the interval covers the entire

FIG. 1. Relation between states of flo and states of map.

tion and call that point X„as shown in Fig. 1. Likewise,
we trace the low backward in time from the target, y„ to
the surface and call that intersection X,. To reach X„we
observe that the variation in the state after one iteration
of our map due to the variation in p is
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FIG. 3. Trajectory directed to figure-eight orbit from random

point on Lorenz attractor.

FIG. 2. Growth of successive iterations of chaotic map.

that the How subject to this control is well described by
the addition of the term p(t) to the second of the three
Lorenz equations:

chaotic attractor of the map (1). Without loss of general-

ity, we can take that size to be unity, and we find [3] that
the number of iterations of the map required to encom-
pass the desired neighborhood is typically

X=cr( Y —X),
Y= —XZ+rX —Y+p(t),
Z =XY—bZ,

(4)

n ——ln(1/bp),1
(3)

where k is the Lyapunov exponent for the map. Once X,
is contained within the interval, we are all but done, for
we know that some parameter value p, between

p;„=p —Ap and p,„=p+hp will lead to X,. All that
remains is to refine the estimate of p, . This is simply
done. One rapid method is to repeatedly subdivide the
parameter range in half and select the half range leading
to an interval containing X, . Thus we would map the

original point, X„n times using a parameter value p&

halfway between p;„and p,„. If X, were contained in

the interval [F(p;„,X„,),F(ph, X„,)], then we would

repeat the process using a new pj, halfway between p;„
and the old pj, . Otherwise, we would repeat the process
using a new pI, halfway between the old ph and p,„.
This procedure will give us the parameter value required
to reach any arbitrarily small neighborhood [4] of X,. If
X, is an unstable periodic point embedded in the attrac-
tor, then once in the neighborhood of X„we can main-

tain the system in the neighborhood [5].
As an example, we consider the Lorenz system [6],

which has three degrees of freedom, and which, for the
parameter values used by Lorenz, has an attractor whose
dimension is slightly above 2. The Lorenz equations pro-
vide a leading-order description of the dynamics of a Auid

contained in a thin vertically oriented torus with a heat
source applied at the bottom [7]. We envision that the
position of the heat source can be perturbed by moving it
slightly to the left or the right in the plane of the torus.
We characterize the size of this perturbation by the pa-
rameter p and use it to control the orbit. It can be shown
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FIG. 4. Map resulting from given surface of section (10000
points).

where we use Lorenz's values for the parameters: o =10,
r =28, b =—,'. To start with, we take the control function

p (t) to be constant in time. Later, when we discuss con-
trol in the presence of noise, we will alter the constant
value periodically.

We can now apply our technique to reach a chosen
periodic orbit on the attractor. Once we reach the
periodic orbit, we reapply this technique to keep the tra-
jectory on the periodic orbit. We choose a simple surface
of section [8]: the half plane, Z =26.921, X)8.0. This
surface of section is shown in Fig. 3, and the resulting ap-
proximately one-dimensional map is shown in Fig. 4. As
an example, we assume that it is desired to reach and sta-
bilize a fixed point of the resulting return map. In our
case, the chosen fixed point of the map corresponds to a
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FIG. 5. Scaling behavior of technique.
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figure-eight orbit of the fiow [9], as shown in Fig. 3. In
the figure, we have started from a point chosen at ran-
dom on the attractor and used the technique [10] to reach
and stabihze the desired orbit. We show the actual tra-
jectory, recorded at every integration time step. In this
example, we reach a small neighborhood
(X, —O. OOS, X,+0.008) of the desired orbit after only six
map iterations. By comparison, without control we
would typically require 200 iterations to reach the same
neighborhood.

We remark that we are able to successfully apply our
targeting technique despite the fact that the return map
(Fig. 4) is manifestly discontinuous for this example. We
excluded discontinuities from our parameter range by re-
peatedly reducing this range whenever a discontinuity
was encountered [11]. Doubtless, other more efficient
strategies are also possible.

In addition, we investigated the scaling behavior of the
technique, which we have predicted should obey Eq. (3).
To do so, we varied the maximum allowed parameter
variation Ap, and directed trajectories to the figure-eight
orbit of the flow from 25 different random starting points
for each value of hp. The result of this process is shown
in Fig. 5, where we plot the number of surfaces of section
piercings n, before the target is reached versus hp. The
scaling is indeed consistent with Eq. (3). To appreciate
the size of hp relative to other terms, we note that the

root-mean-squared time average, +( (d Y/dt ) ), for
Ap =0 is —100. Thus for bp =0.1, the control at most
produces a perturbation of the right-hand side of the
dY/dt equation which is only of the order of, ' of the
typical value of the right-hand side of this equation.

We can also use our technique in the presence of noise.
This is particularly important because existing work [12]
demonstrates the eScacy of a linearized method of stabil-
izing periodic points in chaotic systems. That method
may become somewhat problematic, however, in the
presence of noise. This is so because the noise may oc-
casionally kick the orbit out of the small region within
which the linearized stabilization procedure is effective.
Ifp is kept fixed at the nominal value p when the orbit is
outside of this small region, the orbit will wander chaoti-
cally until it reenters the small region and can again be
captured by the control. If the region contains small
measure, the time to reenter the region can be prohibi-
tively long and the performance of the method will there-
fore be greatly degraded. Our technique provides a
means for rapid recovery from these noise-induced
bursts.

To target in the presence of noise, we must repeatedly
apply our technique to compensate for wander of the sys-
tem from the desired trajectory. As an example, we con-
sider the prior targeting problem with white noise added
to the system before each integration time step [13] (i.e.,
X, Y, and Z are independently changed by a small ran-
dom amount with rms value 5). We chose an initial point
on the attractor at random and targeted the figure-eight
orbit as before, using hp =0.1. We again targeted this
orbit after every 40 integration time steps (typically about
one map cycle). We performed ten realizations of this
process for successively larger amounts of noise, and
found targeting was completely reliable for rms noise
values [14] lower than 5=0.1, as shown in Fig. 6. To ap-
preciate the size of the noise relative to other terms, con-
sider the effect of the noise acting alone; that is,
dX/dt=rl„(t), dY/dt =rl (t), and dZ/dt =q, (t), where
the noise rl„~,(t) is temporally correlated according to
(g„~,(t),g„~,(t +)r) =kr In this ca.se, the action of
the noise over a time interval T produces mean squared
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FIG. 6. Targeting effectiveness in the presence of noise.
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deviation ((~) ) =((hY) ) =((bz) ) =kT. Choosing
for T the mean time between surface of section piercings,
we have kT =1 for 5=0.572.

In conclusion, we have shown that the previously dis-
cussed [1] use of the sensitivity of chaotic fiows to rapidly
direct orbits to a desired state is particularly simple when
the system is describable by a one-dimensional map. In
this case, experimental implementation of targeting con-
trol should be especially effective. Moreover, the tech-
nique works well in the presence of small amplitude

noise, and therefore it is well suited to be used in conjunc-
tion with control schemes which stabilize periodic orbits
embedded in the attractor [6] and which may fail due to
noise induced bursts. Some other works of interest in the
study of control of complex dynamics are listed in Ref.
[15].
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