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The statistical mechanics of two-layered perceptrons with N input units, K hidden units, and a
single output unit that makes a decision based on a majority rule (Committee Machine), is studied.
Two architectures are considered. In the nonoverlapping case the hidden units do not share common
inputs. In the fully connected case each hidden unit is connected to the entire input layer. In both
cases the network realizes a random dichotomy of P inputs. The statistical properties of the space
of solutions as a function of P is studied, using the replica method, and by numerical simulations,
in the regime where N )) K. In the nonoverlapping architecture with continuously varying weights
the capacity, defined as the maximal number of P per weight, (n, ), is calculated under a replica

symmetric (RS) ansatz At la.rge K, n, diverges as K ~ in contradiction with the rigorous upper
bound, a, ( ClnK, where C is a proportionality constant, derived by Mitchison and Durbin [Biol.
Cybern. 60, 345 (1989)].This suggests a strong replica-symmetry-breaking effect The. instability of
the RS solution is shown to occur at a value of e which remains Rnite in the large-K limit. A one-step
replica-symmetry-breaking (RSB) ansatz is studied for K = 3 and in the limit K goes to infinity.
The results indicate that n, (K) diverges with K, probably logarithmically. The occurrence of RSB
far below the capacity limit is confirmed by comparison of the theoretical results with numerical
simulations for A = 3. This symmetry breaking implies that unlike the single-layer perceptron
case, the space of solutions of the two-layer perceptron breaks, beyond a critical value of n, into
many disjoint subregions. The entropies of the connected subregions are almost degenerate, their
relative difference being of order 1/N. In the case of a nonoverlapping Committee Machine with

binary, i.e., +1 weights, n, ( 1 is an upper bound for all K. The RS theory predicts n, = 0.92 for
K = 3 and a, = 0.95 for the large-K limit. The theoretical prediction (for K = 3) is in excellent
agreement with the numerical estimate based on an exhaustive search in the space of solutions for
small N. These results indicate that in the binary case there is no RSB in the space of solutions
below the maximal capacity. In the fully connected architecture, the solution's phase space has
a global permutation symmetry (PS) reflecting the invariance under permuting the hidden units.
The order parameters that signal the spontaneous breaking of this symmetry are defined. The
replica-symmetry theory shows that for small n the PS is maintained. For larger values of n ( a,
the symmetry is broken, implying the breaking of the solution space into disjoint regions. These
regions are related by permutation symmetry, hence they are fully degenerate with respect to their
entropies and statistical properties. This prediction has been tested by simulations of the A = 3

case, calculating the order parameters by random walks in the space of solutions. They yield good
evidence for existence of a phase with broken permutation symmetry at values of n & 2. Finally,
both theory and simulations show that for a typical fully connected network the connections joining
the same input to a pair of hidden units are negatively correlated.

PACS number(s): 87.10.+e, 05.50.+q, 64.60.Cn

I. INTRODUCTION

In her pioneering work, Gardner [1] has demonstrated
that a statistical-mechanics approach can be helpful for
studying properties of perceptrons. This approach has
been applied successfully in diff'erent problems [2]. In
most of them, the networks considered have the simplest
architecture: one input layer of N units and one output
unit.

However, as it is well known, the computational power
of such a one-layer network is limited. Nonseparable
problems can be implemented only if additional layers
of hidden units are added. It is therefore of significant
interest to investigate the statistical properties of multi-

layer perceptrons. Single-layer perceptrons are simple in
that the space of solutions, when they exist, is convex.
This is in general not true for multilayer networks. Thus
the space of solution may be of complex shape, and in

particular may consist of disjoint subregions in the net-
work space. The connectedness of the solution space is
investigated here by studying the occurrence of sponta-
neous symmetry breaking. Such a symmetry breaking
signals the breaking of the solution space into disjoint
regions, each one with reduced symmetry relative to the
symmetry of the entire solution space.

We study symmetry-breaking phenomena in two-layer
networks performing random dichotomies with two dif-
ferent architectures. In one architecture the connections
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from the inputs to the hidden layer form nonoverlapping
receptive fields, i.e., diferent hidden units do not share
the same inputs, Fig. 1(a). The second architecture is one
in which the hidden layer is fully connected, Fig. 1(b).
In both the layer of connections from the hidden units to
the output is fixed to be 1.

One type of symmetry breaking that can occur in the
present problem is replica symmetry breaking (RSB)[3].
In spin glasses it is associated with the near degeneracy of
the ground state due to the combination of randomness
and frustration. In the case of the single-layer percep-
tron, RSB occurs only at or above the maximal capacity.
This holds both for continuously varying weights [1] and
with binary weights [4]. Below the capacity the symme-
try is unbroken, which is in agreement with the convexity
of the solution space. We will study the occurrence of
RSB in the case of the nonoverlapping Committee Ma-
chine, below the maximal capacity.

A second syrrimetry studied in this work is permuta-
tion symmetry. It is relevant only for the fully connected
architecture, where it reflects the invariance under per-
muting the hidden units. Of course this symmetry has
no analog in the single-layer case.

Another aspect of the performance of the multilayer
network is the storage capacity. As in the single-layer
perceptron, it is defined here as the number of random
dichotomies that the system can realize, per weight. In
particular, it would be interesting to know the depen-
dence of this capacity on the number of hidden units.

The problem of the information capacity of multi-
layered networks has been addressed, using geometri-
cal methods, by Baum [5] and by Mitchison and Durbin
[6]. Baum has obtained bounds on the smallest size of
a multilayer network able to implement an arbitrary di-

chotomy Usi.ng arguments based on a counting theorem
of Cover [7], Baum shows that to implement an arbitrary
dichotomy of P vectors in general position one needs a
network of at least P/log2P weights.

Mitchison and Durbin have derived upper bounds of
the capacity per synapse for random dichotomy of bi-
nary inputs for two networks: a fully connected two-layer
Committee Machine and a fully connected Parity Ma-
chine. The output of the parity machine is the product of
the outputs of the hidden units, whereas in the Commit-
tee Machine the output is computing the majority rule
of the hidden-unit values. Mitchison and Durbin have

N/K units N/K units N/K units

Input layer
N units

Hidden layer
K units

Output
vere Unit

Input layer
N units

Hidden layer
K units

Output

One unit

FIG. 1. The architectures of the two particular networks studied in this paper. In both networks the weights connecting
the hidden units to the output are fixed and equal to one. (a) A Committee Machine with nonoverlapping receptive e s: t e
in ut la er has N units. Each of the K hidden units is connected to N/K inputs. There is no overlap between t e receptive
fields. b A fully connected Committee Machine: the input layer has N units. Each ofEach of these units is connected to the K
hidden units.
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shown that in both networks the maximal capacity per
synapse is bounded by a function of the number of hid-
den units which behaves logarithmically as the number
of hidden units goes to infinity.

Recently, Barkai, Hansel, and Kanter [8) have studied
the parity machine with K hidden units using Gardner's
statistical mechanical method. Their main results were
that: (i) in the RS theory the capacity per synapse is
proportional to K at large K, violating the bound of
Mitchison and Durbin, (ii) calculations based on a one-
step RSB yield a capacity per synapse which behaves as
log I&/ log 2 saturating the upper bound of Mitchison and
Durbin for this network and suggesting that in the large-
Ix limit the one-step RSB is actually exact as it is in
the random-energy model [9] or in the so-called simplest-
spin-glass model [10). It should be noted that already
for I& = 2 the two-step RSB corrects only slightly, by
less than 5', the maximal-capacity estimates [11]. It is
important that unlike the single-layer perceptron, in the
parity machine the RSB occurs far below the capacity
limit, indicating the complex form of the solution space.
One aim of the present work is to study the analogous
situation for the more interesting Committee Machine.

In Sec. II we introduce and study the nonoverlapping
Committee Machine: Section II A introduces the archi-
tecture and the task of the machine. Sections II B and
IIC deal with networks of continuous synaptic weights
having three and large number of hidden units, respec-
tively. In Sec. II D we study the nonoverlapping network
with binary weights. In Sec. III we study the fully con-
nected network: Section III A introduces the model and
the basic symmetries. In Sec. III 8 we study the occur-
rence of permutation symmetry breaking in the case of
three hidden units. The results are summarized and dis-
cussed in Sec. IV.

1th receptive field, and the hidden unit l. The configu-
ration of the second layer is denoted as [o.~], I = 1, ..., I&

where

(K
o =sgn )

&i=i )
(2 3)

We study the performance of the network in a task
consisting of mapping a set of P input patterns ([(&",.]),
t = 1, ..., I&, i = 1, .. . , N/I&, y, = 1, ..., P, (&, ——+I onto
a set of P respective outputs o". The mapping is as-
sumed to be random, i.e. , each of the input variables

[(t",], I = 1, ... , I~, i = 1, ..., N/Ii, p = 1, ... , P, ((",. ——+I
and the desired outputs o.i" = +1 are chosen at random
with equal probability of +1.

Our goal is the following:

(1) Calculate the capacity of the network, i.e. , the
maximum number of input-output pairs, P, that can be
stored in the system.

(2) Study the statistical properties of the space weights
that store these mappings and the changes in these prop-
erties as the number of stored mappings increases.

Following Gardner's method [1] one formulates the
problem in a statistical mechanics framework as follows.
For a given realization of the P patterns we compute the
volume of the subspace of the networks which realize the
desired mapping. For continuously varying weights this
volume is

V= dJ(;
00

b ) J(; —N/I~
4 h ~ h

0, = sgn (h, )

[sgn(z) denotes the sign of z]. The connections between
the hidden layer and the output are fixed and equal to
one, and the output of the perceptron is simply given by

II. COMMITTEE MACHINE WITH
NONOVERLAPPING RECEPTIVE FIELDS e ~ ) (2 4)

A. The model: architecture and task

We consider a two-layer feedforward neural network
consisting of N binary input units [12], one hidden layer
with A binary neurons and one single-output neuron.
The input units are divided into Ii disjoint sets of N/I&
elements. All inputs of a set feed into the same single
hidden neuron. Each hidden neuron receives input from
only one set. The output of the network is obtained by
a majority rule of the configurations in the hidden layer.
This network ("Committee Machine [13] with nonover-
lapping receptive fields" ) is shown in Fig. 1(a).

A configuration of the input layer will be denoted by
[S~;], I = 1, ..., I~, i = 1, ... , N/Ii with S~;=+1. The local
field h~ on the lth hidden unit, is defined by

(2.1)

where J~; is the value of the connection between the input
unit (I, i), I = 1, . .. , Ix, i = 1, . .. , N/IC, that belongs to the

where o&" ——sgn(h&"), h&" ——P, ~, Jt;(&", . We imposed I~

normalization constraints

(2 5)

Note that since the hidden neurons are threshold ele-

ments, multiplying each set of the N/I& connections J~;

by an arbitrary positive constant does not change the
output of the network. We will also consider (Sec. II D)
the case where the weights are constrained to the values
+1. In this case the integral over the J~; has to be re-

placed by a sum over all the 2~ configurations of weights.
The average over the patterns must be performed on

ln V. For that end one uses the replica trick, the de-

tails of which are given in Appendix A. The study of the
statistical mechanics of networks kith general Ii is dif-

ficult as the equations for the order parameters contain
I~-multiple integrals. In the following we concentrate on
two simple cases: the case of A' = 3 and the case of
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large I~ (I4 ~ oo) where the I& multiple integrals can be
reduced to a single Gaussian integral.

B. Three hidden units and continuous weights
0.8

The smallest nontrivial Committee Machine has three
hidden units. In this section, the results of the RS theory
for this case are presented, the RSB instability point is
located and the one-step RSB solution is studied.

0.6

0.4

X. Bey/isa-symmetric theory 0.2

Using the results obtained in Appendix A within the
RS ansatz for [ln V] ([]denotes average over the patterns),
one obtains for network of continuous synaptic weights
with three hidden units:

1—[ln V] = Go + nGy,
N

where

(2 6)

Q= PIN (2.7)

is the number of patterns per weight, which is assumed
to be constant as N -+ oo. The functions Go and Gq are

0
0

FIG. 2. The nonoverlapping architecture with three hid-
den units: the order parameter q as a function of e. The
solid line is the prediction of the replica-symmetric theory.
The dotted and the dashed lines are the first-step RSB calcu-
lation of qo and q&, respectively. The points are the results of
the simulations. The error bars represent the fluctuations in
the measured q in the different samples.

Go = —
~

Z+ qq+ ——ln Z —q + ln(2x)
~

1

2 ( E (2.8)

Eliminating q from the saddle point equation [(A19)
and (A20)] one obtains for the order parameter q:

and

Dv~ ln (Z(sl), (2.9) where

&H~) E ~(sl )
(2.14)

~(sl = H1H2 + H1H3 + H3H2 2H1H2Hs. (2.10)

We have used the notation

1 f q

( 2(1 )

The graph of q as a function of 0. is plotted in Fig. 2
(solid line). Taking the limit q ~ 1 of Eq. (2.14) yields
the maximal capacity

where

(2.11) 1
4.02. (2.15)

H(z) = J Dy

The symbol Dy denotes a Gaussian measure:

Dy = exp
/

——/.
dv & v'&

2x ( 2j

(2.12)

The quantities Go and Gq depend on the order parame-
ters q, q, and E. The order parameter q is the analog of
the Edwards-Anderson (EA) order parameter [3]

(2.13)

where the brackets (~ denote average over all networks
that realize the random mapping on the given set of pat-
terns. The order parameters q and E are the conjugate
parameters of q and of the normalization condition, re-
spectively.

An interesting quantity is the probability c(cy) that pre-
senting one of the nN patterns, one of t;he hidden units,
say / = 1, is in a state —a (opposite to the state of
the output unit). Thus, e(n) reflects the correlation be-
tween the state of each hidden unit and the output unit.
In the case of K = 3, computing the Geld distribution
P(h&, h2, hs) in the hidden layer and integrating it over
h2, h3 and over h~cr & 0 one obtains

HgH3
Dvq Dv2Dv3 1 —Hg

E(3)
(2.16)

c(a = 0) = 0.25 (2.17)

increases monotonically with o. . It reaches the value

Before training, i.e., for random J~;, r = 0.25. This
is because for a given network output, say cr = +
1, there are four equally probable configurations
(+++,++—,+—+,—++). Indeed in Eq. (2.16), e starts
from
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7
Ec—

24
(2.18)

at the critical capacity. The difference c(o.) —0.25 mea-
sures the enhanced correlation between the state of the
hidden unit and the output unit, reflecting the effect of
learning.

1 1+ (m —1)Aqi + ln2x
2 1 —

qy + mAqy

1+
~

1 —— ln(1 —qi)m

1+—ln(1 —qi + mAqi), (2.24)

2. One-step replica-symmetry-breaking theory

Stability analysis of the replica-symmetric solution for
I& = 3 is given in Appendix B.The RS solution is stable
only for

n & nRsB 1.76, (2.19)

P V,

V
(2.20)

V is the volume defined in Eq. (2.4) restricted to the a' s
pure state and V is the total volume of solutions. Here
& &, corresponds to the averaging restricted to pure
state a. Furthermore, RSB implies that the logarithm of
the volumes V, of the disjoint subspaces differ by quan-
tities of order unity, hence their separate contributions
must be taken into account even as N —+ oo.

Within the first-step RSB ansatz (detailed in Appendix
B), the distribution function of the pure states is charac-
terized by the following order parameters:

N/K

qo —— ) . ~ (Ji;).(Jh), (2.21)

which corresponds to qRsB 0.61. Hence the RSB occurs
for a number of patterns per synapse significantly smaller
than the replica-symmetric capacity and the replica sym-
metry has to be broken.

In this subsection we evaluate the maximal capac-
ity predicted by a one-step replica-symmetry-breaking
scheme in the manner of Parisi [3]. In a general RSB
ansatz, the ergodicity is broken leading to a decompo-
sition of the Gibbs state into many pure states. In our
case, which deals with zero-temperature statistical me-
chanics, breaking of replica symmetry means that the
space of solutions breaks into disjoint subspaces of net-
works. Each subspace is a pure state. It enters in the ex-
pectation value of an observable 0 with a relative weight
P, : & 0 )= P, P, & 0 )„where a is a pure state
index and P, is

Dv( ln
~ Dui(E(s))

l=l
(2.25)

where 2~3~ = H~H2 + H~ H3 + H~H3 —2H~HgH3. Here
we have defined

i/2

dg ——II
i, 1 —qi)

( 1/2

&i+
(

(2.26)

and Aqi —
qs —qo.

The three order parameters are determined by the
three equations:

BG

Oqo

ctG OG

Bm
(2.27)

The numerical analysis of this ansatz is not easy in
particular due to the multiple integrals of Gi. We have
computed qo, qq, and m by minimizing G with respect to
them. To this end we have used a standard minimization
routine. The obtained values were then checked directly
on the saddle point equations. The uniqueness of the
RSB solution was also checked. The results for qo and

qi are shown in Fig. 2 (dotted and dashed lines, respec-
tively). As can be seen from this figure, the RSB occurs
through a second-order phase transition, at n which co-
incides with the RS instability point given in Eq. (2.19).
Above the transition, qo is almost constant and m de-
creases from 1. As n ~ n„qp approaches 1, m de-
creases to 0, while qo remains at qo ——0.63. According to
Eqs. (2.21), (2.22), and (2.23), at the RSB phase each of
the pure states shrinks to a single solution at the criti-
cality. It is found that,

n, 3.0. (2.28)

Our evaluation of the one-step correction to n, is not very
accurate due to numerical uncertainties. Nevertheless it
does provide a rough estimate of n, . Our conclusion is
that for I~ = 3 the correction with respect to the RS
estimate of the maximal capacity is of the order of 25%.

N/K

) y (J*).(J*).
i=1

(2.22)

m=1 —) [P.]' (2.23)

and the conjugates qo, qq, and E.
In term of these order parameters (and after elimina-

tion of the conjugate order parameters EP and q~
'P) one

finds

8. Numerical simulations

As there is no learning algorithm which is proved to
converge for multilayered perceptrons, simulations can
only give some empiric insight. We have used a Least
Action Learning (LAL) algorithm of the type described

by Nilsson [13,6]. All the patterns are sequentially pre-
sented to the network. Presenting (" one updates the

coupling constants as follows.

(1) If the Committee Machine gives the right answer

(i.e. , cr") all the coupling constants remain unchanged
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O'c(LAL) 2.42 + 0.02. (2.29)

We also checked that approaching this range of n the
learning time increases sharply.

An insight on t,he validity of the replica-symmetric so-
lution can be obtained from computation of the order
parameter by simulations. This can be performed by av-
eraging the relevant quantities over a random walk in
the space of solutions as follows. For a given network (N
fixed) a realization of P patterns is first learned by the
system using the Least Action Learning algorithm. A
random walk starts at this point: at each time step the
(old) set of weights Ji," is changed by 6Ji, chosen at ran-

0.8

0.6
0

p4

and the next pattern is presented.
(2) If the answer is wrong, the list of all the local fields

h&" (I = 1, . . . , I&) in the hidden units is computed. The
N/I& coupling constants Ji;, which correspond to the hid-
den unit l which has the local field easiest to improve
(i.e. , such that O'"Ir& is the less negative) are updated
with the standard perceptron algorithm [1] considering
these N/I& coupling constants between the input layer
and the l hidden unit as a one-layer perceptron.

(3) One returns to step (1)
One presentation of the whole set of the patterns is

named a session. The algorithm finishes when either all
the patterns of the set are known or the number of ses-
sions reachs some fixed n„,.

We have simulated networks of different sizes N: N =
300, N = 450, and N = 600. The results were aver-
aged over a sample of, respectively, 50, 50, and 10 sets of
patterns. The runs were per'formed over a maximum of
n,~ = 3000 sessions and some of the runs were allowed
to keep over 6000 sessions.

The results of these simulations are summarized in Fig.
3. The fraction of successfully learned realizations in the
sample is given. Taking as an empiric criterion the per-
fect learning of half of the sample one concludes that this
Least Action Learning algorithm is efFicient only up to

0.8—

0.6—

0.4—

0.2—

0.4 1.2

FIG. 4. The EA order parameter of the single-layer per-
ceptron as a function of n, measured in zero-temperature
Monte Carlo simulations.

dom in [ b, b] pr—ovided that Jine = Ji + b Ji; remains
in the space of solutions for the given realization. Most
of our simulations were performed on networks of sizes
N = 90. Because of the finite size in a given realization
of the patterns q~-~, q~ —2, and q~ —3 are different. Hence,
the quantity q to be compared wit, h the theory was com-
puted by averaging q~ over the three hidden units and
also over different realizations of the patterns (5 to 10 in
our simulations).

The simulations' results are shown in Fig. 2. We have
found that for a & 1.1, b can be quite big and the q cal-
culated from the simulations agrees with the theoretical
RS solution, even for small averaging time (not many ran-
dom walk steps). As e increases, even not so close to the
RSB transition, the phase space appears to be complex.
In particular, very narrow corridors connect different re-
gions of the phase space and a small b must be chosen
to ensure a sufBciently good sampling of the whole solu-
tions space. Such a small 6 imposes large averaging time
to explore a significantly large part of the solutions space.
The need for the long averaging time is a signature of the
vicinity of the RSB transition, where the corridors con-
necting different regions of the solutions space shrink to
zero, and disconnected regions in solutions space appear.
As can be seen from Fig. 2, for o, ) nRsB, the EA order
parameter q is close to the theoretical order parameter
qi calculated with the assumption of the one-step RSB
ansatz.

For comparison the results of similar numerical exper-
iments for a one-layer perceptron, where RSB does not
occur and the solutions space is connected and convex,
are presented in Fig. 4.

0
2. 1 2.3

a

C. Network with continuous synapses and large K
1. Replica-Bymmetric theory

FIG. 3. The nonoverlapping architecture: results from nu-
merical simulations of the Least Action Learning algorithm
for different sizes N of the input layer and A = 3 hidden
units. The lines give the ratio of the number of successfully
learned realizations to the total size of the sample (N = 300
so1id line, N = 450 dotted line and N = 600 dashed line).
The runs were stopped after 3000 or 6000 sessions.

OO ) 1/2

Gi — DxlnH '
~

z
—OO 1 —

their 9
(2.30)

where

We now turn to the case where I& —+ oo. In that limit
the RS result for Gy is
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2
q, ff ——1 ——arccos q

7r
(2.31)

I
'

j
I I ! I

j
I I I I

ii2

2 1 —
q 1 —q

(2.32)

where & ) denotes Gaussian average over z, and where

q,~
2(1 —q. )

(see Appendix A). It should be noticed that Gi in the
limit of large It is similar to its expression for I4 = 1 [1]
provided q is replaced by off which takes into account
the interaction between different hidden units. As far
as Gl is concerned the network is equivalent to a one-
layer perceptron with effective order parameters. This
property remains true for a one-step replica-symmetry-
breaking ansatz. From this expression one obtains the
relation between q and the number of patterns per weight

0.6

I-
0.4—

o.z I-

0 V I I I I J I I . t I I I

0 1 2 3

FIG. 5. The nonoverlapping architecture with A ~ oo:
the order parameter q as a function of e. The solid line is
the prediction of the replica-symmetric theory. The dotted
and the dashed lines show qo and qq calculated within the
first-step RSB ansatz.

(2.33)

The graph of q as function of n is shown in Fig. 5 (solid
line). For q ~ 1 one finds that n goes to infinity. A
change of the order of the limits (taking first the limit

q ~ 1 and then the limit Ii ~ oo), leads to the replica-
symmetric capacity

(72) 'i'
I, 7r)

(2.34)

This expression obtained by estimation of o,,(It) calcu-
lated in Appendix C in the case of large K. Numerical
evaluation of o, (A') for finite I~ shows that this asymp-
totic behavior is reached rapidly (already for I~ 15).
This power law for o., contradicts the rigorous bound

n, & cine/In2 (2.35)

(c is some constant independent of N and K), that was
obtained by extending the arguments of Mitchison and
Durbin [6] to the nonoverlapping receptive field's archi-
tecture. The details of the derivation of this bound are
given in Appendix D.

The field distribution in the hidden layer can be evalu-
ated in the large-Ix limit. In particular one finds that at
the first nontrivial order, the probability e that present-
ing one of the Q.N patterns a hidden unit is in a state of

opposite sign than the output unit, is given by

9
2 y 2+I&'

(2.36)

8. One-step replica-symmetry-breaking theory

The discrepancy between the power-law divergence of
o., at large I& and the bound of Mitchison and Durbin
suggests a strong replica-symmetry breaking. Indeed, the
RSB instability occurs at a finite number of patterns per
synapse:

0,' 4 0,'RsB 2.95 (2.37)

which corresponds to qRsB 0.62.
Within the first step RSB ansatz, and for large Ii [for

Ii(1 —q) large], Gi can be written in the form

where g is going from 1 to 2 while q is going from 0 to l.
This implies that correlations built between the hidden
units and the output unit, are seen in changes of order
I/~K in e, starting from

1 1

2 y'2+Ii

for a random network.

gRSB
1 m QQ

DRln
&I, I —q ~ )

r
f71

~+I
& I —qieir ) ) (2.38)

(2.39)

qpgff and ql@ff are effective order parameters given by

2
qp, ff

——1 ——arccos qp,
7r

I

with

+qleff —qleff qpeff . (2.41)

2
eff —1 ——arccos ql

jr
(2.40)

Like in the RS case Gl is simij. ar to the expression one
has for I~ = 1 provided one replaces the order parameters
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by the effective ones. In the limit q ~ 1, a diverges
showing that also at the one-step RSB the capacity per
synapse is infinite when I& —+ oo. Numerical solution of
the saddle point equations is shown in Fig. 5 (qo dotted
line and qi dashed line). It shows that the RSB transition
is of second order and occurs at the point predicted by the
instability analysis keeping the dominant contribution in
I/Ii: qi = qo = 0.62, nRsB = 2.95. As in the Ii = 3 case,
here also qo varies very slowly above the RSB transition
and is equal roughly to 0.63, which implies shrinking of
each of the pure states to zero volume near the criticality.

The determination of the asymptotic behavior of n,
would necessitate resumming the most divergent terms in
GnisB. This would be very interesting but unfortunately
this seems a very difBcult task.

0.8—

g 06—
0
O

04

0.5 1.5

D. Binary synapses: K = 3 and large K

ann = 1 ~ (2.42)

This value does not depend on the internal structure of
the committe machine, i.e. , the number of the hidden
units.

In the calculation of the capacity itself, assuming a
replica-symmetric ansatz, Go given in Eq. (A6) reduces
to

Gobinary = q(1 q) j2 + Dt in[2 cos(Qqt)].

Capabilities of networks built with discrete weights is
of importance in particular for hardware realizations. It
has been shown recently that the one-layer perceptron
with binary synaptic weights (Jiz ——+I) [4], displays
properties that recall the random-energy model and in
particular a phase exists where the system is frozen. This
section is devoted to the generalization of this result to
nonoverlapping Committee Machine architecture.

Unlike the case of continuous synaptic weights, for dis-
crete synapses the maximal capacity is the n, at which
the entropy vanishes [4, 14]. This value is bounded from
above by o,»„at which the entropy of the corresponding
annealed network vanishes. It is easy to see, that for the
nonoverlapping Committee Machine this value is

FIG. 6. The fraction of success in exhaustive search of
solutions for a E = 3 nonoverlapping Committee Machine
with binary type weights. The different curves correspond to
networks of sizes: N = 15 solid line, E = 21 dotted line,
N = 27 short dashed line and E = 33 long dashed line. The
search was done with 100 to 10000 samples for each point.

ables). In order to confirm this identification, we have an-
alyzed the first-step RSB solution of the problem, which
yields the vanishing of the RS entropy as a condition for
the criticality.

To confirm the theoretical results, we have performed
an exhaustive search on binary networks with three hid-
den units. Random samples of P binary input vectors
and outputs were chosen. For each sample all solutions
were found by an exhaustive search in the space of binary
networks. We have performed the search on networks of
sizes N = 15,21, 27, and 33. The results are displayed
in Fig. 6. We define the average capacity as the value of
e for which half of the samples have solutions. As can
be seen from the figure, the average capacity found for
these small networks is almost independent of N (dis-
playing only a minor finite size effect), and is close to
the theoretical capacity found for the infinite network
(N ~ oo).

For A approaching infinity, the replica-syrrnnetric en-
tropy vanishes at

(2.43) n, 0.95 and q, 0.31 . (2.45)

In a network with three hidden units (I& = 3) one finds
that the replica-symmetric entropy vanishes at

0.92 and q, 0.38. (2.44)

The replica-symmetric saddle point remains stable at n,
and this value is a good candidate for an estimate of
the maximal capacity. Unlike the continuous synaptic
weights case, where the solutions volume shrinks to zero
when q ~ 1, here the solutions volume shrinks to zero
for finite q (q & 1). As o. approaches a, the volume of so-
lutions decreases and the structure of the space becomes
complex, though it remains connected. At o. = n„ this
volume is zero leaving a nonextensive number of discon-
nected solutions, which causes a complete freezing of the
synapses (when looking on the synapses as dynamic vari-

The replica-symmetric solution remains stable at o.„and
the scenario at the criticality is the same as in the three
hidden units network. Comparing these results with the
capacity for I& = 1 [4, 14] (n, 0.83) one concludes that
the improvement of the performance of this multilayer
network is very small for binary weights. This is not so
surprising as the annealed approximation put a strong
upper bound for o.„namely, n, ( 1.

III. FULLY CONNECTED COMMITTEE
MACHINE

A. The model and the basic symmetries

We consider the fully connected network with K binary
inputs and one binary output [shown in Fig. 1(b)]. The
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1
Qii = —) & Ji;)& Ji;& (3.1)

Since on the average there is no statistical difference be-
tween the different hidden units, the matrix has the form

hidden layer consists of I~ binary units, each connected to
all the input units. The weights connecting the hidden
layer with the output are fixed and equal to one. The
solution space has a global permutation symmetry. If
the K x N matrix [J~,], / = 1, .. . , Ii;i = 1, . . . , N, is a
solution for a given realization of the patterns, so are the
matrices [J'~,], J'~, = J~(~), , l = 1, . .. , IC;i = 1, ... , N, for
all Z in SK, where SK is the permutation group of the
hidden units.

The present system is described by the following I& x I&

order parameter matrix:

2. Phase with broken permutation symmetry

1 W 2
q2 —qP= N) &A

1 I—) «Ji &&J& &, lgl (3.6)

measures the degree of breaking of the PS. When the
maximal capacity is reached, the solution is unique, hence

q1=qp& q2=1, &~&c (3.7)

In the phase with permutation symmetry breaking
(PSB), solutions which are related by a permutation of
the hidden units belong to diferent disconnected parts
of the solution space and are averaged separately. In this
phase q2 is not equal to qp and their difference

Ql, l' = q2bl, l' + qp(1 bl, l')

An additional important order parameter is

(3.2)
B. Three hidden units

1
qy —— —) & JhJ(, ), lgl' (3.3)

1. Permutation symmetric phase

this order parameter measures the average correlations
between a pair of connections that share the same input
in a given solution. Note that in contrast to q2, which is
necessarily positive, the order parameters qp or q1 can be
either positive or negative. In the latter case the ordering
between the hidden units is of antiferromagnetic type.

Symmetric solution

Assuming a symmetric phase with the two order pa-
rameters qp and q1, one obtains for a network with three
hidden units the following saddle point equations, derived

by replica methods similar to that of Appendix A:

qp

(1 q& + 3&q&)

12n ((HH'(1 —H))
1 —

qg ~ ( (3H —2H )

In the permutation symmetric phase the solutions that
are related by permutation symmetry are part of a single
connected space of solutions, and are therefore included
in the averaging denoted by ().Therefore,

is independent of the hidden unit index (l). Thus, in this
phase

(3 4)

At a (permutation symmetric) critical capacity, n„ the
solution is unique up to a permutation of the weights
between the K hidden units. Thus, as o. —+ n„( J~; )
& J(; &~& J(;J(; &. Hence, by Eq. (3.4)

3&q, + q~(1 —q~) (H"(1 —2H))= 3n Du . (3.9)
(1 q, +3&q, )s (3H' —2Hs)

'

This determines the order parameters as function of the
capacity per synapse, n—:P/(NI&) We have intr. oduced
the following notation:

H = H(au+ bt),

H' = H'(au + bt) = — exp ~—1 ( (au+ bt) )
2s

and the average of f(t) with respect to the Gaussian mea-
sure Dt is denoted by & f(t) &. The coefficients a and b

are a = gqp/(1 —qq), b = g(qq —qp)/(1 —qq).
Expanding these equations at small a one finds the

following behavior:

1
qo - I. [1+(» —1)q~]

qp
— + O(n'), (3.10)

This establishes the relation at the critical capacity

1 —q1+ I~Lq1 ——0, o, ~ o.„
Cl' 2 3

qg
——9 1 —— + O(n ).4+2 7r

(3.11)

where Aqq ——(qq —qp).

The complete numerical solution of Eqs. (3.8) and (3.9)
is plotted in Fig. 7. The order parameter q1 is always neg-
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FIG. 7. The fully connected architecture (I& = 3): qp

(solid line) and q& (dashed line) as a function of n, within the
RS and PS ansatz (qp = qp). The squares, the circles, and
the triangles represent simulation results for qo, q1, and qz,
respectively, indicating existence of PSB phase.

ative and decreases monotonicly to -0.5 as o, increases,
while q0 reaches a maximum value q0 0.12 for a 0.57.
Note that q~ is negative showing that the interaction be-
tween the different hidden units is of antiferromagnetic
type. This can be understood qualitatively: because of
the majority rule of the hidden-unit states performed by
the output unit, most of the internal configurations that
satisfy the task are such that two hidden units are an-
tiparallel; as the receptive fields of all the hidden units
are the same, this results in the anticorrelation of the
coupling constants in most of the networks that realize
the task.

Another important feature of the permutation and
replica-symmetric solution is that no cri]icat capacity ex-
ists for this solution Applicat. ion of the criticality cri-
terium for a PS phase, namely, 1 —

qq + M, qq
——0, gives

n, ~ oo, with qo ~ 0 and qq ~ —2. This absence of
a maximal capacity for the ergodic solution implies that
this solution is not valid everywhere, especially for large
G.

1

(&)

0.5

05 I I I I I I I I I

0 5x10 10
I I I I I I I I I I I I I I I I

1.5x10 2x10 2 Sx10
( Steps)

To emphasize the distinction between the two phases,
we show a typical time evolution of the averaging of qo,

qq, and q2, in those two phases (Fig. 8). By definition, at
the beginning of the simulation q&

——1 and q0
—

q&

in most of the runs q0 and qq both started from negative
value. As the number of averaging steps is increased, q2
decreased from 1 and q0 diverges from q~ having a larger
value than q~. For small n (n = 0.5), qp increases to
positive values, and becomes equal to q2, which indicate a
PS phase [Fig. 8(a)]. For large n (n = 1.83), qp increases,
but remains negative near q~, and q2 stays in values near
1. This indicates a PSB phase [Fig. 8(b)].

To estimate the capacity of the fully connected net-
works, we have used the same algorithm as in the
nonoverlapping receptive fields networks. We have simu-
lated networks of different sizes N: N = 100, N = 150,
and N = 200 averaging the results over samples of 10 or
50 realizations. The runs were performed over a maxi-
mum of n,~ = 3000 sessions and some of the runs were
allowed to keep over 6000 sessions.

The results of these simulations are summarized in Fig.
9. As o. grows and approaches a 2.4 the learning time
is rapidly increasing. This indicates the vicinity of the
maximal capacity (of this algorithm). From the empiric
criterion for the maximal capacity (the perfect learning of
half of the sample) one concludes that this LAL algorithm

S. Numerical evidence for PSB

In order to learn about the ergodicity in the network's
solutions space, and possible breaking of the PS, we have
calculated from simulations (Monte Carlo) the EA order
parameters q0, q&, and q~. To this end, we have used the
zero temperature dynamics described in Sec. IIB3 for
the nonoverlapping receptive fields networks.

Our simulations were performed on networks of size
N = 20, and the results are shown in Fig. 7. It was found,
that for small a (n ( 0.8) the system is PS, (qp = q2),
with small deviations from the PS and RS theoretical
predictions due to finite-size effects. For 0.8 ( o, ( 2.0
we were not able to determine whether the phase is PS
or not, because of the diverging relaxation times. For
o; ) 2.0, the network is in a PSB phase, with q0 negative a
little bit larger than q~ and with q2 close to 1. Finally, as
o. is increased, q2 ~ 1 while q0 ~ q~, which corresponds
to the vicinity of the criticality.

I I I I

I

I I I I

I

I I I I

I

I I I

b)(

0.5—

0—

0 5 I I I I I I I

0 10
I I I

2x10
t ( Steps)

I I I I I

3x10 4x10

FIG. 8. The fully connected architecture: Typical relax-
ation of the order parameters qp (solid line), qq (dotted line),
and qz (dashed line) as function of the averaging time for (a)
a = 0.5 (PS phase); (b) n = 1.83 (PSB phase).
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FIG. 9. The fully connected architecture: results from nu-

merical simulations of the Least Action Learning algorithm
for difkrent sizes N of the input layer and A = 3 hidden
units. The lines give the ratio of the number of successfully
learned realizations to the total size of the sample (N = 100
solid line, N = 150 dotted line, and N = 200 dashed line).
The runs were stopped after 3000 or 6000 sessions.

is no more efficient for a number of patterns per synapse
larger than

n, (r,AL) 2.82 6 0.02, (3.12)

which is slightly larger than the corresponding quantity
for the nonoverlapping architecture n, t z,AL~ 2.42.

IV. DISCUSSION AND CONCLUSIONS

In this work we have studied the properties of the space
of solutions of two-layered neural networks that perform
random dichotomy. We have focused on the occurrence
of spontaneous breaking of two symmetries: replica sym-
metry (RS) and permutation symmetry (PS). The occur-
rence of symmetry breaking is an important probe of the
connectedness of the space of solutions.

In order to study the RSB we have investigated a
two-layer network with an architecture of a Committee
Machine with nonoverlapping receptive fields [shown in

Fig. 1(a)). In this architecture the solution space does
not posses any global symmetry. Thus, the only relevant
symmetry in this case is the RS. Our main finding is that
in the two-layer case (with continuously varying weights)
replica symmetry breaking occurs at values of n far below
the capacity. This phenomenon is particularly strong in
the case of large I&, i.e. , a large number of hidden units.
Our analysis of the limit I~ ~ oo (keeping N much big-
ger than IC) suggests that the maximal capacity diverges
with K and is bounded by lnK. However we have found
that RSB occurs already at finite o, . Figures 2 and 5 show
the order parameters that signal the breaking of RS in
networks with three and many hidden units, respectively.

RSB has been found in the case of a single-layer per-
ceptron [1]. In that case RSB occurs only for n above
the maximal capacity, n„ i.e. , in the regime where the
networks perform the dichotomy with a nonzero amount
of error. (Note that n is defined as the number of pat-
terns per weight. ) Thus the RSB is similar to that occur-

ring in spinglasses, in that it is related to the degeneracy
and fluctuations of the frustrated ground state. In the
present case, the RSB is related to the breakdown of the
solution space, which breaks into many disconnected re-
gions in the space of networks. Since our study is strictly
at zero temperature the RSB is associated not with near-
energy degeneracy but rather with near-entropy degen-
eracy. Specifically the RSB implies in our case that the
entropies of the different "valleys" differ by an amount of
order 1, whereas the total entropy is of the order of the
number of connections in the network (N).

We have also studied the case of binary weights, In this
case, for general K the annealed approximation provides
a bound of n, = 1 on the maximal capacity. Our analysis
shows that RSB occurs only above n, . Below it the space
of solutions is connected. However as o. approaches o.,
the solution space becomes increasingly more ramified.
Thus the entropy of the solution space approaches zero
as o, ~ o., but the average overlap between a pair of solu-
tions remains smaller than 1. Our simulations calculating
the maximal capacity of networks with three hidden units
are given in Fig. |I. They are in excellent agreement with
the prediction based on the replica-symmetric theory.

It is interesting to note that in the case of binary
weights the properties of the two-layer system discussed
above are qualitatively similar to those of a single-layer
binary perceptron, as found by Krauth and Mezard [4].
In both cases the RSB occurs only at the capacity limit.

To probe the effect of PS and its breaking in multi-
layer networks we have studied a two-layer Committee
Machine with fully connected architecture, Fig. 1(b). In
this network each of the hidden units has a full recep-
tive field of the input pattern. Due to this structure,
the solutions space has a global permutation symmetry:
Permutation of the hidden units in a given solution yields
another, completely equivalent solution. In a PS state the
solutions that are related by permutation transformation
belong to the same connected region of solutions. Break-
ing of this symmetry implies that these equivalent solu-
tions reside in different, disjoint regions. This symmetry
breaking is measured by the order parameter q~

—qo,
defined in Eq. (3.6).

To investigate PSB we have calculated numerically the
order parameters qo, qq, and qz, Eqs. (3.2) and Eq. (3.3),
by averaging over solutions that were generated by a ran-
dom walk in a single "valley" of the solution space. We
have found that for small a the PS is unbroken. This
is shown in the results of Fig. 7, where q2 —qo

——0 for
small values of o, . For large values of o. , a strong PSB
occurs with q2 being close to 1 and qo approaches q& ( 0.
The evolution of the order parameters with the averaging
time is shown in Fig. 8, where the different behavior in

the PS and the PSB regimes is clearly demonstrated.
The fully connected architecture also provides an op-

portunity to study the correlations between the values of
different weights of the network, in a given solution. In
general, correlations between the different parts of the
network may arise from the underlying structure of the
task, e.g. , spatial correlations in the inputs. In our case,
of random dichotomies correlations exist only between
weights (connecting the input and hidden layers) that
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share the same inputs. Both the theoretical analysis (for
small n) and the numerical results, Figs. 7 and 8, show
that these average correlations are negative for all values
of o;. These antiferromagnetic correlations are a prop-
erty of the typical solutions. It does not exclude the exis-
tence of solutions with positive overlaps of these weights.
Although our study of the fully connected network has
focused on the breaking of permutation symmetry, we
expect that the system also exhibits replica-symmetry
breaking for large values of n. A systematic theoreti-
cal study of the properties of this system in the broken
symmetry states remains a difFicult challenge.

E. Domany, D. S. Fisher, M. Griniasty, T. Grossman, H.
Gutfreund, and D. Huse are acknowledged.

APPENDIX A: THE REPLICA THEORY
OF THE NONOVERLAPPING

COMMITTEE MACHINE

1. Replica theory

In order to calculate the average of lnV [defined in
Eq. (2.4)] over the patterns, one uses the replica trick
based on the identity:
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and a performance of a continuation from positive integer
n, where n is the number of replicas of the network, to
n ~ 0. The [] denotes the average over the disorder (i.e.,

over different realizations of the set of P patterns). In
the large-N limit and for finite I4, the average of these n
replicas of the network, has the form

[V"] = f dqrnedqt edEt ex'p]nNG((qt e, q, '), Er })].'
a,P, l a, la(P

The function G is the sum of two contributions:

G((q ' qi" & )) = Go((q ' & ))+ G ((q"'))
where

P
N

(A2)

(A3)

(A4)

is the number of patterns per weight. The function G() depends on the possible constraints imposed on the weights
variables. For continuous weights:

G, = — ) q Pq )'+ ) ln
a,P)l

E
1

and for binary freights, J~& ——+1:

d~( «p —).&((~( —1)+ ).q(' ~( ~(
a a a)P

1 y w ~p ~p 1
Obinary —

i~ j q( q&
' +

a, g, l

(A6)

Gq is given by

1 - d&n 1
Gg ———ln dA (

' e
n, l Ck

() sgn(A () exp ——) (z, —2i,za (hn, () —) q(
' zn, (&p, (

(yl an't
a+P

(A7)

which is independent of the nature of the weights. The
order parameters q&

' are related to the weights by

q~ P ) Jq)gP (A8)

The parameters q(
'~

(cE, P = 1, ..., n; I = 1, ... , I4) are
the conjugate variables to the order parameters q&

'~,
while E& are the conjugate variables that impose the

constraints (2.5). In the thermodynamic limit [V"] is
computed by the saddle point method. Performing the
limit n —+ 0 leads to
1—[tnV] = extr, r . ,r G ((qt 'e,

qr
'e, Et )) . (Ap)

The extremum is taken over the q&
',

q&
', and E& . In

order to solve the saddle-point equations a more specific
ansatz has to be done on the symmetries of the order-
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parameter matrices.
We first address the dependence of the order parame-

ters in the saddle point on the hidden unit index l. Since
the distribution of the input pattern is the same in each
of the hidden units, averages are to be independent of /,

ql —q
~

ql q
P El (A10)

In the next paragraph we discuss the dependence of the
order parameters on the replica indices.

In the next sections of this appendix and in the fol-
lowing appendices we discuss only the case of continuous
synaptic weights.

H (,) (1 —H~(, ))
~ =l+1

(A15)

o is a permutation element of the group of permutation
of the I~ indices, denoted SIr. For instance for I~ = 3,

E(3}{(vt})= H)H2 + H)Hs + HsH2 —2H)HgHs.

(A16)

We have used the notation

2. Replica-symmetric theory for general K
) 1/2

Hi = H
1 —q)

Vl ) (A17)

In this part one assumes the replica symmetry of the
saddle point, i.e. , that at the saddle point for all l: where H(x)=f Dy. Dy is a Gaussian measure:

q&'P ——q, qt
'~ ——q for all ngP,

(A11)

dy /' y'
Dy = exp

I

——
2x 4 2

El ——E for all a.

The order parameter q is the analog of the EA order
parameter:

(A12)

E= 1

1 —q
(A18)

DiA'erentiating with respect to q, to q and to E leads
to the saddle-point equations:

where the brackets (& denote average over all networks
that realize the given set of patterns.

Under the replica symmetry assumption Go and G~
are

q q

(1 —q)'

Ggq=n
Oq

'

(A19)

(A20)

where

4 ~ 4 \

1=1
Dv, lnZ ((v, }), (A14)

1
Go ——

~
E+ qq+ ——lnE —q+ ln(2s) ~, (A13)

2 q E r

The third equation is cumbersome, and has been stud-
ied in the text for specific cases. At small value of o, ,

q is small. At criticality, when the volume of available
solutions shrinks to zero, q reaches 1.

For the case where the number of hidden units is large,
I~ ~ oo, the expression of Gq can have a simpler form.
Using the integral representation of the Heaviside func-
tion, it is easy to show that

Gg ——

OO

Dvl ln I

1dz-
21r

dA exp(iAz) (cosz+iF~sinz)
~ h ~ ~

l

(A21)

a, f= V
DvilnH i (A22)

where

where I"l ——1 —2Hl. In the limit of large K the con-
tributions to the integral on z are coming from z

0 1 I& . Expanding the integrand in powers of z up

to order z and performing the integral on z one obtains

R= —.) F(
l

The quantities V and R are a sum of a large number of
terms each of which depending on a Gaussian variable
vl. These Gaussian variables are uncorrelated. As a con-

sequence a "central limit theorem" applies to V and R.
It is then possible to integrate over the vl leading to the
simple expression:

V= ) Fi
1

A
Gg ——

sja
DzlnH

~

zq,fr

1 —
qefr )

(A23)

and where
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q, fr =4 H
l l

t —1=1——arccosq&1-qi 7r

(A24)

(here the brackets & & denote Gaussian average over t).
Note that this expression holds only when I~(1 —q) is
large.

APPENDIX B: INSTABILITY OF THE
REPLICA-SYMMETRIC SOLUTION

n

n x n . U and V contain the quadratic fluctuations
of the order parameters in the same and different hidden
unit, respectively. Because of the block form of M, the
eigenproblem splits into the uncoupled diagonalization of
the two matrices: U —V and U+(K —1)V. The eigenvec-

tors of U —U correspond to fluctuations in the directions
that break the permutation symmetry. The eigenvectors
of U+ (I& —1)V represent fluctuations that do not break
this symmetry. The most unstable mode corresponds to
an eigenvector of U + (I& —1)V that breaks the replica
symmetry. Using the method of Ref. [1], we find that the
RS stability criterion is

The Hessian matrix computed at the replica-
syrrirnetric saddle point characterizes the fluctuations in

the order parameters q&
'P,

q&
'P, and EP around the RS

saddle point. An instability of the RS solution is signaled
by a change of sign of at least one of the eigenvalues of
this matrix which is of dimension I&n2 x I&n2 and can be
represented in a block form:

M( ( = Ub( ( + V(1 —6( ( ), (B1)

where MI ~~, U, and V are matrices with dimension

I&n(1 —q) y & 1,

where y = go+ (Ii —l)pi, with

7o =& (~l)' &. -2 & .l(»)' &. + & (»)' &.

and

7 =&(*i z)'& -2&( i.z)(. )(*)&.
+&( )'( )'&.

One has defined

(B2)

(B4)

ZAZ
1 2

d', (
dA( e ) sgn(A() exp —) -(1—q)z,'+ iz) (A( —+qv() z", zz

~

de, ( ~ I'
dA& e ) sgn(A~) exp —) -(1 —q)~& + i~i (&r —+qvi)2z (, ) (, 2

(& &„denotes Gaussian average with measure Q& Dv~).
All the other eigenvalues, including those of the matrix
U —V change sign only at larger values of cr where the
RS solution is already not stable.

In the Ic = 3 case, p can be written in the form

1 q 2 2

(1 — )2l (1 )
&(1 —X) W, &

+(' ')(' ') & 1-x 'w'&+ &(1 —X) W, &„

Hi = — —exp
l

— v(

and X = Hz Hs/E~s), Y = Hi Hs/E~s) with Zis)
01+2 + B1+3 + 03+2 2+102+3 ~

In the large-I& limit (I& ~ oo), the calculation of the
relevant eigenvalue of the Hessian matrix (keeping the
dominant contribution in the large-IK limit) gives the fol-
lowing instability criterion:

-2 & w'w'x'v' &„ l (B6)

2A'p 1 —
q &0,

(1 —q,fr)(1 ~ q)
(B7)

where we have used notation: W~ = H&'/H~ with where

& W'&+ '
& z'W'&+2

lg1 —q' z'(1 —q.n') 1 —q.n' &1 —q.fr j & ~W'&+ & W' & (B8)

where & & denotes Gaussian average of z and W is de-
fined in Eq. (2.33). The above instability indicates that
one has to consider solutions which do not satisfy the
syinrnetry of Eq. (All). Breaking this symmetry, using
the one-step block scheme introduced by Parisi [3] im-

plies the following parametrization of the q&
'~ matrix for

all l:

-a,P n &Pl=qi forallI —=Il —
l&m gm&'

(Bg)
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q,
' =qo for all I — I

rn rn

E,~=E foralla,

(B10)

where m is the number of replicas in each block and I(z)
is an integer valued function: its value is the smallest
integer which is greater than or equal to x.

APPENDIX C: CAPACITY OF THE
NONOVERLAP PING COMMITTEE MACHINE

In this appendix the resummation of the most diverg-
ing contributions to Gq [given in Eq. (A14)] in the limit

q ~ 1 is sketched, in order to obtain the maximal capac-
ity of the Nonoverlapping Committee Machine within the
RS ansatz.

In the limit q ~ 1, straightforward combinatorics leads
to the following leading behavior:

(K—1)/2
IL

2s &~ (K+1 ) ~ (K-3) i
Dvg

(K+3)l2- s

Dvt
~

ln (HgHs . Hler+a)/g, ) [H(vy)]~

(C1)

where in the discussed limit ln(H~) ~ —
qv& /2(1 —q). Performing the sum and all the integrals but the one on vq one

Ands

& [1 —H( )l'" '"'[H( )]' '"[-' —H( ) + H'( )] (C2)

Using the saddle-point equation

OGy

2(1 —q) Oq

the replica-symmetric maximum capacity is found to be

(C3)

r(I'.)
I 1 (K+1)

DzH(z)l s&/'[1 —H(z)]~~ '1/s[2' —H(z) + zH'(z)] (C4)

where T(z) = (z —1)!.
For K = 1, one obtains

c=2 (C5)

which is the capacity of the one-layer perceptron obtained
by Cover and Gardner [1].

When I& is large a saddle-point estimate of the integral
leads to the asymptotic behavior:

[

for the maximal capacity of the network by approximat-
ing Ip~p ~

Any set of It hyperplanes (obtained by particular re-
alization of the hidden units synapses), each inducing a
dichotomy, induces a partition. But, not all the parti-
tions so obtained are distinct, since it is possible that
different sets of dichotomies give rise to the same parti-
tion. Thus the number of partitions can be approximated
from above by

/ 72 1/2
I' /

I «(pN, I&, P, ) = C
~

P„—
~

(
(D2)

APPENDIX D: BOUND ON THE CAPACITY
OF THE COMMITTEE MACHINE

where C(P„&) is the number of dichotomies of P, vec-
tors by hyperplane in N/Iidimensional spa.ce:

An upper bound for the capacity of the nonoverlap-
ping receptive fields Cornrnittee Machine with continu-
ous weights can be obtained by calculating the number
of possible partitions of the P random input vectors. The
maximal capacity of the network, P„will be given by

C(P„N/I&) can be written in an integral form

Ip „(N, Ic, P, ) 1

2 2' (D1)

N) 2~ (Nn —1)!
(N- - -".—1)'(-."—1)'

where Ip „(N, I&, P, ) is the average number of partitions
of network with N input units, which is subdivided to K
nonoverlapping receptive fields. Exact calculation of I»,
is a hard problem. However, one can 6nd upper bounds when o. = P, /N

dt .tNla —~1/K)i —1(l t)(K/K) —1

(D4)
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In the thermodynamic limit, N ~ oo, one can use the
saddle-point method, obtaining

of the capacity to be a, = 5.43. In the K ~ oo case, the
previous equation reduces to

i "I&) +2~(N/I&),
x(nI& —I)-( .-& I~l+&'I'll (D5)

Substituting C(P„N/K) in the equation defining P„
using the fact that P, ~ oo while e is finite, one gets

cx IC' = (n K —1)l i l 2l 1 (D6)

Solving this equation for It = 3, gives the upper bound

I y In(n, I&) = n, ln2 (»)
which gives n„= O(ln Ix).

The same method can be applied to derive an upper
bound of the capacity in the fully connected network. In
this case the dimension of the hyperplan spanned by the
hidden units is N (and not N/I&) Ho.wever, the upper
bound for the capacity for K —+ oo behaves also like
n, = O(lnI&).

' Permanent address: Centre de Physique Theorique,
Ecole Polytechnique, 91128 Palaiseau, France.
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