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In the search for networks that implement the winner-take-all function dynamically in a robust way,
we study in this paper a class of models that includes short-range diffusive interactions. The analysis is
based on a combination of numerical simulations and analytic results obtained by the application of
field-theoretical methods. An examination of the ground-state properties reveals that the implementa-
tion of robust competition in dimensions higher than one requires a nonstandard diffusive interaction of
at least fourth order.
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I. INTRODUCTION

A1though the physics of large systems and the theory
of artificial neural networks both deal with the collective
properties of systems made up of many interacting ele-
mentary units, they differ in several aspects. In contrast
to the building blocks of physical systems, the properties
of artificial neurons may be defined freely. More funda-
mentally, states of networks are considered to code infor-
mation, and their dynamics is interpreted as information
processing. Because of their inherent parallelism and the
very different organization mechanism, neural networks
are considered to be an interesting alternative to standard
computers and their programming.

In view of the virtually inexhaustible richness in the
behavior of large systems and in their freedom to code in-
formation, the exploration of neural networks as techni-
cal devices for information processing seems to be still in
its infancy. The merely remote relationship between
properties of elementary units and their collective behav-
ior only adds to this impression. In the absence of a gen-
eral theory of what networks can really do, progress in
network design has to rely mainly on a combination of
guessing a promising looking network structure, for in-
stance, by borrowing and reinterpreting concepts from

physics and analyzing the actual behavior.
In this paper we demonstrate this procedure by taking

on the modest task of the construction of a robust com-
petitive dynamics. As a starting point, we choose the
competition dynamics developed by Haken [1] for the
purpose of pattern recognition. Here the outcome of a
competition is a strictly localized state, the only excited
neuron representing the winner and all other neurons be-
ing quiescent. In the search for a system with robust cod-
ing of the information on the winner by distributing it
over a tunable number of neurons, we modify the Haken
model by adding a diffusive interaction [2]. The motiva-
tion for the resulting diffusive Haken model is based on
the expectation that the new ground states have to
represent a compromise between localizing forces of the
original Haken model and the delocalizing diffusive in-

teraction, thus giving rise to bubbles of excitation, the
width of which is controllable by the diffusive coupling
strength. The main task then is to find our whether or
not the model behaves according to this expectation and
how.

The definition of a nearest-neighbor coupling intro-
duces concepts of topology and dimension, thereby
changing profoundly the properties of the model, with
the unpleasant consequence that the diffusive Haken
model can no longer be treated analytically in a straight-
forward manner. The situation becomes much more
favorable when we replace the discrete neurons by an ex-
citable continuous medium. As it turns out, the ground-
state properties of the resulting field theory can be dis-
cussed in great detail, depending on the dimensions of the
system, the order of the diffusive interaction, and the cou-
pling strength. In combination with simulations of the
discrete version, we obtain a comprehensive picture of
ground-state properties of the diffusive Haken model for
the field-theoretical as well as the discrete formulation.

The plan of this paper is as follows. In Sec. II we sum-
marize the properties of the original Haken model. In
Sec. III we define the diffusive Haken model, including its
Geld-theoretical formulation. In Sec. IV we discuss the
ground-state properties using a variational calculation
based on an approximation by Gaussians. In Secs. V and
VI we adapt the instanton approach to our problem and
we give exact solutions for one dimension. In Sec. VII we
summarize analytical and numerical results of the field
theory in low dimensions and compare them with simula-
tions of the discrete version. Section VIII contains our
conclusion.

II. HAKEN MODEL

Motivated by the analogy between pattern formation in

synergetic systems and pattern recognition, Haken [1]
has formulated a prototype dynamics for the modeling of
competition. In this section we summarize its basic prop-
erties (for details we refer to [1] and a recent overview

[3]l.
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Driven by a potential V"'(q), the states q ER of the
system change according to

q
= —V V'"(q),

where it is assumed

(2.1)

V(1)( )
— iD+ tL)2 t y 4 (2.2)

and

D=gq, (2.3)

The resulting equations of motion,

q, =(1 2D)q—;+q; (2.4)

may be interpreted as the dynamics of a network consist-
ing of X cells with activities q,

Equations (2.4) are invariant with respect to the re-
placement of q; by —q;, and one can easily show that
q; (t) & 0 for all t & 0 if q;(0) & 0. Hence it suffices
to investigate the dynamical properties of the system in
the invariant positive section R+ = [q ER ~q; &0,
i =I, . . . , X].

Because each degree of freedom is coupled to all others
with equal weight, it follows that each trajectory q'(t), re-
sulting from a solution q(t) by an arbitrary permutation
of its components, is also a solution.

Being the end points of any motion, the stationary
states are of particular interest. Despite the nonlinear na-
ture of the equations of motion [Eq. (2.4)], they may be
discussed in complete detail. It turns out that the sta-
tionary states falling into R + may be grouped into m + 1

classes. Those forming class m, 0& m ~X, are the states
with m components equal to 1, all others being equal to 0.
The stable stationary states are the iV vectors of class
m =1. All other stationary states are either unstable
(m =0) or saddle points (m & 1). The potential associat-
ed with these states is given by

V(]) m

4 2m —1
(2.5)

Because all stable stationary points have the same poten-
tial

for any pair i and j, then q;(t) &
q, (t.) for all t & 0. Hence

an initial state having typically a unique maximal com-
ponent q, (0) & q;»; (0) ends up in the stable stationary

0 0

state with q; =1, q;&; =0. The results of a simulation

are shown in Fig. 1. The network thus implements the
winner-take-all function [4] in a dynamical way. Such a
dynamical competition requires an exchange of informa-
tion between a11 degrees of freedom, which is established
by the coupling term in the equations of motion [Eq.
(2.4)].

III. DIFFUSIVE HAKEN MODEL

The Haken model perfectly performs a dynamical
parallel search for the maximum in a set of data. Howev-
er, the position of the rnaxirnum eventually is indicated
by a single degree of freedom, io ("cell"), all others being
quiescent (q, », =0). Therefore, the performance of the

system depends on the perfect functioning of each cell,
which makes it prone to failure.

It is well known that in large natural systems such as,
e.g., the human brain, information typically is spread
over many cells in the form of local "bubbles" of excita-
tion or over many synapses [5,6]. This serves as a safe-
guard against the failure of individual cells. In the fol-
lowing we look for modifications of the Haken model
which reflects this behavior in the case of a maximum
detector network. A practical motivation for these inves-
tigations is that a network with these properties allows,
at least in principle, implementation of the learning and
recognition algorithm for Kohonen's feature map [5] on a
massively parallel architecture. This implementation

q.
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it follows that they all are global minima of V(q).
There are two homogeneous stationary states

0, m=0
(2N —1) ' m =N

(2.6)

(2.7)

q

for all i, which we call the vacuum state and the dissipa-
tive state, respectively. For large systems (N~) the
components of the two states become indistinguishable.
Nevertheless, the limit states have to be considered as
different states because their respective potentials take
different values Vo" =0 and V'" = —

—,'.
The interpretation of the system (2.1)—(2.3) as a model

for competition relies on the conservation of inequalities
among the components of a state: If initially q;(0) & q~(0)

Ip

1
P

FIG. 1. Example of dynamical competition: (a) initial and (b)
final states of a discrete system with components q;. q; is the

0
maximal activity.
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V —V(o)+ V(1) (3.2)

avoids the bottleneck of the standard approach [7], which
basically relies on a sequential search and thus has a time
complexity which increases with the size N of the data.

The potential V'" of the Haken model drives the sys-
tem into sharply localized states. Therefore we will add a
term V' ' which prefers homogeneous states. As a result
of a balance between the two opposing forces, we expect
that the ground states (global minima) of the system
V = V' '+ V'" will have a bubble structure of the sort we
are looking for. Furthermore, by choosing V' ' symme-
trical in the components q;, we expect that system V
again has the properties of a maximum detector, the
maximum now being indicated by the center of the bub-
ble. Obvious candidates for V' ' are diffusive potentials
of the form

V' '(q)= a g (q; —
q, ) ",1

2n (; )

a~0, n =1,2, . . . , (3.1)

where the bracket indicates summation over pairs of
nearest neighbors. Indeed, V' ' takes its minimum equal
to zero when a11 components have the same value.

We thus define the diffusive Haken model by means of
the potential

D =D[q]= f dx q2 . (3.7)

The equation of motion is given as the functional deriva-
tive

q=—5V[q]
5q

(3.8)

As long as the equilibrium states have only a weak spatial
dependence, the discrete model and field theory will show
very similar behavior.

IV. GROUND STATES:
VARIATIONAL CALCULATIONS

q(x)=0, D[q]=0, V[q]=0. (4.1)

With some luck in the choice of a set of test functions,
a variational calculation gives valuable information on
the ground states of a system. If the functions are simple
and, at the same time, catch essential features of the
ground states, we obtain with little effort rigorous upper
bounds to the ground-state potential close to the exact
value and quantitative insight into the properties of the
ground states.

To begin with let us consider the constant states
q (x)=qo. For the vacuum state we trivially have

which gives rise to the dynamics

j=—V'V. (3.3)
For a finite system with periodic-boundary conditions, we
find the two optimal constant states q (x)=+qo, with

V[q] = V"'[q]+ V'"[q],
~here

V' '[q]= a f dxd(Vq) ",1

V(1)[q] iD + iD2 i f d d 4

(3.4)

(3.&)

(3.6)

The coupling a controls the diffusive interaction, and for
a=O we retain the original Haken model. Whereas in
the Haken model the numbering of cells is completely ir-
relevant, we now assume that the cells are arranged on a
d-dimensional square lattice where the notion of nearest
neighbors can be defined. To minimize boundary effects
in the case of finite systems, we impose periodic-boundary
conditions in our simulations.

The diffusive model (3.1)—(3.3) contains three parame-
ters: the power n of the diffusive interaction, its coupling
strength a, and the dimension d of the lattice. Except for
occasional general considerations, we will concentrate on
the standard diffusive interaction n =1 (model I) and, for
reasons which will become obvious later, on the non-
standard interaction n =2 (model II).

The addition of a diffusive interaction turns the Haken
model into a difficult analytical problem, and it appears
that detailed insight into its properties can only be ob-
tained by means of numerical simulations. In part, the
diffieulties stem from the discrete nature of the model.
Therefore it seems to be helpful to consider a continuous
version of the model. In the resulting field theory, the
lattice becomes a d-dimensional medium, states are func-
tions q (x), x HR, and the potential reads

q(x) =1/(2N —1), D [q) =N/(2N —1),
V[q] = N/(8N —4—),

(4.2)

where N = jdx" is a measure of the size of the system.

Being unaffected by the diffusive interaction, the con-
stant states (4.1) and (4.2) simply are the continuous ver-
sions of the homogeneous states (2.7) of the discrete origi-
nal Haken model. In both models, for 1V~ (x), the non-
trivial state (4.2) becomes pointwise identical with the
vacuum state while taking a nonzero norm D [q]= —,

' and

a negative potential V = —
—,
' well below that of the vacu-

um state. This dissipative state can be considered as the
limit of a sequence of states, where the excitation dissi-
pates to infinity, while the norm and potential remain
nonzero.

Because the dissipative state is the homogeneous state
with lowest potential energy, it follows that the ground
states of an infinite system are spatially structured if and
only if there exist states with V[q] ( —

—,'. This criterion
will play a decisive role in our further discussion.

The potential V is invariant against translations and
rotations of the coordinates x. In addition, V has the
discrete symmetry V[q] = V[ —q]. If each of the respec-
tive functions +q (x) has a definite sign, we will consider
only the positive state.

Because of the symmetries of V, it is not unreasonable
to guess that a bubblelike ground state has a rotational
symmetry around its center. If we choose the center of
symmetry to be the origin of coordinates, then an obvious
choice for a two-parameter set of test functions is given

by the Gaussians
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D = f dx q(x) =m. qos "2

fdx q(x} =m" qts 2

fdx d[ Pq (x ) ]2N 2np~d/2q2ns 2m —
d2 —d

where

(4.4}

(4.5)

(4 6)

p=(2/n)"(2n) / —2 I (d/2+n)/I (d/2) . (4.7)

Using these expressions, we end up with an explicit func-
tion V(qo, s) for the potential V [Eqs. (3.4)—(3.7)]. The
best approximation by a Gaussian is then the minimum
of V(qo, s) and, hence, is a solution to the equations

B~ V(qo, s) =0, 8, V(qo, s) =0 . (4.8)

They may be written as

4ap(2n/d —1+n)qo'" s "=1,
nd/[4n +2(n 1)d) q

—22d/2+2~d/2s —d

(4.9)

(4.10)

We restrict a detailed discussion to the standard diffusive
interaction n =1 (model I) and the nonstandard diffusive
interaction n =2 (model II).

A. Model I

In one dimension (d =1) Eqs. (4.9) and (4.10) may for
n =1 be written as

=2 AS (4.11)

1=s —8&ms/3+ =0 .
3(x

The quadratic equation (4.12) has no real solution below
the critical coupling

a, = 3
(4.13)

16m.

(4.12)

Keeping for a ~ a, only the solution with the lower po-
tential, we get

s =s(a)= ', &n(1 —Ql ——a, /a), (4.14)

which, in combination with (4.11), characterizes the best
Gaussian approximation. Its potential is given as

V(a) =—
qo

— —qo
—1

1 3 g 1

8 32 2v'2 (4.15)

q(r)=q, e '"', r =~x~,

where qo is the amplitude and &d /&2s characterizes
the width of the bubble.

For these functions the calculation of the various terms
of V[q] reduces to Gaussian integrals which can be per-
formed easily for arbitrary dimensions d. We obtain

a
V =2ma —1

2cxc
(4.21)

Here, too, the Gaussians are real only for couplings
beyond a critical value a, .

According to relation (4.20), the width of the optimal
Gaussians decreases for increasing values of the coupling
a. This behavior runs completely contrary to our intui-
tion about the effect of the diffusive interaction on the
ground-state structure. In fact, we have, according to
(4.21), V(a)) —

—,', for all a) a, and V(a, )= —
—,', where

qo(a, )=0 and s(a, )=0. Hence the potential of all
Gaussians with finite amplitude is above that of the dissi-
pative state. We take this result as an indication of a
complete absence of bubblelike ground states for model I
in two dimensions. We can extend this result to dimen-
sions 2 ~ d ~4. By use of the conditions (4.9) and (4.10),
it follows that, for n = 1,

V = ~ + ~ [(4 d)d2 d —3q4+(d 2)2 d/2q2O ]

and hence V& —
—,
' for 2&d ~4.

(4.22)

B. Model II

For the nonstandard diffusive interaction n =2, condi-
tion (4.9) for the optimal Gaussian takes a particularly
simple form, and we get

q
2

( d +4 )2d /2 2
[(a /a )d/4 1 ]

—1/4
(d +2)(d +4)s=

4
CX

(4.23)

(4.24)

we have approximately

qo =(2 na) ', s =(8&era) (4.17)

1
(4.18)

256m.a
For u —+ ~ the Gaussian tends to the dissipative state and
V= ——'.

8

Because the potential of the Gaussians is always below
that of the dissipative state, it follows that in one dimen-
sion the exact ground states are spatially structured, at
least for all a ~ a, .

In two dimensions (d =2},Eqs. (4.9) and (4.10) have a
single solution:

qo =4(a/a, —1), a, = 1
(4.19)

1/2a —a,
S = (4.20)

2aa,

with

For the critical coupling we have

4&~
3

' ' 3 ' ' 6
(4.16)

1 1V= ——1+ (4.25)

For increasing values of a, the Gaussian becomes broader
and broader and its amplitude decreases. At the same
time its potential increases monotonically. For a»a, a, =4[2/(d +4)] [m (d +2)(d +4)] (4.26)

where the critical coupling e, depends on the dimension
d:
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2 2d/2 —1~—d/2s dq0— (4.27)

In the limit q0 —+0, which implies s~0, it follows that
q(x)~0 and V[q]~ —

—,
' for all n and d.

V. INSTANTON APPROACH

In the case of model I, the localized states we are look-
ing for are closely related to the "instantons" of quantum
field theory [8—10]. Except for slight modifications re-
sulting from the presence of a second-order volume in-
tegral in the potential V, we may directly adopt the
methods developed in field theory to our problem. In this
section we show that the basic ideas of the instanton ap-
proach also form a sufficiently general framework for a
discussion of models with nonstandard diffusive interac-
tions.

The exact ground states are the global minima of the
potential V[q(x)]. By assuming rotational symmetry
q(x)=q(r), r = ~x~, the search for these states is reduced
for all dimensions d to a one-dimensional problem,

V[q(r)]=y„I dr r ' q' "——
q

——
q

+—
yd drr' 'q'

2 . 0
(5.1)

where q' is the derivative of q (r) and

Because V ~ —
—,
' for arbitrary dimensions, the variational

calculation proves rigorously that the ground states of
model II are always spatially structured, at least for
a + o, The corresponding considerations for model I are
only conclusive for d =1. The calculated upper bound to
the ground-state energy for 2 d 4 does not exclude the
existence of states very different from Gaussians with a
potential lower than —

—,'. However, the discussion of the
exact solutions will show that the simple variational cal-
culation given in this section describes the essential prop-
erties of ground states astonishingly well.

We end this section with a brief comment on the dissi-
pative state. We can prove its existence directly for an
infinite system in the following way: Consider, again, a
Gaussian of the form (4.3) and impose the condition
D =

—,'. According to (4.4), this establishes a relation be-
tween the amplitude and width of the Gaussian:

and

D[q(r)]=y& I "dr r" 'q
0

(5.6)

A =A[q(r, A)], (5.7)

given by (5.5) and (5.6).
Because we already know from our variational calcula-

tion that the potential of ground states does not exceed
the value —

—,', we may ignore all solutions q(r, A) with

higher potential. In particular, we may, of course, ignore
all solutions with a diverging potential V~ ~. A very
useful criterion in this respect is the following: Assume
that ~q(r)~ is bounded and suppose that ~q(r)~ remains
nonzero or tends to zero so slowly for r ~ ~ that the
square of its norm D diverges. Then the potential V[q] is
dominated by the second-order volume integral —,

'D~ [see
(3.4) —(3.7)] and hence V [q]—+ co. As a result, we may ig-
nore all non-normalizable states.

Turning to the first step, the starting point for the in-
stanton approach is the interpretation of q as a particle
position and of r as a time. With this interpretation Eq.
(5.3) is the equation of motion of a particle moving in one
dimension and subject for n & 1 to a somewhat peculiar
dynamics. The trajectories q(r, A) obey a least-action
principle, where the action may be written as

S [q]=yz I dr r" 'I. (q, q'), (5.8)
0

L [q, q']= q' "—U(q, A) .
2n

(5.9)

For a Hamiltonian formulation we refer to Appendix A.
There the energy of the particle is defined as

2n —1E =a q'"+ U(q, A),
2n

(5.10)

The quantity 3 which appears in the auxiliary potential
U(q, A) is, according to (5.5) and (5.6), a function of the
solution q(r). As a result, the Euler-Lagrange equation
represents an integro-differential equation. For its solu-
tion we proceed in two steps. In the first step we treat 3
as a parameter, and we thus consider Eq. (5.3) as an ordi-
nary differential equation. Second, from the entire set of
its solutions q ( r, A ), we then pick candidates for the
ground state by imposing the self-consistency (SC) condi-
tion

y =d~ i /I (d/2+1)
which changes along a trajectory according to

(5.2)

is the surface of a unit sphere in d dimensions.
The minima of V[q(r)] are solutions to the Euler-

Lagrange equation 5V/5q (r) =0, which takes the form

=0 for d =1
~0 for d=2. (5.11)

(5.3)

where

U(q, A)= —
—,
' Aq + —,'q

A =A [q(r)]=2D[q(r)] —1,
(5.4)

(5.5)

aq' '" " (2n —1)q"+ —q' = — U(q, A),
r dq

The one-dimensional case d =1 is unique in that for arbi-
trary diffusive interactions the energy is a constant of
motion. As a consequence, the particle performs an un-
damped motion and solutions may be grouped into the
following classes. First, all solutions with EWO are non-
normalizable periodic functions of r [see Figs. 2(a) and
2(b)]. Second, for E =0 we have for all values of A the
trivial solution q(r)=0, which has the two interpreta-
tions as the vacuum state and the dissipative state. Final-
ly, for E =0 and A )0 there exists the unique instanton
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q'=— 2n
U(q, A) (5.12)

and then imposing the SC condition (5.7).
For dimensions d ~ 2 the energy E is a monotonically

decreasing Liapunov function. The particle undergoes a
damped motion caused by the second term on the left-
hand side (LHS) of the equation of motion [Eq. (5.3)], and
each solution eventually settles down for r ~~ at a sta-
tionary point of U(q, A).

For A ~0 all solutions tend, for r~oo, to the single
minimum q =0. During the approach, the particle per-
forms damped oscillations where the damping rate tends
to zero. By treating the damping in this limit as an adia-
batic perturbation, we may determine the asymptotic be-
havior of q (r, A ). In Appendix B we show that in two

solution where the particle starts for r =0 at
qo=(2A)'/, accelerates downhill the auxiliary potential
U(q, a), moves uphill again, and comes to a rest at the lo-
cal hill q =0 [see Fig. 2(b)].

Because we may ignore non-normalizable solutions, for
d = 1 there are only two candidates for the ground state:
the dissipative state with V= —

—,
' and the self-consistent

instanton state. The latter follows by integrating the
energy-conservation law (5.10) specialized to E =0,

' 1/(2n)

and three dimensions all solutions of models I and II
(n =1,2) different from q(r)=0 have a divergent norm
and may therefore be ignored.

For A )0 the potential U(q, A) has two minima and
one local maximum. As a consequence, two classes of
solutions exist. Those tending to the minima trivially are
non-normalizable because they approach a nonzero con-
stant for r~~. In addition, there exists a stationary
solution q (r) =0 and a denumerable set of instanton solu-
tions which either directly tend to q =0 or approach this
value after one or several bounces at the auxiliary poten-
tial U(q, A ) (see Fig. 3). Because the lowest-order instan-
ton has no node, it seems reasonable to guess that its po-
tential Vis lower than that of all other instantons.

In summary, the search for the ground state in the
cases of interest has been reduced to the question of
whether or not the unique or lowest-order self-consistent
instanton solution has a potential V lower than the dissi-
pative state. The results of our variational calculation
show that in case of model II for all dimensions d the
answer is in favor of instantons. A similar conclusive
answer follows in model I only for d = 1.

VI. INSTANTONS IN ONE DIMENSION

In one dimension the instantons follow by integration
from (5.1). When setting

(a) q =&2A Q,
n —1a =a(A, n, a)= a2 2"A"

271

' 1/2n

(6.1)

(6.2)

the differential equation (5.12) acquires the form

Qi —
Q 1/n( 1 Q 2)1/2n1

a(A) (6.3)

The inverse of the instanton solution r = r(Q, A) then fol-
lows as

r = —a( A) f dq q 1/n(1 q2)
—1/2n

1
(6.4)

A&0
Relation (6.3) gives Q' as a function of Q. This allows us

(b)

~ 0

e~

A) 0

FIG. 2. Undamped motion of the particle in the auxiliary po-
tential U(q, A) for (a) A ~0and(b) A )0. qo=+2A.

FIG. 3. Instantons of different order in the presence of damp-
ing. qo, ql, q2 are the starting points.
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to express any time integral involving the solution
Q (r, A) and its derivative as an explicit integral:

the values

qp, =2, hx, =w/8, (6.16)

f d P(g gi) f dg+(Q&Q (Q))
o

'
o Q'(Q)

(6.5) (6.17)

A =8Ad(A) —1,
where

(6.6)

Making use of this relation, the SC condition (5.7) may be
formulated as

(6.18)

(6.19)

For o, &)a, the n dependence may be approximated by
1

qp =, Ax =4m.a,2

32K
1

d ( A ) =a ( A) f 'dq q'-""(1—
q )

0
(6.7)

1 1

8 768'
(6.20)

The complete determination of the self-consistent instan-
tons requires the calculations of the two integrals on the
RHS of (6.4) and (6.7) and the solution of SC condition
(6.6). Both integrals involve binomial expressions, and
because of the integer nature of n, they can be expressed
in terms of elementary functions only for n = 1 and 2.

B. Model II

For n =2 the algebraic integral in (6.4) may be turned
into an integral of a rational function by use of the substi-
tution

' 1/4

A. Model I t =t(q)=, —1
1

(6.21)

Taking into account (6.1) and (6.2), we readily obtain
the instanton solution for n = 1:

The inverse of the instanton solution Q =Q(r), which
here is independent of A, then follows as

qp
q(r) =qo cosh —r

&2a
(6.8) ( 3a )1/4

23/2
t V2t+1-

ln
2t2+&2t+1

q, =&2A (6.9)

where the amplitude qp is related to the parameter A by &2t+2arctan +2mB(t —1)
1 —t

(6.22)

qo =qo(a) =+2a/a, (1—Q 1 —a, /a), (6.10)

which is real only for couplings larger than the critical
value

CXc 16
(6.1 1)

Having arrived at an analytic expression for the instanton
solution, all quantities of interest can be calculated ex-
plicitly. For the norm and potential we obtain

D [q]=(8a)' qo,

)
1/2

V[q]= —(2a)'/ qo+4aqo —
qo .

(6.12}

(6.13}

Making use of this relation, the SC condition becomes a
quadratic equation for qp. Keeping only the solution
with the lowest potential, we obtain the amplitude as a
function of the coupling

where t =t (Q) and B(t) is the step function.
We observe that Q (r) vanishes for r ~ ro, where

(3 )1/4
ro = — 'tr .

2
(6.23)

Q (r) = (r ro)—1

4&3a
(6.24)

In the language adopted in the last section, the existence
of a finite value rp means that the "particle" arrives at
the local hill of U(q, A ) at q =0 in a finite "time. "

From (6.6) and (6.7) we obtain the self-consistent value
of A,

A= 1

2rp —1

and hence

(6.25)

For values r S ro the solution Q (r) may be approximated
by

The geometrical structure of the instanton may be rough-
ly characterized by its amplitude qo=qo(a) given by
(6.10) and by its half-width

qp=2A = 2
&2m. ( 3a ) '/ —1

(6.26)

~x = drrq r
0

drq r
0

(6.14)
The amplitude qp has to be real, and hence the instantons
exist only for a & a„where

for which we obtain
1/2

1
CX

12~4
(6.27)

nAx=
qp 2

(6.15)

At the critical coupling a„the various quantities take

Because of the comphcated form of the instanton solu-
tion, we approximate its half-width simply by rp/2; i.e.,
we set
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(6.28)

In contrast, the various terms of the potential V may easi-
ly be calculated by use of relation (6.5), and we arrive at
the simple expression

v[qj= —
—,
' —

—,', qo . (6.29)

From (6.13) and (6.29) we see explicitly that in one di-
mension the potential of the self-consistent instantons of
models I and II is lower than that of the dissipative state
( v[qj (—

—,').

VII. GROUND STATES
OF THE DIFFUSIVE HAKEN MODEL

IN ONE AND T%'0 DIMENSIONS

Because of damping, an investigation of instantons in
dimensions d &1 requires a numerical analysis. It is
greatly simplified by use of scaling laws which relate self-
consistent instantons and other quantities of interest for
arbitrary couplings a to corresponding quantities for,
say, a= 1 (for details see Appendix C). Combining the
calculations for d =2 with the analytical results derived
so far and supplementing them with simulations of
discrete versions of models I and II for dimensions d =1
and 2, we finally are in the position to discuss in detail
the ground-state properties of these models in low dimen-
sions. The results give insight into the similarities and
dissimilarities of both models; they allow comparison of
discrete and continuous versions and, in latter cases, a
judgment of the accuracy of variational calculations
based on a Gaussian approximation.

Figures 4(a) —4(c) show characteristic quantities of
ground states (amplitude, half-width, potential) of both
models for d =1 as functions of the coupling cz. %e ob-
serve that the discrete models show at a =0 a continuous
transition from strictly localized to delocalized ground
states, which for a~ ac seemingly tend to the dissipative
state. This approach is much more rapid for model I
than for model II ~ This behavior suggests the interpreta-
tion that for given a value the nonstandard diffusive in-
teraction has a much less delocalizing effect than the
standard one.

The same behavior is reflected by the ground states of
the field theories. The differences in the properties of the
continuous and discrete versions present for weak cou-
plings diminish with increasing coupling. This is in com-
plete agreement with our expectations because for large
values of a the ground states show only weak spatial vari-
ations.

The most striking result is that, except for very weak
couplings, the properties of the simple Gaussian approxi-
mation not only agree astonishingly well with those of the
exact ground states (instantons) of the field theories, but
also with those of the discrete models.

Turning to two dimensions, we recall that the only
available analytical result in the form of a Gaussian ap-
proximation did not definitely decide on the nature of the

ground state of continuous model I. Figure 5 shows that
the potential of the lowest-order instanton stays, in fact,
always above that of the dissipative state. Since higher-
order instantons have even higher potentials, we con-
clude that the dissipative state actually is the ground
state for all values of a&0. Simulations of the discrete
version of model I lead to the same conclusion. Hence
model I undergoes for d =2 a singular transition at o.=0
in the sense that the presence of an arbitrarily weak stan-
dard diffusive interaction delocalizes the ground states of
the Haken model completely. Taking the analytical re-
sults of the variational calculation as sufficient evidence,
we may extend this behavior, at least to dimensions d =4.

In contrast, Figs. 6(a) —6(c) demonstrate that ground
states of model II behave in two dimensions very similar
to those of models I and II in one dimension. The results
of the Gaussian approximation suggests that the non-
standard diffusive interaction gives rise to a continuous
transition to delocalized states in all dimensions.

Turning to the dynamical behavior of the discrete
models I and II, we present results of simulations in Figs.
7 and 8. They show the final states evolving from given
one- and two-dimensional initial states. In agreement

40 i s I

30—

20—
CO

O
CL

10— ipative

0 .=
I

0.0 0.2
» i ) i ~ i & I i » i I » s i l )» i I i i i i I i i i i I i

0.60.4 0.8 1.0

FIG. 5. Potential V of the ground states of model I in two di-

mensions as a function of the di6'usive interaction: A compar-
ison of simulations of the discrete model (d) with the Gaussian

approximation (g), the lowest-order instanton (i), and the dissi-
pative state.
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FIG. 7. Robust dynamical competition in one dimension:
Neuron activity for (a) initial state, (b) final state of model I, and

(c) final state of model II. N =40.

with the foregoing discussion, the final state of model I
for d =2 is the flat dissipative state [Fig. 8(b}]. In all oth-
er cases the final states are bubblelike excitations (ground
states) usually centered at the position of the maximal ini-

tial excitation, thus demonstrating that here the models
implement the winner-take-all function in a robust way.
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VIII. CONCLUSION

In the search for a robust competitive network, we
have studied generalized versions of the Haken model
which result by adding a diffusive interaction of variable
order to its defining potential. The inclusion of such a
short-range interaction brings into play the aspects of to-
pology and dimension and thus enriches the structure of
the model. We have obtained a comprehensive picture of
its ground-state properties and their dependence on the
various parameters by combining the results of numerical
simulations and of analytic investigations based on
methods borrowed from field theory. In particular, it
turned out that the ground-state properties can be deter-

FIG. 8. Simulation of the dynamics in two dimensions:
N =40X40. Neuron activity q;~, 1 ~ i,j ~ 40, for (a) initial state,
(b) final state of model I, and (c) final state of model II.

mined astonishingly well by a simple variational calcula-
tion based on Gaussian test functions. As a major result,
we found that models which implement robust competi-
tion in varying dimensions can be constructed along the
lines pursued in this paper only by use of nonstandard
diffusive interactions.
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d —1 dp'+ p = — U(q, A} .
r dq

The energy may be written as

2n —1 r2nE(r}=a q' "+U(q, A)
2n

and

(A12)

(A13)

APPENDIX A: HAMILTONIAN FORMULATION

According to (5.8) and (5.9), the action is of the form

S[q]=yd J dr r 'L(q, q'), (Al)

L(q, q')= q' "—U(q, A) .
2n

(A2)

Note that (Al) differs from the standard form used in
mechanics by the "time" function r" '. We could avoid
this deviation by incorporating this factor in a definition
of the Lagrangian, which then would depend explicitly
on time for d ) 1. However, such a formulation would
give rise to rather clumsy expressions for conjugate mo-
menta. We prefer the form (Al), which explicitly keeps
track of the damping in the basic equations.

The Euler-Lagrange equation for (A 1) reads

=0 for d =1
E'(r)= —a q (0 for d &2 . (A14)

In agreement with our intuition about the effects of
damping, the energy is a monotonically decreasing func-
tion of the time for d & 2. We observe, however, that for
large times the damping effects become arbitrarily small
and can be considered as a perturbation to a conservative
system.

We add the following remarks. A partial initial condi-
tion for an instanton solution to (Al 1) and (A12) consists
in setting p(0}=0. Then, for r =0, both, the numerator
and denominator in the second term on the LHS of (A12)
vanish and it is convenient to switch for small values of r,
say, 0(r (1, to a new time variable u =lnr. When set-
ting

(8 L)+ (3 L =(3 L .
dr r

(A3)

When defining conjugate momentum and the Hamiltoni-
an in the usual way,

q(r)= f (u),

p(r) =g (u),
we obtain the nonsingular differential equations

(A15)

p =dq L

H (q,p ) =pq' L(q, q'), —
(A4)

(A5)

q'=BAH, (A6)

where q'=q'(q, p), the modified Hamilton equations of
motion follow as

f ' —e u(g /«) ) /(2n —) )

g'+(d —1)g = —e" U(f, A) .~ d
d

(A16)

They form a convenient starting point for numerical in-
tegration, e.g., by use of a Runge-Kutta method.

d —1p+ p=-a H. (A7) APPENDIX B: ASYMPTOTIC BEHAVIOR

For d =1 the damping term on the LHS of (A7) is absent
and the energy

& =&(q(r),p(r)) (A8)

is a constant of motion.
For d ) 1 the energy changes along a trajectory ac-

cording to

d —1E'(r) = — pq' .
r

(A9)

For the Lagrangian (A2) the Euler-Lagrange equation
reads

The Euler-Lagrange equation (5.3) cannot be solved in
closed form for dimensions d ) 1. Nevertheless, we may
derive the correct asymptotic behavior of the solutions by
treating the damping for large values of r as an adiabatic
perturbation. The resulting information is sufficient to
decide on the normalizability of the solutions. In particu-
lar, we are interested in the norm of the solutions for
A ~ 0. By use of a scaling argument, it suffices to confine
our considerations to the two cases A =0 and —1 for a
typical coupling, say, a = 1.

The starting point of the perturbation method consists
of the periodic solutions of the undamped system for
d = 1. They obey the differential equation

d —1, daq' " " (2n —1}q"+ q' = — U(q, A) .
r dq

2n —1 r2nq' "+U(q, A}=E,
2n

(B1)

(A10) where

The corresponding equations of motion in phase space
take the form

U(q, 0)=—,'q (B2)

q
i

(p /+ )
1 /( 2'n —1 ) (Al 1)

For sufficiently small amplitudes we may approximate
U(q, —1) by the quadratic term
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U(q, —1)= —,'q (83)
dQ Q q) Q (812)

The value of the energy E fixes the amplitude of a specific
solution q (r, E), which is unique up to the shift r ~r+ ro
and up to the symmetry r —+ —r. By use of a scaling an-
satz, we may obtain from (Bl) the E dependence of
q(r, E) Fo. r A =0 and —1 we find

'E 1/4q (E(2 n)/4n
) g 0 (84}

E ) /2 (E( ( —n)/2n
7 (85)

d —1E'(r)= — q' ",
r

(86)

which will show a long-time trend, onto which is super-
imposed a small modulation fluctuating at the time scale
of a local period. The basic idea for an adiabatic approxi-
mation consists in replacing E'(r) by its average value
during a local period R (E),

where q, (r)=q(r, E =1}are the respective solutions for
the specific energy E = 1.

For systems with dimensions d ~2, the equation of
motion contains a damping term, which becomes arbi-
trarily small for large times r, and the energy will be a
slowly decreasing function tending to zero for r ~ 00. In
this limit we approximate the damped solutions by ex-
pressions (84) and (85), respectively, where now
E =E(r).

The major task then consists of a determination of the
time dependence of the energy E. For this purpose we
consider its decay rate

where

(d —1)(2—n)
for A =0

Sn —2

(d —1)(1—n)
for A= —1,

3n 1

(813)

(d —1)2n
P(5n —2)
0 for A= —1, (814)

APPENDIX C: SCALING LAWS

The Euler-Lagrange equations (5.3) and (5.4) contain
two parameters a and A, where the latter is to be deter-
mined from the SC conditions (5.5) and (5.6). By chang-
ing the scale of q and r, we may express the solutions for
arbitrary couplings by those of a specific value a, say,
a =1. Denoting all quantities referring to a=1 by an in-
dex, we can write

q(r)=Aq, (pr), (Cl)

and where q, (r) are the respective undamped periodic
solutions for E =1. The norm D diverges whenever
A, & —1. For A = —1 this is the case for all n and all
d ~2. For A =0 we find k ~0 for n =1 and 2 ~d ~4 as
well as for n =2 and d ~ 2.

d —1 e(E)
r R(E) ' (87) where q((r) is a self-consistent solution for a= l. From

this ansatz follow the relations
where

e (E)=I dp[q'(p, E) j ", (8&)

and where the undamped solutions q(r, E) are used for
the calculation of the quantities e (E}and R (E).

In both cases A =0 and —1, we end up with a
differential equation for E (r):

a/211 4 2)i —
1

A=A, A) .

Taking into account the SC condition, we obtain

A, =[2D((p —1)+I]

(C2)

(C3)

(C4)

where

K

r

(d —1)4n
5n —2

for 3 =0

(89)
where we have used that D scales according to

D=A, p "D& .

When writing the potential in the form

V =K —
—,'D +—,'D

(C5)

(C6)

(d —1)2n
3n —1

for 3=—1.

E(r)-r

Equation (89) is readily integrated:

(810)

(811)

where

E= fdx a (Vq) "——q
4

2n 4

it follows by use of (C2) that

K=A. p Ki

{C7)

(C8)

Inserting this expression in (84}and (85), respectively, we
arrive at the asymptotic form of the damped solutions
q(r)=q(r, E(r)) for large values of r. The contribution
of the asymptotic part to the norm D may be cast into the
form

hx =)M '(bx ), ,

and, by definition, we have for the amplitude

(C9)

Furthermore, the half-width of a solution scales accord-
ing to
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qo =A,q& (C10) We note that (C2) takes a particularly simple form for
n =2 (model II). Here we find

Given the quantities D „K„and(b,x ), for a = 1, we may

calculate all quantities of interest for other values of the
coupling a. The scale parameters A,,p follow from Eqs.
(C2) and (C4). A, =[2(a —1)D/+I]

(Cl 1)

(C12)
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