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Linear response of the human erythrocyte to mechanical stress

Mark A. Peterson
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(Received 17 October 1991)

The human erythrocyte readily changes its shape in response to mechanical stress. Geometrical
methods are used to analyze this effect in three experiments: thermal shape fluctuation (flicker), electro-
deformation, and tank treading, which is the circulation of the membrane around the interior fluid in a
shear flow. Comparison with existing data indicates that both flicker and tank treading represent the
motion of a fluid membrane. At the same time it is a solid membrane (i.e., possessing a shear modulus)
that resists large-scale shape change. This combination of fluid and solid membrane properties is in

some ways paradoxical.

PACS number(s): 87.22.Bt, 87.45.Bp

I. INTRODUCTION

The mechanical properties of the red-blood-cell
(erythrocyte) membrane have been investigated intensive-
ly for many years [1,2]. On the basis of the
micropipette-aspiration method of Evans, Hochmuth,
and others, the membrane has been assigned a shear
modulus p =6 —9 X 10 N/m, a bending modulus
k, =2 X 10 ' J, and a two-dimensional viscosity

gM =0.6—1.2X 10 N s/m. It is regarded variously as a
viscoelastic solid [1],or a two-dimensional gel [3].

More recently there has been considerable theoretical
interest in the dynamics of membranes, including also
artificial lipid vesicles and tethered two-dimensional (2D)
polymers [4,5]. A key role in these investigations is
played by the entropy of shape fluctuations [6], which can
make an appreciable contribution to the membrane free
energy. These entropic effects have been observed in ex-
periments on erythrocytes [7]. The erythrocyte mem-
brane and modifications of it are natural model systems
to test these theories.

As a material the membrane is a composite of lipid,
protein, and other macromolecules. The original fluid
mosaic model of Singer and Nicolson [8] emphasized the
fluidity of the membrane, identifying the fluid lipid bi-
layer as the matrix in which the dissolved (integral) mem-
brane proteins move. The experimental picture that has
emerged, however, gives considerable importance to pro-
teins which are not integral, notably the protein spectrin
that forms a network on the interior surface of the
erythrocyte membrane called the cytoskeleton [9]. The
interaction of the lipid component and the cytoskeleton is
still not well understood.

Other techniques besides micropipette aspiration have
been used to investigate the mechanical properties of the
erythrocyte membrane, for example quantitative studies
of erythrocyte flicker [10,11], deformation in a high-
frequency electric field [12], and deformation in a shear
flow [13,14]. These experiments are, in principle, simpler
than micropipette aspiration in that the local strains can
be kept small so that linear theory ought to apply. (A
nonlinear phenomenological stress-strain relationship has

always been used in interpreting the micropipette experi-
ments). In these linear experiments there is also no
suppression of modes, with a corresponding entropic con-
tribution to the change in free energy, as may happen
when the membrane adheres to the glass wall of a micro-
pipette. Thus the interpretation of these experiments is,
in principle, more straightforward. In practice, however,
it has not been possible to make meaningful comparisons
of these experiments with each other or with the micropi-
pette experiments because of large theoretical uncertain-
ties in the analysis. These uncertainties arise when the
geometry of the membrane shape is not handled accurate-
ly.

The natural language to describe smooth surfaces is
differential geometry. More than a language, difFerential
geometry provides methods of computation, such as the
Lie derivative, that are extremely efficient. These
methods are not as well known as they might be because
it is usually possible in physical models to consider only
the simplest geometries —planes, spheres, cylinders, or at
worst ellipsoids —for which general methods are un-
necessary. The erythrocyte response to stress appears to
be an exceptional problem in actually requiring
differential geometry for an adequate treatment. Previ-
ous analyses have always been recognized as approxi-
mate, and it is not possible to assess the meaning of the
various erythrocyte experiments as long as this uncertain-
ty persists. This means one must apply the methods of
differential geometry.

In this paper I deal with the geometric problems that
arise in the analysis of several experiments essentially
without approximation. In this way a large amount of
data, which has been of only semiquantitative significance
until now, assumes quantitative importance, and can be
compared with the micropipette data. One sees some-
thing that does not show up in the micropipette experi-
ments, namely clear evidence for a fluid component in the
erythrocyte membrane. One also finds, in the linear ex-
periments, a shear modulus for the solid component
which is almost an order of magnitude smaller than is
seen with the micropipette technique. The reason for this
discrepancy is not clear, but the discrepancy is real.
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I turn first to the geometrical methods, in Sec. II—IV
and later VII. These sections mainly set up notation and
make explicit the assumptions which go into the compu-
tations. They assume some familiarity with geometry.
For the classical geometry of surfaces the book of
Willmore [15] is a good reference. For the Lie derivative,
Hodge star operator, and differential forms, the book of
Schutz [16] is excellent. Flicker amplitudes are analyzed
in Sec. V, electrodeformation in Sec. VI, tank treading,
which is the circulation of the membrane around the inte-
rior fluid in a shear flow in Sec. VIII, and hydrodynamic
flicker decay modes in Sec. IX. Section X is a summary
and conclusion. Additional details of the computational
methods are in the appendixes.

II. GEOMETRY

g =diag(l, y )

L =diag(c„c2y ) .

Here

de
ci =

ds

and

(4)

c2
cose

(6)

are the two principal curvatures. We recall the
definitions of mean curvature H,

and the second fundamental form L of the surface has the
form

The erythrocyte shape is a surface of revolution M
with reflection symmetry in the equatorial plane. Thus it
can be generated by a curve

C(s) = [x (s),y (s) ]

H =Tr(L)/2=(ci+cz)/2,

and Gauss curvature E,

E =det(L)/det(g) =c,cz .

(7)

G =diag[1, (1+cin),y (1+c2n) ] . (2)

Restricting to M, the first fundamental form g has the
form
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FIG. 1. Generating curve C for model cell shape, found by
minimizing curvature energy. The cell shape corresponds to a
RBC at 290 mOs with area 135 pm and cell volume 96 pm,
cell I in the computation.

in the first quadrant of the x-y plane, using the x axis as a
rotation axis, and the y-z plane as an equatorial plane, as
shown in Fig. 1. The pair (s, P) furnishes coordinates on
M, where s is the arclength along C and 1(| is the azimu-
thal angle. s is scaled so that C has length m/2. For any
given cell this scaling fixes a unit of length which I call R.
R is approximately, but not exactly, the radius the cell
would have if it were swollen to a sphere with the same
area. (s, P) on M are analogous to spherical polar coordi-
nates on the sphere, and the spherical harmonics
Yi (s, 1() are a convenient, although not orthogonal, basis
in L (M). This basis restricts to give bases in the sub-
spaces of definite symmetry under reflection, inversion,
and rotation about the symmetry axis.

Distance from M along the local outer normal defines a
third coordinate n, so that (n, s, g) is a coordinate system
in a tubular neighborhood of M. Associated to these
coordinates there are bases in the tangent and cotangent
bundles to R, so that the Euclidean metric tensor G has
the form

Other useful geometric information, including explicit
formulas for covariant differentiation on M, the Hodge
star operator (e ), the two-dimensional shear strain ten-
sor S of a vector field X, and transformation to the Carte-
sian basis, are given in Appendix A.

III. VECTOR FIELDS ON M AND CONSTRAINTS

N "(s,g)=g Nt~m Yim(s—, g),
1

(10)

where the numbers NI+ are nonzero only if l is even, and
the numbers NI are nonzero only if l is odd, etc.

These numbers cannot be chosen arbitrarily, however,
because of constraints. In the experiments which I con-
sider the stresses on the membrane are very small. As a
consequence, the volume V and area A of the cell do not
change appreciably, giving two integral constraints. It is
an attractive hypothesis that also (H ), the average of H
over M, does not change, reflecting the incompressibility
of each monolayer in the lipid bilayer membrane sepa-
rately [17]. This possibility, which is a third integral con-
straint, will be called the "bilayer coupling hypothesis"
(BCH). These integral constraints affect only N(so, g),
and require

f No dA =0 (V=const), (11)

No HdA =0 (A =const), (12)

We can specify a motion of the membrane M, in first
order, by specifying a vector field X on M, or equivalently
a covector field (differential 1-form) X. The latter can al-
ways be written as

X=Ndn +da+ edP,
where N, a, and p are functions of (s, g). The projection
of these functions onto spaces of definite rotation and in-
version symmetry will be written as N*, h +—

, and P
Then there are explicit expansions
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and, if (H ) is constant,

f N() KdA =0 (BCH) . (13)

In addition to the integral constraints, there is a local
constraint, local incompressibility of M, which requires

Tr(S)=0, (14)

where S is the two-dimensional strain of X. Using the
representation Eq. (9) and the formulas of Appendix A
this is

Aa =2NH, (15)

(X, Y)=f X YdA .
M

(16)

With respect to this inner product one can construct
orthonormal bases of vector fields which obey all con-
straints, as well as orthonormal bases on the orthogonal
complement of this space. Explicit formulas are in Ap-
pendix B.

where 6 is the Laplace-Beltrami operator of M. Because
of Eq. (15) each a —+ is a linear functional of the corre-
sponding N . An explicit formula is given in Appendix
B.

Let X and Y be vector fields on M. A useful inner
product is

An exception is the first term, in case (H) really does
change (i.e., in case the BCH does not hold). In that case
one should regard that term as an energy, and co as a
kind of elastic modulus [20]. Of course if A and V were
not constant, the other terms would represent energies
too.

It should be pointed out that there are stationary
shapes of E~ which are not observed for erythrocytes,
but which are seen in artificial lipid vesicles [21].
Perhaps the cytoskeleton inhibits certain shape transi-
tions (although interestingly not the stomatocyte transi-
tion).

Two model cells used in the computations for this pa-
per are described in Appendix C.

To describe linear response of these cells one should
expand the total energy to second order in a deformation

X =pa, X") (21)

E„,(X+—)=E„,(0)+—,
' pa, E 'ja + (22)

about the minimum, subject to the constraints. The
first-order term vanishes, by stationarity, and the
second-order term is a quadratic form in deformation
coordinates, Hermitian with respect to the inner product
Eq. (16). It is enough to do this within each symmetry
class:

IV. ENERGIES

Much work on the elastic energy of the erythrocyte
membrane indicates that both bending energy and shear
energy are important in deformations at fixed area [1].
There is remarkable agreement between the observed
equilibrium shapes of the erythrocyte and the stationary
points of the bending energy

The eigenvectors a ' ' of this quadratic form satisfy

~ E+ij (k) g+ (k)aj —ka,
J

and determine the normal modes

U+(k)( q) —~ (k)x+(j)
m ~ ~ j m

J

23)

(24)

Es= f (2H) dA,
2 M

(17)

Efpf E~ +E~ (19)

subject to constraints, one may introduce Lagrangian
multiplier terms

—2cok, A (H ) +cr A —(bp) V (20)

but these are mathematical artifacts, not real energies.

where k, is the bending modulus [18,19,17]. The com-
monly seen stomatocyte shape, which has large principal
curvatures but small mean curvature, and which does
occur as a stationary shape of Es [17],is particularly sug-
gestive of the importance of the mean curvature. Ap-
parently the shear energy can relax over time, and does
not contribute to determining the equilibrium shape.
Over short times, however, one expects from standard ar-
guments of elasticity theory that a deformation will cost
shear energy of the form

E~ =p f S,,S"dA, (18)

where p is the two-dimensional shear modulus.
In minimizing the total energy

of the total energy. We may assume the [U'"'] have
norm R in the sense of Eq. (16) where R is the unit of
length. The eigenvalues A, k are generalized Hooke's law
constants. Explicit formulas for E+—'J are given in Appen-
dix D. It is noteworthy that all rigid motions of M
emerge as null vectors of this procedure, a good compu-
tational check.

One also finds that not all stationary shapes of E„,are
infinitesimally stable. Since long-term stability is ap-
parently determined by Ez alone, it is enough to consider
the case p=O. If co is too positive, an eigenvalue be-
comes negative, which corresponds to an unstable mode
which is approximately Y22. If co is too negative, an ei-
genvalue becomes negative, which corresponds to an un-
stable mode that is approximately Y3o These
infinitesimal instabilities occur whether the BCH is true
or not. Observed instabilities of the red-blood-cell shape
(leading to sickle cells on the one hand and stomatocytes
on the other) may be manifestations of these instabilities.
The situation is illustrated in Fig. 2. Even for shapes that
are infinitesimally stable, these two modes are soft if
p=O, a result that has observable consequences in flicker
(thermal shape fiuctuations).

If p is large, in the sense that the shear energy dom-
inates the deformation energy, the character of the nor-
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FIG. 2. The normal discocytic equilibrium shape of the
erythrocyte is infinitesimally stable only in the indicated part of
parameter space. The two model cells used for computations in
this paper are indicated. Cell I is shown in Fig. 1.

mal modes is quite different. They do not resemble
spherical harmonics, and the softest mode (apart from
the zero-energy Euclidean motions) is an m =1 mode
that is even in inversion (odd in equatorial plane
reflection). It is possible that this mode may be seen in
tank-treading experiments (see Fig. 16).

V. FLICKER AMPLITUDES

The mean-square displacement of M in thermal shape
fluctuations is, by the equipartition theorem,

(l&x(s)l') =&,„, lU-'"'(s, g)l',
kgT + k 2

m, k
(25)

for which the equipartition theorem predicts

k T
(l6d(s)l ) =4 g, „) lR'-U+'"'(s, Q)l sin (6(s)) .

m, k m

(27)

where the sum goes over both even and odd modes, but
omits the rigid motions. What is usually observed is the
fluctuation in thickness along the direction of the rota-
tion axis, namely

d (s, 1()=2x (s)+ [X(s,g) —X(n.—s, g)]sin(8(s)),

(26)

FIG. 3. Thickness fluctuation profile for various values of the
ratio pR'/k„ indicated next to each curve. The effect of in-
creasing this ratio is to move the peak in thickness fluctuations
toward the center of the cell (y =0). For p =0 (fluid membrane)
the peak is near the rim of the cell.

low profile in the center, for all values of p, is a result of
the global constraints, which essentially remove the
lowest two m =0 modes. The BCH, which removes a
third mode, makes a noticeable difference, as shown in
Fig. 4.

Recent data indicate that the flicker amplitude follows
the p=O profile, and respects the BCH [22]. This is a
surprise, because other experiments, including the micro-
pipette experiments, certainly indicate a large value for p.
On the other hand, a large value for JM would make flicker
amplitudes unobservably small in any case. Flicker
seems to be the motion of the fluid bilayer component, in
which the cytoskeleton, with its shear modulus, somehow
is not seen.

The recent measured values of flicker amplitudes are
considerably smaller than what has been reported in the
past, and the implied value for the bending modulus k, is
larger. It seems quite certain that the root-mean-square

0.03

0,025

0.02

0.015

V

0.01

Here the superscript + means "even" in equatorial
reflection, not inversion. The Euclidean rigid modes are
of course omitted from the sum.

Figure 3 shows ( l5d (s) l ) vs y (s) for several values of
p. All curves are normalized to 1 at s =0 (center of the
cell). The influence of p, on the normal modes is clearly
visible. Increasing p suppresses the soft Y22 peak, which
is responsible for most of the p=0 profile. The relatively

0.005
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I

0.2 0.4
I

0.6 0.8
I

1.2 14

FIG. 4. Thickness fluctuations profiles with and without the
bilayer coupling hypothesis (BCH). The BCH constraint essen-
tially removes one M =0 fluctuation mode.
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FIG. 5. The predicted root-mean-square thickness-
fluctuation amplitude at T =293 K in the center of the erythro-
cyte is shown as a function of the bending modulus k, both with
and without the BCH. 4(X, Y,Z)= Y+P(X, Y,Z),

where

(28)

even in this case [26].
I adopt the following algorithm: (i) Solve Maxwell's

equations (really just the Laplace equation, in the sim-
plest case) outside and inside the cell, subject to boundary
conditions, for fixed shape (initially the equilibrium
shape); (ii) use the solution to compute the stress on the
cell; and (iii) use the normal modes [ U'"'] to determine
the shape response of the cell to this stress.

In principle, one can now repeat these steps, going
back to step (i) with the new shape, finding the (small)
correction to the fields, the stress, etc. , and in this way
develop a power-series solution, which would certainly
converge for small applied field. If one stops at step (iii),
though, one has already correctly computed the linear
term.

The geometry of the experiment is shown in Fig. 6.
The electric field outside the cell is determined by a po-
tential

amplitude in the center must be much smaller than the
value obtained by Brochard and Lennon [10] (about 0.08
pm) if the profile follows Fig. 4, because the amplitude
near the rim of the cell would be unacceptably large, easi-

ly visible as a fluctuating cell outline in the microscope.
The amplitude seems to be more nearly 0.03 pm in the
center of the cell, giving a value for the bending modulus

k, of 2-3X10 ' J, as one sees in Fig. 5. This value for
k, is typical of artificial lipid bilayers [23,24,25].

If the rms thickness fluctuation in the center is 0.03
pm, the rms normal fluctuation amplitude at the rim of
the cell is about 0.11 JMm if the BCH is true and 0.06 pm
if co is constant. The accompanying (dimensionless)
shear strain is highest at the rim, about 4% with the
BCH, and 2% if co is constant. This shear strain appears
not to cost elastic energy. To repeat, flicker looks like
the motion of a fluid membrane. It is not plausible that
the fluid moves independently of the cytoskeleton, since
the amplitude of the normal motion is quite large. Alter-
natively the cytoskeleton may be loose somehow, so that
small strains, up to a few percent, create no stress.

VI. ELECTRODEFORMATION

An erythrocyte in a high-frequency electric field (1
MHz) of around 30000 V/m is appreciably stretched
[12]. It is possible to suspend the erythrocyte in a sugar
solution of low conductivity, so that the problem is ap-
proximately the electrostatics problem of a perfect con-
ductor (the cell) in a dielectric (the suspending medium).
The boundary conditions are particularly simple in this
case: M is an equipotential surface. The method of this
section can be extended to the case of finite conductivity
ratio (cytoplasm to suspending medium), which changes
the boundary condition slightly. However, Grebe has
emphasized that the membrane contains mobile, charged
molecular species, and so ought to be considered a two-

dimensional conductor, and an equipotential surface,

V /=0 (outside M),

P ~~ = —y (s)cos(P) = —Re[y (s)e'~] .
(29)

To solve Eq. (29) in a practical sense one needs a fiexible
family of functions harmonic outside M with m = 1 sym-
metry. This is provided by the potential of charged rings
in the equatorial plane, centered on the origin, having ra-
dius a less than the radius of the cell, and with charge
distribution e '&:

((},(s,0)=f e'~[x +y 2ay c—os(13)+a ]
'~ dP .

0

(30)

X bk0. (s) = —y (s)
k

(31)

The coefficients bk determine the charges on the rings,
which give the potential P outside M. In practice it is

enough to tabulate P, for ten or so uniformly spaced

FIG. 6. An erythrocyte in an electric field polarizes and is

distorted. (Electrodes may actually be many cell diameters

apart. )

In Eq. (30) I have computed this function on M at /=0
(i.e., on the curve C), which is all one really needs. In
group-theoretical language one is projecting the m =1
representation from the reducible representation of a
point charge located a distance a off center.

Now I find coefficients bk corresponding to ring radii

ak such that
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6(4 V=0,
dP+q+d +dV=O .

(39)

Here g is the viscosity of the fluid. The three-
dirnensional shear strain S of a fiow V is [29]

S =
—,'L~G, (40)

where X v means the Lie derivative with respect to the
flow V, and 6 is the metric tensor. Elementary flows
which are useful in problems of this type are familiar
from textbooks.

To exploit the symmetry of this problem I project flows
with the same symmetry as the membrane normal modes.
A compact way to express the rotation symmetry of the
normal modes is

FIG. 10. Predicted shape for erythrocyte in an inhomogene-
ous field near a razor edge if pR =1000k, . In the contour plot,
the electrode is on the right.

L~ U =imU (41)

where R is the vector field which generates rigid rotations
about the x axis. Thus the symmetric flows are

1-MHz field with amplitude of 50 V produces a lengthen-
ing of the semimajor axis hy = 1.8p, and that the
lengthening is linear in voltage squared, as expected. Us-
ing e=80E'0 for the dielectric property of the suspending
solution, one finds the value 0.049X10' J ' for the com-
bination of experimental quantities graphed in Fig. 11. If
k, is 2 —3X10 ' J, as indicated by the flicker ampli-
tudes, p must be about 1 X 10 N/m, which is much less
than the standard value 6—9 X 10 N/m determined in
micropipette aspiration [2].

VII. FLOWS

(42)

X~ V—=imV (43)

The corresponding shear strain tensor S has the same be-
havior, because

RE~ S—X„X„6

where P is the reflection operator. This formula is a kind
of analog of Eq. (30). More explicit versions of this for-
mula are in Appendix E.

By construction

Analysis of tank treading and flicker relaxation modes
requires matching of the membrane motion to Stokes
flows inside and outside M. For this purpose one needs
fiows (vector fields) V or equivalently 1-forms V and cor-
responding (scalar) pressure fields P satisfying

0.08 .

= (X„Lv
—X vX~ )6

=&(z, v)G

vG

=im& vG

=ZimS . (44)
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0.06—
CO

0.05—

A

0.03—4)

0.02—

0.01—

4

~ss~\O~ ~%~mw~~

This means that in the (n, s, l() coordinate basis, the
effect of rotation is simply to multiply each component of
V and S by e™~.Since all vector fields and tensor fields
have been constructed to have the same behavior, it is
enough in linear boundary value problems to match them
along the curve C within each symmetry class, as we did
in Eqs. (33) and (34).

VIII. TANK TREADING

0-—
0

I

8
I

12 16 20

k (10 J)
24 28 32

FIG. 11. Predicted elongation in the electric field E for vari-
ous values of the elastic constants. 2' is the elongation of the
diameter, and e=80e0 is the dielectric permittivity of water.
The quantity on the abscissa is a purely experimental number
and has a value about 0.05 X 10' J

An erythrocyte in a shear flow takes up a stationary
orientation with respect to the flow, and the membrane
"tank treads" around the interior cytoplasm at a definite
frequency v (proportional to the external shear rate y).
It also elongates. It is necessary for the external viscosity
to be sufficiently large —otherwise the cell tumbles in the
flow instead of smoothly tank treading [14]. The situa-
tion is illustrated in Fig. 12.
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FIG. 12. Geometry of tank treading. The cell tilts at a sta-
tionary angle y in the shear flow V.

I adopt essentially the same approach as in electrode-
formation.

(a) Solve for Stokes flows outside and inside M, which
match the purely tangential constrained flow in M, such
that tangential stresses also balance, and such that at
large distances from the erythrocyte one has uniform pla-
nar shear flow. Do this for the equilibrium shape orient-
ed at angle g to the flow.

(b) Use the solution from (i) to determine the net torque
on the cell, and repeat step (i), changing y, until the net
torque is zero, if this is possible. (For some choices of
viscosities there is no such steady-state solution. )

(c) Use the normal stress from the steady-state solution
and the normal modes of the membrane to find the new
shape.

In principle one could go back to step (i) with the per-
turbed shape, etc. , and find a power-series solution in
powers of the shear rate, but I stop at the linear term.

The experimental existence of smooth tank treading,
even at quite low shear rate, means that the relatively
large membrane shear modulus p is not important in step
(i). The motion of the "dimple" around the cell would
produce an oscillatory tangential stress for which there is
no observational evidence once tank treading begins. I

do include the membrane shear viscosity AIM in step (i),
however. Details of the solution are in Appendix F.

In agreement with analytical solutions for ellipsoidal
cells [30], I find a bifurcation from tumbling to tank
treading as the viscosity g,„, of the external medium in-
creases. The threshold viscosity depends on the cell
volume, g;„, and gM. The behavior of the stationary an-

gle y is shown in Fig. 13 for a normal cell (cell I), and a
somewhat swollen cell (cell II). The stationary angle is
zero at threshold and increases with g,„,. It is interesting
to notice that in the swollen cell, in which the dimple is
very shallow, the dependence on gM is weak, while in the
normal cell, even a very small gM has a noticeable effect.
This is undoubtedly because of the larger shear strain in
the flow through the deep dimple in the normal shape.
From the observed threshold value of i),„,/rl;„, which is
about 0.8 for normal cells, one can see that

gM=0. 3g;„R . (45)

This is much smaller than the value g~ =50';„R inferred
from shape recovery in all experiments in which the cell
is deformed and then released [2,12]. The simplest inter-
pretation of this surprising result is that one is seeing the
flow of the fluid component only, which has a fairly low
viscosity.

A second effect permits an independent estimate of the
membrane viscosity, and gives the same surprisingly low
value. From the stationary solution one can find the
period P for a point on the center line, and hence the fre-
quency v= I/P, which is of course predicted to be linear
in shear rate y. Figure 14 shows v/y for the same pa-
rameter values as Fig. 13. The more swollen cell has a
higher frequency because it is exposed to higher speed in
the shear flow. Again the normal cell values are quite
sensitive to g~. Values measured by Fischer and
Schmid-Schoenbein, as estimated from their published
graph [14], are indicated, and confirm the value of rliir
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FIG. 13. Stationary angle y for tank treading, as a function
of the viscosities, for two different cell shapes, a normal cell (cell
I), and a somewhat dilated cell (cell II). The experimental value
of g „,at which normal cells begin tank treading is indicated by
an arrow.

FIG. 14. Frequency v/j' for tank treading, as a function of
the viscosities for two different cell shapes. The dots are experi-
mental frequencies estimated from graphs published in Ref.
[13].
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FIG. 15. Ellipticity (L —B)/(L+B) at unit shear rate y in
k din for a normal cell in a medium with viscosity 23tan trea ing or

shape seen in vertical projection in the rheoscope. The experi-
mental value is a out . , ab 0005 as estimated from the graph pub-
lished in Ref. [13].

found above. These two independent determinations of
g~ agree emremarkably. That even a small shear force dis-
rupts tank treading in normal cells further justifies our
claim above that the relatively large shear modulus p
could not play a role in tank treading.

Two puzzles are cleared up by the above analysis. Pre-
vious analysis of tank treading, using a liquid-drop model
[31],led to qualitative agreement with experiment and es-
tablished that the cell interior is fluid. In that analysis,
however, the tank-treading frequency (at fixed shear rate
j') decreases with increasing external viscosity, contrary
to what is observed. It is clear in Fig. 14 that the fre-
quency should increase slightly, as the experiments show.
In addition, the elongation of the cell is observed to be a
universal function not of the naive applied stress g,„,j, as
te iqui-h 1' 'd-drop analysis predicts, but of the combination

,'„, ', where the exponent 1.7 is found empirica y [ ].
The reason for that is that the stationary angle y in-
creases with increasmg rj,„, (see Fig. ).

' . 13&. The elongation
stress which is effectively in the m =2 symmetry class, is

crease in sin2y which is being noticed. The nonlinearity
can be traced back to the zero torque condition, a non-
linear equation for the parameters of the flow. Thus,
even wit ou a e a''

h t d tailed analysis of elongation, one can
rved. A fitsee that there will be an effect of the kind observe .

to the analysis below predicts an exponentent of about 1.4
over the viscosity range used in the experimeriments rather
than 1.7. The experimental data are largely at shear rates

h t full uantita-outside the linear regime, however, so that fu q
tive agreement is not be expected.

In the elongation of the cell it is clear that the solid
component p ays a ro e,t 1 role by the large elastic modulus that
is in ica e ~

' d' t d. Most published data are at shear rates out-
side the linear regime, but in Ref. [14] one can see t e

ll
'

dium of viscosity 23 cP, whic is about
0.005y (where y is in sec '). This cell is a so we

FIG. 16. A side view of the predicted erythrocyte shape in

tank treading.

characterized by the steady-state solution above, so that
the stresses are accurately known. igure 15 h ti ure 15 shows t e
expected ellipticity for various assumptions about the
elastic moduli k, and p. It is clear that p as determined
in this way is the same order of magnitude as that found
in the electrodeformation experiment, 1 X 10 m,
much smaller than the value obtained in micropipette ex-
periments (6-9X 10 N/m).

Using the computed normal stress of the exterior fluid,
and the normal modes of the membrane, I determine the
perturbed shape shown in Fig. 16. The predicted normal
h

' "b t" by the shear flow. This "side view" in
tall .tank treading is not yet accessible experimenta y.

IX. FLICKER RELAXATION MODES

Finding the hydrodynamic relaxation mo eso es of
erythrocyte flicker is a generalized eigenvalue problem.
It has been solved in the spherical limit in Ref. [33], and
th solution using the actual shape is quite close to thee
spherical limit, as one sees by the decay rates in abable I.

outside the cell, and the motion of the membrane itself,
th th r sections of this paper. Solutions were

11sought with time dependence e "'. Thus, schematica y,
if A is the amplitude of the membrane distortion, its ve-
locity should be —I A. Membrane stresses can be com-

f A d —I A. Then the condition that all ve-
at alllocities should match on the membrane, and that a

stresses should balance, is a large homogeneous linear1, '
hi h I occurs as a multiplier in some terms,

a generalized eigenvalue problem, where I is t e ei-i.e.,
genvalue. The corresponding eigenvector is t e y ~

dynamic mode, representing the motion of interior and
exterior fluids and the membrane, in the bases we have

include theIn solving this problem one must explicitly inc u e
stresses which maintain the constraints.s. Thus for exam-

le, corresponding to the volume constraint, one must al-
low for a nonequilibrium hydrostatic pressure difference
between inside and outside. Since pit is art of the mode,
this pressure difference decays with t e, je rate I, 'ust as
everything else does. The local incompressibility of the
membrane requires that there be e gthe radient of a two-
d ensional pressure in the tangential stress, just as inimen

'

E . (140), etc. Without these terms there is no solutio
the boundary-value problem. (It is also necessary to al-
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TABLE I. Hydrodynamic thickness mode relaxation rates in sec for cell II ~ The computation as-
sumes k, =2.4X10 ' J, g,„,=1 cP, and g;„=4 cP. Spherical limit values are given for comparison,
with their corresponding l s. Only modes which are even in equatorial reflection are shown. The
shapes of these modes can be seen in Fig. 17.

37.4

174.2

8.56

94.2

m —2

0.84

39.22

172.2

m —3

5.88

81.26

Parity

even
Qdd

even
odd
even

Spherical limit

0
13.50
41.42
87.8

157.4

1=2
l=3
l=4
l=5
l=6

low a completely general motion of the membrane, sub-
ject only to the constraints: in the spherical limit the
normal motion with its accompanying induced tangential
flow da decouples from the tangential flow edP, but in
the general problem they are coupled. ) Corresponding to
the experiments described in Ref. [22], the cell was con-
strained not to translate by eliminating the Euclidean
translation mode from the space of allowed motions and
including a stress conjugate to translation to enforce the
constraint. (In the experiment, the cell is lightly attached
to the substrate at one point. )

The hydrodynamic modes, considered as modes of the
membrane, do not coincide with the energy eigenmodes.
Thus the energy eigenmodes, which are excited with
mean-square amplitudes given by the equipartition
theorem, as in Sec. V, relax, on average, according to hy-
drodynamics, that is, as a linear combination of hydro-
dynamic modes. Figure 17 shows the decomposition

(51(y, 0)5d (y, t)) =g H;(y)e (46)

of the mean-square thickness-fluctuation profile of Fig. 4
into decaying modes. The only noticeable effect of the
BCH is to eliminate the largest M =0 mode. The small
membrane viscosity gM indicated in the tank-treading ex-
periments has negligible effect on the decay rates. There
are only a few important shape decay modes. Their
discrete rates are well separated, and their rotational
symmetry and radial dependence should make it possible
to distinguish them experimentally. Although this sepa-

O.g4 s

M=O

FIG. 17. Hydrodynamic thickness fluctuation modes, with
indicated rotational symmetry M. The M =0 modes contribute
predominantly near the center of the cell, s =0. The rim of the
cell is at m. /2.

ration has not been done yet experimentally, the decay
times which are present with appreciable amplitude in
the correlation functions are similar to those in Fig. 17,
which is additional support for the value of k, found
from the mean-square amplitudes alone.

X. CONCLUSION

Assuming that the elastic energy of the membrane is
given by Eqs. (17) and (18), I have solved linear
boundary-value problems which describe flicker, elec-
trode formation, and tank treading of erythrocytes, three
methods for observing the linear response of the erythro-
cyte to mechanical stress. The results of these computa-
tions can be used to interpret existing data. These experi-
ments are consistent in indicating a fluid component with
a bending modulus k, =3X10 ' J and two-dimensional
shear viscosity gM=SX10 Ns/m, and a solid com-
ponent with a shear modulus @=1X10 N/m and a
two-dimensional shear viscosity rlz=10 Ns/m. k, is
determined in flicker in two independent ways, by the
mean-square amplitude and by the decay rates. gM is
determined in two independent ways in tank treading, by
the tank-treading threshold and by the observed tank-
treading frequencies. Its smallness is corroborated by the
flicker decay rates. p is determined in electrodeformation
and in the elongation response in tank treading. Finally

gz, the viscosity of the solid component, is determined by
the characteristic shape recovery time in electrodeforma-
tion and tank treading when the deforming stress is re-
moved, about 0.1 sec [2]. It is worth noting that only the
tank-treading experiments show both fluid and solid
properties simultaneously. Flicker shows only fluid prop-
erties and electrodeformation shows only solid properties.

A remarkable recent experiment by Weaver et al. [34]
on diffusion of the membrane protein ankyrin during
tank treading indicates that the diffusion is unaffected by
the overall motion of the membrane. This was interpret-
ed to mean that both the lipid and the cytoskeleton move
together, since differential motion of the two components
might be expected to enhance diffusion. This picture of
fluid and solid moving together is contrary to my analysis
of tank treading, which indicates that only a fluid mem-
brane tank treads, but the ankyrin evidence is slightly in-
direct. Much more direct would be to watch fluorescent-
ly labeled spectrin during tank treading.

If it can be shown that the cytoskeleton does indeed
flow around the cell during tank treading, one would
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have to understand how it can do so without appreciable
shear stress. The geometrical analysis of this paper has
one suggestion to make in this case. The tangential flows
which produce shear strain are uniquely decomposable
into "a Aows, " of the form da, which are induced by
shape change, and "P fiows, "of the form ed I3. Although
it is difficult to imagine a molecular mechanism, it is pos-
sible that the cytoskeleton responds like a solid only to a
fiows. Since the tank-treading fiow is a P fiow, it would
induce no shear stress.
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n =x sin6 —y cos6 cosg —z cos6 sing,

s =x cos6+y sin6 cosg+z sin6 sing,

g= —y sing+z cosg .

(A6)

APPENDIX 8: BASIS VECTOR FIELDS

(B1)

where 1 and 1' are both even (+) or both odd (
—). In

practice one truncates this infinite matrix at some suit-
ably high I, of course. Other useful matrices are

and

II, =2~I Y, Y, yd, s
0

HII =2m J YImHYI. ~y ds,
0

(B2)

(B3)

where again one may restrict attention to one symmetry
class at a time. For simplicity of notation I leave off the
symmetry class labels + and m in what follows.

Solve the generalized eigenvalue problem

hZ = AZD (B4)

for a square matrix Z and a diagonal matrix D, and nor-
malize the columns of Z so that

It is useful to find the matrix of the Laplace-Beltrami
operator in each symmetry class:

dYlm dYIm m'—
5g~

= 2' +
2 Yl~ YI~~ yds

0 ds ds y

where
Z AZ=I . (B5)

I' = —y sinO,

sinO
12 21

(A2)

and all other I"s are zero.
The Hodge star operator ( e ) maps 1-forms to 1-forms

according to

e(ads+bdg)= —ds —aydg .
b

(A3)

X =Ndn +ads+bdg (A4)

is a 1-form on M belonging to symmetry class m, then the
two-dimensional shear strain of the corresponding vector
field X is

S„=a1+Nc, ,

sinO
S,2 =Sz& =—'(ima +b

&
) — b,

2
y

S22=imb+ay sin8+Ny c2 .

(A5)

The orthogonal transformation from the (fixed) Carte-
sian frame to the orthonormal (n, s, g) coordinate frame
is given by

a(N) = 2ZD 'Z HZTN—, (86)

where a is a column vector whose entries are the com-
ponents of the function a in the spherical harmonic basis.
If l is even and m =0, D ' still makes sense provided the
first two entries of N are zero.

Let e, denote the column vector which is 1 in the ith
place and zero elsewhere. Then

The columns of Z are the eigenfunctions of 5 in the
spherical harmonic basis. These functions provide an
orthonormal basis in each symmetry class of I. (M),
which I call the Z basis. In the symmetry class
l =even, m =0, one must make an orthogonal change of
basis to respect the integral constraints Eqs. (11), (12),
and (13). One may do this by the Gram-Schmidt pro-
cedure, taking the functions 1, H, EC, and the columns of
Z after the third as a starting point. The resulting basis,
which will be the columns of ZT, where T is an orthogo-
nal matrix, will be called the admissible basis. In other
symmetry classes T is the identity matrix. The normal
component N of any deformation will be understood
henceforth as a column vector, whose entries are the
components of the function N in this admissible basis.
The integral constraints then amount to requiring that
the first two (or three) entries be zero.

The solution of Eq. (15) now is
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XIv =g ( ZT)(; Y( dn +(x(e; )(d Yi
I

Xp'= ed Yl

(B7)

(B8)
Cell I Cell II

TABLE II. Data for two model cells, including parameters
necessary to generate them using the differential equations of
Appendix C. Cell I is shown in Fig. 1.

(X"X'1')=R 5; (B9)

where, for dimensional reasons, R is the unit of length
(fixed by the condition that curve C have length m./2). In
terms of this basis one needs the transformation

are 1-forms corresponding to displacements which obey
all constraints. The corresponding vector fields Xz'
change the shape, and the X&' do not. Finally, choose a
basis Ix"] which diagonalizes the inner product Eq. (16)
(X)II',X)I)t') and (XII',XJ' ), and is normalized in the sense

Osmolarity

co

Po
V
A

&H)
V/Vo
is

290 mOs
—11.965 21
—8.573 66

0
—0.860 52

3.542 7
14.832 6
0.957 1

0.659 5
0.757 7
3.017 pm

200 mOs
—11.95045
—13.513 87
—1.385 15
—0.305 01

4.472 3
14.736 4
0.950 7
0.840 7
0.890 8

3.027 pm
x"'=y ojx(J'

J

X(i) y O j('X(j)
P

J

(B10)

and the sphericity index

I,=( v/v, )'" . (Cl 1)
when one expands the energy.

APPENDIX C: MODEL CELLS

Curve C giving an azimuthally symmetric stationary
shape M of Ez can be generated as a solution of the
Euler-Lagrange equations [35]

Both of these are 1 if the shape is a sphere. Dimensional
measures are in units such that the length of curve C is
~/2. R is the value of this unit of length in case the actu-
al area is 135 pm, typical for an erythrocyte.

APPENDIX D: ENERGY EXPANSIONS
x'=cos8,
y'=sin6,

8=p,

p'= —Ay sin8 —2p sin6

2 cos8 sin6 —b cos8 2y

(Cl)

(C2)

(C3)

(C4)

The second variation of E~ at fixed V, A, and co for an
admissible normal motion N, using the geometric data of
Eqs. (3)—(8), is [29]

k,
5 E = f [(bN)2+A "N,N +BN ]dA, (Dl)

where

A 'J= —2(2H —co }(L'i Hg'J)—
b ' =2Ay cose+ (r +p — —2cop,

cos 6
2

with initial data

(C5)
+g'J( 6H +4K 2—coH +co—/2+ UP ' V'i),

(D2)

B =16H —20H K+4K +26(2H K)—
x (0)=y (0)=p'(0) =b (0)=0,
e(0)=~/2,

p (0)=pa,
b'(0) =o —2copo .

(C6)

(C7)
+4[(L" Hg'J)H;]. , +c—()K+UP 'V,

and where

(D3)

(C9)
+4HK ( 2H —c() ) )],

(CS)
U=[( —SH +4K(2H —c())),( 4~VH~ —8H

(C10)

Here A, , o., and co may be regarded as Lagrange multi-
pliers to control V, A, and (H ). po is a free parameter
which must be chosen to make b =0 when 8=m. in order
that M be smooth at the equator. Once the solution is
found, one can translate it so that the origin of coordi-
nates is at the center of inversion symmetry. Two
(equivalent) dimensionless measures of distance from the
spherical shape are given in Table II, the reduced volume

' I/2

yy y' 36&V

(H)
(» (H')

V"=(0, —1/4)',
V22 —(0 1/4)T

@12 @21 0

V=( H, —K/2)—

(D4)

(D5)

(D6)

(D7)
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The expansion of Ez at fixed V, A, and (H) (i.e., un-
der the BCH) has the same form, but now

8= 16H —20H K+4K +26,(2H —K)

+4[(L' H—g' )H, ]. -+UP 'V, (D9)

4H—L "+g"( 2H—+4K+ UP 'V"), (D8) where now

I

U =(( —8H +8HK), (4~VHI 8H—+8H K), (4VK VH 8H—K+8HK ) )

&H) &HK&

P= (H) (H ) (K)
(HK & (K ) (K')

V"=(0—1/4, —cz/2)

V2 =(0, —1/4, —ci/2)
y12 @21 p

V=( H, —K—/2, 0)

(D 10)

(D 1 1)

(D12)

(D13)

EIi '=0 T (D +Z QZ)TO~,

where

(D14)

In either case the matrix of 5 Ez in the basis of Eq.
(61) is

putting these expressions into Eq. (18) one finds the ma-
trix elements as definite integrals involving spherical har-
monics and geometric data of M. Of course one can do
all this within each symmetry class, but note that the
Hodge star operation reverses parity.

Qv =2m
0 ds ds

+(m A +8)YI Yi yds . (D15)

d'YIm
Sii =X

q «e~)I+ci ~im(ZT)i~
I Gs

(D16)

sineS,2 =S2, =g im
d

im —
YI~ a(e~ )I, .

I . ds y
(D17)

$22=+
I

d Yim—m YI +y sine
Gs

a(e )I

+c2y Y,m (ZT), (D18)

The shear of the flow X& is

m sine d Yim

y y
'-

d

d Yim d Y)m
S12 =S2, =— Yt —sine

d
+y

2 y ds ds2

(D19)

(D20)

The shear energy Es is already a quadratic form in de-
formations. We have only to express it as a matrix in the
orthonormal basis. The shear of the flow Xj'' is

APPENDIX E: SYMMETRIC STOKES FLOWS

r =Vx2+y2+a —2ay cosP, (E1)

Elementary solutions of the Stokes equations Eq. (39)
have a singularity at a point and a distinguished axis. If
one takes such a solution with its singularity not at the
origin, and rotates it rigidly about the x axis, one can, by
superposition, create solutions which are singular on
rings and have definite rotation symmetry in the sense of
Eq. (43). This is the meaning of Eq. (42). The associated
shear strain tensor and pressure can be found by the same
operation. This technique gives flexible families of sym-
metric Stokes flows for solving boundary-value problems.
Of course one should also symmetrize and antisym-
metrize these flows with respect to inversion.

In this section I give formulas for a large enough fami-

ly of such flows to solve practical problems. Some of
these flows are created from others by Lie derivation with
respect to rigid motions, which amounts to taking the
difference of two flows with nearby ring singularities of
opposite sign.

In all cases below I superpose elementary flows
parametrized by an angle P located on the ring
(O,a cosP, a sinP). I take a spherical polar coordinate sys-
tem (r, 8,$) centered on the elementary flow with its
north pole on the distinguished axis. The axis may be ei-
ther in the plane of the ring ("horizontal" ) or perpendicu-
lar to the plane of the ring ("vertical" ). The coordinates
of a point (x,y, 0) on C in the spherical polar coordinate
system are then, in the horizontal case,

S22 = imy
d Yim

ds
sine

lm (D21)

With Eqs. (62) and (63) one can find the shear of X",and

y cos —a0=arccos
T

(E2)
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y Sl
P =arcsin

r sinO
(E3)

and in the vertical case

r =+x +y +a —2ay cosP,
8=arccos(x ir),

(E4)

y SlP=arcsin
r sin8

(E6)

The orthonormal frame field at (x,y, 0) is, in the horizon-
tal case,

For each type of elementary flow I do this for perhaps ten
ring radii a, and keep the tabulated results for solving
boundary-value problems. It remains to specify the basic
elementary flows.

The following elementary flows are enough, and no
subset seems to be enough. For each one I indicate the
symmetry with respect to equatorial reflection, and
whether the axis is to be regarded as horizontal or verti-
cal, i.e., which of the above coordinate transformations is
to be used. We give the flow V, the shear strain S, and
the pressure P, using spherical polar coordinates and the
spherical polar frame.

(i) (Even in reflection, axis horizontal):

x y —a cosp a sinp„r= —x+ y — z,r r
(E7)

2 cosO &+ sin8 8
r r

(E13)

COSP ~+ SlllP ~
sinO cosO

y sinp x sinp x cospx+ . y — . z,r sinO r sinO r sinO

and in the vertical case

(E8)

(E9)

1S=-
r4

P=O.

—6 cosO —3 sin8
—3 sinO 3 cosO

0 0

0
0

3 cosO

(E14)

(E15)

y —a cosp a sinp=cos x y — z,r r

8=cot& —cscOx,

(E10}

(El 1)

(ii) (Even in reflection, axis horizontal):

cosO& sinO
8

r 2r
(E16)

a sinp y —a cospy+ . z.
r sinO r sinO

(E12)

Combining with Eq. (A6) one can express the vector and
tensor quantities of the Stokes flows in the local (n, s, g}
frame if one knows them in the (r, 8,$) frame. Then, in-
tegrating with respect to p, with the weight e' ~, gives
the boundary value of a symmetric flow, just Eq. (42).

I

1S=
2r

cosO
2

—2cos8 0
0
0

cosO 0
0 cosO

(iii) (Even in reflection, axis vertical):

(E17)

(E18)

3(1—cosl)8& 6cosOsing
r4 r4
—12+36 cos 8 24 sinO cosO

24sinOcos8 9—21 cos 8
1S=

r5
0 0

P=O.
(iv) (Even in reflection, axis vertical}:

cos O~
2

2

0
3—15cos 8

(E19)

(E20)

(E21)

(E22)

2 cos 8 sinOcos8
1

sinO cosO —cos 82

r 3

P= 2(1—3cos 8)
3r

0
0

—cos 8
(E23}

(E24)

(v) (Odd in reflection, axis horizontal):

3 sinO cosO cosg
&

(sin 8 cos 8}cos—g cosO sing
r4 r' r4 (E25)

IS=-r'
—12sinOcosOcosg 4(cos 8—sin 8)cosg

4(cos 8 sin 8}cosg— 7sinOc sOcoslo
—4 cosO sing —sinO sing

—4 cosO sing
—sinO sing

5 sinO cosO cosg
(E26}
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P=O.
(vi) (Odd in reflection, axis horizontal):

3 sin 8 cos8 cos(N) cosp 8 cos8 sing
f 2 r2 rz

'6sin8cos8cosg —3cos 8cosg
S =——3 cos 8cosg —3 sin8cos8cosgr3

3 cos8 sing 0
6 cos8 sin8 cosg

T

3 cos8 sing

0
—3 sin 8 cos8 cos4)

(E28)

(E29)

(E30)

(vii) (Odd in reflection, axis vertical): same elementary
flow as (i).

(viii) (Odd in reflection, axis vertical): same elementary
flow as (ii).

A good check of these expressions is the computation
of translational and rotational drag coeScients of a rigid
ellipsoid, for which analytical expressions are known.
Four-place accuracy is straightforward to obtain.

For many boundary-value problems it is not good
enough to represent the interior Aow with ring singulari-
ties only in the equatorial plane outside the cell. One
must supplement these functions with Rows having singu-
larities on rings above and below the cell, at a distance
+h from the equatorial plane. This requires replacing x
by x+h in the transformation formulas Eq. (El)—(E12).

s„'"=0,nP (F6)

S„',"=
—,
' cos2y cos2B cosl(, (F7)

S„'&' = —,
' cos2y sinB sing, (FS)

S„'z'= —
—,
' sin2y sin2B cos2$, (F9)

S„'&'=—„' sin2ycosBsin2$ . (F10)

Since we are matching to complex solutions transforrn-
ing under rotation by multiplication by e' ~, we should
also regard the above components in this way, i.e.,

APPENDIX F: TANK-TREADING
BOUNDARY VALUES

V (s, f)=Re[V' (s)e' ~],
S' '(s, g) =Re[S~(s)e™~],

(Fl 1)

(F12)
The shear Bow

V=[—Xcos(y)+ I'sin(y)](x siny+y cosy) (Fl)

evaluated on M is a linear combination of vector fields be-
longing to three symmetry classes: m =0, I, and 2:

where V' and S' are complex. Then we can just match
the s-dependent functions on C, replacing cosmic(t by 1

and sinmP by i in Eqs.—(F2)—(F10). One has to solve
the following inhomogeneous linear system of equations
in each symmetry class for Rows V'"', V'", and V

Vo = —x sing cosy sine ——sing cosy cose 6'
2

+ —x sing cosy cose+ —sing cosy sine s,
2

(F2)

VDUt+ VM

0= —Vin+ Vw

+2qMdiv(SM ), + II i,

(F13)

(F14)

(F15}

V, = (y sin y sinB+x cos y)cosgR'

+(y s111 g cosB x cos g slnB)cos+s

+x cos y sin1tjg,

V = ——sing cosy cosB cos2gh3'
2 2

(F3}

L+—sing cosy sinB cos2+s ——sing cosy sin2$$ .
2 2

matching velocities and tangential stresses on M. The
gradient of an arbitrary two-dimensional pressure II in
the preceding equation comes from incompressibility of
the membrane.

The net torque applied by the external Quid to M about
the z axis belongs to the m =1 symmetry class. Writing
simply S for S'+S'"' on C, it is

m/2r= Zm1),„, [2ReS„,(x sinB —y cosB)+21mS„~
0

(F4) +ReP (x cosB+y sinB ) ]y ds . (F16)

S 8 s1112+sin28 (F5)

The relevant corresponding components of the shear
strain tensor are

When I have found the value of g for which ~ is zero, I
solve the linear system in the I =0 and 2 symmetry
classes as well, and from the solutions I find the normal
stress P'"—P'"' which deforms the cell.
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