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Propagating solitons in damped ac-driven chains
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It is demonstrated that an external ac field may support stable propagation of solitons and cnoidal
waves in a chain of interacting particles in the presence of friction, provided that the drive amplitude
exceeds a certain threshold value. The effect is analyzed in the general form, and is then considered in

detail both for the Toda lattice with weak friction and for a string of hard beads with arbitrary friction.
The effects disappears in the continuum limit.

PACS number(s): 46.10.+z, 63.20.Ry, 03.40.Kf

I. INTRGDUCTIGN
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where g is an arbitrary parameter taking values ~g~ &1,
g(t) = Vt is the coordinate of the center of the soliton, and

V=/ '(1 —
g )/1n(g )

is its velocity, which takes values ~V~ &1. At last, the
soliton-mediated degree of compression of the Toda lat-
tice is

Ay=in(g ) . (2c)

The subject of the present work is the propagation of
collective excitations (solitons and cnoidal waves) in
chains of interacting particles with friction and ac-
driving fields. The general equation of motion for dis-
placements y„ofparticles in the chain is

~ = am„y'„= — [ U„(y„—y„,)+U„,(y„,—y„)]
~In

—ay„+eq„cos(cot),

where m„are masses of the particles, a is the friction
coefficient, U„(z) is the potential of the interparticle in-
teraction (to simplify the notation, only the nearest-
neighbor interaction is assumed, but this assumption is
not essential), q„are charges of the particles coupling
them to the driving field, and e and co are, respectively,
the amplitude and the frequency of the drive. It is as-
sumed that all the quantities m„, U„, and q„are periodic
in n with some period no. The size of the elementary cell
of the chain corresponding to this period will be designat-
ed a.

In some cases, the unperturbed equation (1) (with
a=e=O) can support solitary compression waves (soli-
tons) propagating at a constant velocity V. The soliton is
characterized by its degree of compression, i.e., the shift
of y„at n = —~ relative to n =+00. The well-known
example is the Toda-lattice (TL) model [1] with
U„(z)=exp( —z) and m„= l. In the absence of the fric-
tion and drive, the TI. soliton has the form

As another example, one can consider a string of hard
beads (HB) interacting only when they collide [2]. In this
model, the "soliton" corresponds to the situation when,
at any moment of time, only one particle is moving with
the velocity V. Propagation of this soliton is provided by
elastic collisions between the beads. However, in many
cases solitary-wave solutions to Eq. (1) with a=@=0,
even in the case when all the masses and interparticle po-
tentials do not depend on n, can only be found numerical-
ly (see, e.g. , Ref. [3]).

It is necessary to note that, strictly speaking, only ex-
actly integrable discrete models can support the stable
propagation of solitons; if the model is nonintegrable, the
moving soliton is gradually decelerated by radiative
losses (see, e.g. , Ref. [4]). However, in many cases the ra-
diative braking proves to be extremely weak. For in-
stance, the numerical simulations reported in Ref. [3]
demonstrate a nearly stable propagation of solitons in
nonintegrable chains. In fact, friction is a much more
important problem than the radiative losses. The
friction-induced damping of the TL soliton was studied in
Refs. [5] and [6]. The aim of the present work is to
demonstrate that the ac drive can compensate the dissi-
pative losses and can thus support the propagation of sol-
itons (and of periodic arrays of solitons) in the damped
chain. The analysis to be developed below makes it obvi-
ous that the radiative losses can be compensated for as
well, so that the stable propagation of solitons must also
be possible in dissipationless ac-driven nonintegr able
chains.

It will be demonstrated that these effects are specific
for discrete models, and disappear in the continuum lim-
it. They are also not possible if the masses and charges of
all the particles in the chain are equal. Indeed, in this
case the substitution y„=y„+yo(t), where yo(t) is a solu-
tion of the equation y'0= —(a/m)yo+(e/m)q cos(tot),
removes the driving term from Eq. (1) [7]. The ac-driven
propagation of the solitons is possible if any masses
and/or charges are difFerent. To demonstrate this, the
friction and drive terms in Eq. (1) will be treated as small
perturbations, and it will be presumed that the soliton
slowly evolves under their action.

The remainder of the paper is organized as follows.
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The one-soliton case is considered in Sec. II. An efFective
equation of motion for the soliton is derived on the basis
of the energy-balance analysis. It is demonstrated that
this equation admits stationary regimes of the ac-driven
motion of the soliton, provided the drive's amplitude
exceeds a threshold value proportional to the dissipative
constant a. The compensation of the dissipative (and ra-
diative) losses is possible due to a resonance between the
time-periodic drive and the periodic process of passage of
the soliton through the sites of the underlying periodic
chain. The resonance condition selects a discrete spec-
trum of the soliton's velocities. The ac-driven motion
may be both stable and unstable, depending on the values
of the parameters of the model. Next, we apply the gen-
eral results to the two above-mentioned particular
models, viz. , the TL and the HB models. It is demonstrat-
ed that the ac-driven TL soliton is stable if it is not too
broad. The propagation of the cnoidal waves (CW), i.e.,
periodic arrays of solitons, is analyzed in Sec. III (in par-
ticular, the collective excitations in a chain with periodic
boundary conditions have the CW form). The analysis is
again based on the energy balance. The resonant spec-
trum of velocities of the CW that admits the compensa-
tion of the losses by the ac drive is the same as for one
soliton; the resonant spectrum of wavelengths of the
CW's proves to be discrete as we11. The general results
obtained for the ac-driven propagation of the CW's are
applied to the TL model. It is found that, in some region
of the values of the drive's frequency co, a hysteresis is
possible in the TL model.

Concluding remarks are collected in Sec. IV. In partic-
ular, a collision of two ac-driven solitons moving at
di6'erent velocities is briefly analyzed in that section. It is
demonstrated that the collision may be both elastic and
inelastic.

n0

S,(V)=a g J dt[Y„(r)]'
QO

(3)

(recall that no is the number of the particles in the cell).
Next, the total energy input E;„from the ac drive to each
cell is

n 0 + oo

F;„(V) =e g q„ f dt Y„(t)cos(cur ) .
n=1

(4)

Proceeding to the adjacent cell, one has the same expres-
sion (3) for the energy loss, and the expression (4) for the
energy input with

Y„(t)~Y„(t+a/V) (5)

(recall that a is the size of the cell). Making the substitu-

II. ac-DRIVEN MOTION OF ONE SOI ITON

The simplest way to derive an equation of motion for
one soliton within the framework of the perturbation
theory is to analyze the balance of the soliton's energy in
the presence of the dissipation and drive. If the form of
the unperturbed soliton is Y„(t) [e.g. , given by Eq. (2)],
the energy dissipated in each elementary cell of the chain
during the passage of the soliton is

tion (5) in Eq. (4), one sees that, generally speaking, E;„
oscillates from cell to cell, so that there is no mean influx
of energy into the system. However, the input of energy
is possible if V takes the resonant values

V~=coa/2m', N=+1, +2, +3, . . . , (6)

—a g [ Y(t)] (7)

cf. Eqs. (3) and (4). Since the right-hand side of Eq. (7)
oscillates in time, and assuming the soliton's energy to be
slowly varying in the spirit of the perturbation theory, it
is natural to average Eq. (7) over a sufficiently long time,
much larger than the time necessary for the soliton to
travel a distance of its own size. The unperturbed soliton
solution has the self-similar form Y„(t)= Y(n —Vt); see,
e.g., Eq. (2a). Inserting this into Eq. (7) and averaging it
over the long time, it is plain to see that the energy-
balance equation takes the form

E'(V) „=Va '(E;„Ed), —
dt

(7')

E;„and Ed being the energies gained and lost in each cell
of the chain, defined by Eqs. (3) and (4). The physical
meaning of Eq. (7') is quite clear: The averaged rate of
change of the soliton's energy is equal to the net energy
(E;„Ed) supplied —at one cell times the number of cells
traveled by the soliton in a unit of time. This interpreta-
tion imposes limitations on the averaging time when
proceeding from the exact equation (7) to the averaged
one (7'): As mentioned above, the time of averaging must
be much larger than the soliton s size divided by its veloc-
ity, but much smaller than a characteristic time at which
the velocity of the soliton varies. Recall that the funda-
mental assumption adopted above is that, owing to the
smallness of the perturbing parameters a and e, the ve-
locity changes sufBciently slowly. In what follows, the
velocity V(t)= dg/dt in Eq. (—7') will be realized as a
slowly varying function of time, g(t) being the coordinate
of the center of the soliton [see Eq. (2a)].

For an investigation of the stability of the ac-driven
motion, we assume that V(t) is close to a resonant value
V~, i.e.,

g(t) = V„t+(a/2mN)P(r),

where the slowly varying quantity P(t) plays the role of
the phase shift between the ac drive and the nearly
periodic process of passage of the soliton through the
cells of the chain. Inserting Eq. (8) into Eq. (4), one can
perform the integration, treating V= Vz+ (a /2mN)$ as a
constant:

at which the oscillations of E;„are cancelled.
Thus, the ac-driven propagation of the soliton in the

chain may be possible at the velocities (6). To analyze
this possibility in more detail, let us write the balance
equation for the soliton's energy E( V):d, dVE( V—)—:E'( V) =e g q„Y„(t)cos(cot)

dt dt
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E;„(V) =e[E1(V)cosp+E2( V)sing] . (9)

E'(VN)p=eco[E, ( VN)cosp+E2(VN)sing]

~Ed ( VN } [F1(4 }+F2(4'}]4 (10)

The coefficients E, ( V) and E2( V) depend on the particu-
lar form of the unperturbed soliton Y„(t), and on the
values q„. Finally, insertion of Eqs. (9) and (8) into Eq.
(7') yields the evolution equation for P(t):

where g is the same as in Eqs. (2}. Insertion of Eqs. (16)
and (17) into Eq. (14) yields e,h, in an implicit form. Note
that, in order to proceed to the continuum limit, one
must take a very broad soliton, i.e., the one with
1 —g' «1 (which implies

~ V~
—1 &&1). According to

Eqs. (17) and (14), in this case, e,h, is exponentially large,
and the effect vanishes (e,h,

= ao ) in the continuuin limit.
In the opposite limit

~ VN ~
&&1, i.e., co &&2mN [see Eq.

(15)], the soliton is very narrow. In this case, E,h, can be
found explicitly

where

F, (p) =Ed ( V—N )—E[E1(VN )cosp+ E2 ( VN )sing], (11)
e,h, =2aco in[co/m(2N+1)] . (18)

and

F2($)=—[Ed( VN ) e[EI—( VN )cosp+E2( VN )sing]] VN .

(12)

Equation (10) may be regarded as the equation of motion
for a particle with the coordinate P(t) and the mass
E'( VN ) in the biased harmonic potential

u (p ) =coe[ —E 1 ( VN )sing+ E2( VN )cosp]+ coEd ( VN )p,

At last, inserting Eqs. (16) and (17) into the stability con-
dition F2 &0 [see Eq. (12)], one can see that the driven

propagation of the TL soliton is unstable at VN ~

—1 && 1,
and is stable at

~ VN ~

&& 1.
The general analysis developed above, as well as its ap-

plication to the TL soliton, implied that we dealt with the
underdarnped situation, when the friction and driving
terms in Eq. (1) were treated as small perturbations. This
approximation applies provided a« V/a. With regard
to Eq. (6), this applicability condition amounts to

(13) co»2m-Na . (19)

in the presence of two friction forces, with the position-
dependent friction coefficients given by Eqs. (11) and (12).
The potential (13) has two different types of equilibrium
positions (maxima and minima), provided that the drive
amplitude exceeds the threshold value

~thr Ed ( VN }[E1 ( VN }+E2 ( VN }] (14)

The equilibrium corresponding to a local maximum of
the potential (13} is unstable. The stability of the local
minimum is determined by the friction forces. The fric-
tion coefficient (11) vanishes at the equilibrium positions,
i.e., it does not affect the stability. Therefore, the poten-
tial minimum is stable if the friction coefficient (12) is
positive at this point.

The stable stationary point of Eq. (10) corresponds to
the stable ac-driven propagation of the soliton in the
model (1). Let us now consider particular examples: the
TL soliton (2) and the one in the HB string. In both
cases, the simplest nontrivial coupling to the ac field cor-
responds to alternating positive and negative charges, i.e.,
q„=(—1)"in Eq. (1) [8];hence the size a of the elementa-
ry cell is double the chain spacing. The corresponding
spectrum (6) of the resonant velocities decays into two
branches (note that the velocity of the TL soliton must be
limited from below,

~ VN ~
& 1):

V& =boa /4mN,

VN =boa/2m(2N+1) . . (15}

Only the branch (15) admits a real input of energy (can-
cellation of the cell-to-cell oscillations} from the ac field.

For the TL model, straightforward calculations yield:

thr 4 CKCOQ (20)

The expression (20) for the threshold is valid regardless of
the condition (19), i.e., both for the underdamped and
overdamped cases.

III. CNOIDAL WAVES

Let us proceed to periodic arrays of solitons, i.e.,
cnoidal waves (CW). Note that a soliton in a closed chain
with periodic boundary conditions is equivalent to a CW.
The straightforward analysis of the energy balance shows
that the ac drive may support the propagation of the CW
if its velocity takes the same resonant values (6), while its
wavelength A, takes the values

A, =Ma /N, (21)

A more diScult problem is to find an ac-driven soliton
in the ouerdamped case, when the friction term is of the
same order or larger than the inertia term. In this case,
the spectrum of the propagation velocities is given by the
same equation (6), which has a purely kinematic origin
and does not depend on details of the dynamics. The
main difficulty is to guess the form of the soliton, since a
soliton solution of the unperturbed model (a =E=O) is no
longer relevant as the zeroth approximation. Generally
speaking, this problem can only be solved numerically.
However, one can find a straightforward solution for the
simplest model mentioned above, i.e., the HB string with
q„=(—1)". Elementary analysis of the equation of
motion for a bead yields the drive's threshold amplitude,
which proves to be independent of N, cf. Eq. (18):

Ed=a~)~ '[(1+(' )ln(g )
—2(1—

g }],
E, =0, E2= —m. csch[mcoigi/(1 —g )),

(16}

(17)

where M is a new independent integer. The ac-driven
CW cannot transfer mass, i.e., the mean velocity of each
particle in the chain through which the C%' travels is
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where Z is the Jacobi g function. The corresponding el-

liptic modulus k is related to k and V by the dispersion
equation

4(V/k) [1/sn (2K/A, ) —1+E/K]=1 . (23)

Here K and E are the complete elliptic integrals of the
first and second kinds, respectively and sn is the Jacobian
elliptic function. Inserting Eqs. (15) and (21) into Eq.
(23) yields an equation to determine k as a function of ro,

N, and M. This equation becomes relatively simple at
M =1: E (k)K (k) =(~/m) . Further analysis demon-

strates that in the case cos[~(2N+1)/M] &0 the equa-
tion for k has one root in the region

co & co,„=2M
~
sin [n.( 2N + 1 }/2M ]~, (24)

and no root if co) co,„. In the opposite case, there exists

some 9,„)co „such that the equation for k has one
root for co & co,„, no root for co) m, „,and two roots for

co,„&co&9,„. The existence of the two roots implies
the hysteresis: At the same driving frequency m, two
different CW's with the same ve1ocities and wavelengths

may be supported.
The threshold value of the drive's amplitude can be

found implicitly for M = 1,

e,„,=(a/m)K ~2E '~ [(2—.k )K 2E]si hn(nK'/K—),
(25}

where K'=K[(1—k )' ]. As follows from Eqs. (24} and
(25}, it is easiest to drive the CW with M = 1 in the case
k «1, i.e., when co is close to co „=—2:
e„h,=2a[2(2 —co)]'~ . For arbitrary M, the estimate

e,h, -a~co,„—co~
' ' can be obtained in the same

limit.

zero. The reason is that the ac drive in Eq. (1) may pro-
vide the energy input, but not the input of momentum. If
the CW is regarded as a periodic array of solitons with
the spacing A., each soliton passing a particle shifts it by
by [see, e.g., Eq. (2c)], so the mean velocity of the particle
has to be U = ( V/A, )by; however, it is compensated by the
motion of the chain as a whole with the constant velocity

Further analysis of the energy balance for the CW
closely follows that for one soliton. In particular, the ac
drive may support the propagation of the CW if its am-
plitude exceeds a certain threshold e,h, depending on both
resonance indices N and M [see Eqs. (6) and (21)].

As an example, let us again take the TL model with
q„=(—1)". The resonant velocities of the driven CW are

given by Eq. (15) with a =2. The unperturbed CW solu-

tion is [1]

y„=+2KVA. '[Z(D, 'K(n+ Vt})

—Z(2A, 'K(n+1+ Vr))], (22)

IV. CONCLUSION

The existence of the stable ac-driven regimes of propa-
gation of solitons in the damped chains opens the way for
interesting new problems. One of them is the collision

problem. Indeed, since the ac-driven solitons corre-
sponding to diff'erent N in Eq. (6) have diff'erent velocities,
they may collide. The collision can easily be analyzed in
the underdamped case, provided the corresponding un-

perturbed model is exactly integrable (e.g., the TL mod-
el). As is well known [9], in the exactly integrable models
the soliton-soliton collision is purely elastic, its only re-
sult being some shift bg of the position of each soliton
(the expression for bg in the TL model can be found in
Ref. [1]). In terms of the eff'ective potential (13), this im-

plies, in the first approximation, that the collision results
in the instantaneous shift of the phase P by
bg=(2n. N/a)bg. Similarly, the collision of two solitons
in the HB string shifts the phase of each soliton by
b,P =m.. Next, analyzing the shape of the potential (13), it
is easy to see whether the shifted position remains
trapped by the potential or escapes. In the former case,
the corresponding ac-driven soliton survives the collision,
while in the latter case it is kicked out from the driven
state, and will eventually decay under the action of the
dissipation. It is possible that both solitons, one of them,
or none will survive the collision (formulas used to dis-
cern between the three cases prove to be rather cumber-
some). In particular, the collision is almost always des-
tructive for the soliton if e lies slightly above the corre-
sponding e,h„and it is almost always nondestructive if E'

lies well above e,h, . As concerns physical applications,
the results obtained in the present work can be applied to
predict propagating solitary-wave excitations, supported
by the ac electric field, in ion-doped polymer rnolecules,
and in quasi-one-dimensional ionic lattices.

Finally, it is relevant to mention that the ac drive can
support propagation of solitons not only in the TL-like
models, but also in those of the Frenkel-Kontorova type,
i.e., chains of interacting particles placed in a periodic
substrate potential. This problem has recently been con-
sidered elsewhere [10]. A preliminary version of the
present work has been published in Ref. [11].

Note added in proof. Recently, direct numerical simu-
lations of the ac-driven damped TL model, with
q„=(—1)", have corroborated the existence of the stable
regimes of propagation of the driven solitons in the mod-
el with the periodic boundary conditions [T. Kuusela, J.
Hietarinta, and B.A. Malomed (unpublished)].
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