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Theory of the high-gain optical klystron
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We present an analytic expression of the harmonic bunching produced by the dispersive section
of a free-electron laser (FEL) optical klystron operating in the high-gain exponential regime. This
model allows the evaluation of the operating constraints and limits, the possible optimizations and
advantages of such a device with respect to the conventional FEL configuration, i.e., shortening of
the overall length and reduction of the induced energy spread, provided that the initial energy spread
is smaller than the one required for the normal high-gain FEL operator. The analytical expressions
derived here are confirmed by the numerical solution of the full nonlinear set of equations for the
FEL.

PACS number(s): 41.60.Cr, 52.75.Ms

I. INTRODUCTION

An optical klystron [I] is composed of two wigglers,
separated by a dispersive section, that can either be a
free-space section or a proper magnetic device. In the
first wiggler (the modulator) an electron beam, interact-
ing with a radiation field (that can be provided either by
an external laser or by the spontaneous radiation emit-
ted by the electron beam itself), receive an energy mod-
ulation that is then transformed into a spatial modula-
tion (bunching) in the dispersive section. The bunching
provided by the dispersive section enhances the coherent
emission of radiation in the second wiggler.

This scheme has, in principle, two distinct advantages
over the bunching produced by the conventional high-
gain free-electron-laser (FEL) amplifier scheme [2]: first,
the total length of the device can be considerably re-
duced, second, the electron bunching in the dispersive
section is gained with no additional growth of the FEL-
induced energy spread. However, as we will show, in an
optical klystron the bunching efficiency is very sensitive
to the initial energy spread of the electro]i beam, which
needs to be sensibly smaller than the one required for the
normal high-gain FEL operation [3].

For small initial field intensities and short modulators
the interaction between the electrons and the radiation
field in the first wiggler can be described (as in the small-
gain theory of a FEL) assuming a constant field and an
induced sinusoidal modulation of the electron beam [4, 5].
This is the typical situation for operation of an optical
klystron in a storage ring [6]. It can be shown that there
exists an optimum value both for the modulator length
and the dispersive section strength, given the initial field
amplitude and beam-energy spread.

The inclusion of the energy spread in such an analy-
sis introduces a strong damping term for the bunching
obtained in the dispersive section [5]; such energy-spread
effects can be partially reduced by increasing the electron
modulation amplitude, i.e. , the initial field intensity or
the length of the first wiggler. This can lead to a situation
where the constant-field approximation no longer holds,
and the modulator operates in the high-gain regime. This
kind of operation has been recently proposed by several

authors [7, 8].
In the present paper we derive a complete analyti-

cal model, useful in describing the bunching process in
both the small- and high-gain regimes and incorporating
in a natural way energy-spread effects. We show that
strong energy-spread limitations still hold in the high-
gain regime and, furthermore, we describe the optimiza-
tion and give the evaluation of the bunching on the fun-
damental and nth harmonic for both regimes. We stress
that our model can describe the bunching process also
in a conventional FEL, and even in this case its validity
holds far into the exponential regime.

II. SOLUTION OF THE
LINEAR EQUATIONS

To describe the field and the electron dynamics in the
modulator, we consider the one-dimensional model of
Ref. [3] for a FEL, written in the form

d8(0p, po, z)
dz

—P 0) I 0)

dp(~o, po, ) ~,s(s. p.„)
~ ~ )dz

t1A(Z);I J'
' j'+

dHpdppf(8p, pp)e
'

(2)

where we have used the dimensionless scaling (the so-
called "universal scaling" ) introduced in Ref. [3], namely,

t) = (k+ k )z —ckt,
PrI )

Pfr
(dA= a,
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4xp zz: z

e, '

where k = 2x/A is the wiggler wave number,
ck = 2xc/A is the radiation angular frequency,

/4xe2n/m is the plasma frequency,

gA (1+a 2)/2A is the resonant energy (units of mc2),
a = eA B /~22xmc2 is the rms wiggler parameter,
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and a = eAE/2irmcs is the complex amplitude of the di-
mensionless radiation vector potential. The scaling of A
has been choosen so that ~A~~ = (1/p)([E) /4am, y„mc )
is the FEL power-conversion efIIciency divided by p,
ls ——A /4irp is the FEL gain length, i.e. , the e-folding
length of the high-gain exponential instability, and p =
p„ i(a u&/ck )~~a is the fundamental FEL parameter.

In Eq. (3) () represents an average over the initial dis-
tribution function f(80, po) of the electrons.

Let us study the solution of the system (1)—(3) around
the initial condition for the electrons, Op, pp, and a small
input field Ap. Defining 8, p as

Ai(z, pp) = d(A, (()e'~'~,

Aii(z, po) = d(Ai((, po) = d((z —()A, (()e'"'~.

onant energy of the electrons, and the overall FEE gain
can be optimized by a suitable detuning of the initial
average electron energy [11].

We can now use the self-consistent-field solution (9)
and integrate analytically the linearized equations of mo-
tion for the electrons (6) and (7). Defining

8(go, po, z) -=go + poz + 8,

p(go, po, z) =—Po+P,

(4)

We can now solve exactly Eqs. (6) and (7) for the elec-
trons, obt, aining

and Iinearizing Eqs. (1)—(3) for small values of 8, p, and
A, we obtain the following system: g(Z, go, po) = —[Aii(z, pp)e' '+ c.c.],

p(, 8., p. ) = -[A (,p.)" '+ "] (13)
(14)

d0
Pl

—"= — Ae' "+P"~+c.c. ,dz

'(g —k(sp+pps))
dz

(6)

(7)

(8)

These equations give the small signal particle phase-space
orbits under the action of the self-consistent field A, (z),
both in the small- and the high-gain regimes.

The behavior of the dispersive section in an optical-
klystron configuration can then be approximated by a
simple pointlike region that imposes the following trans-
formation on the electron phase and energy variables:

Solving the system (6)—(8) with Laplace transform tech-
niques, we have the exact form of the self-consistent field
evolution in the modulator, A, (z):

8(80 Po, z~ut): 8(80 Po, z' ) + DP(gp, Pp, z' ),

P(80 PO Zout) = P(80 Po Zin) (16)
3

A, (z) = ) c~e'"", (9)
where D is the dispersive section strength, that, in the
case of a magnetic device, can be evaluated, given a suf-
ficiently large magnetic field B(z), by the formula

where the coefficients cz (j = 1, . . . , 3) satisfy the initial
condition at z = 0, and A& (j = 1, . . . , 3) are the solutions
of the FEL dispersion relation

( e 'i 2 zonk

D=pk/
(pmc~)

( ~

d( drIB(rl)
)

(17)

A + dgpdpp
' ——0.

p -oo A+pp ~ (10)

This expression reduces to the usual cold-beam cubic
relation of Ref. [3] in the case f(gp, pp) = (I/2ir)6(pp —b),
where 6 is the electron-energy detuning. Here the distri-
bution function f(gp, pp) takes into account the initial
energy spread of the electron beam. As other authors
have already reported [10], the electron-beam-emittance
effects can be described by an equivalent energy spread.
In the one-dimensional model used here, the electron-
beam emittance can be included as a spread of the res-

4xpI
(1 + a2 ) Es(l + a2 )

(18)

as can be easily shown in the calculation

For instance, a dispersive section made out of three
dipoles of length s/4, s/2, and s/4 and field values
—Bp, Bp, and —Bp, respectively, has a strength D
~'~ pk(eBO/mc'p)'s [7].

In the case in which the dispersive section is a free-
space region of length I, we have

klk, z
—tk, = (k+ k„)z —zkk = (k+ k ——

~
z

~2 I; y~ —y~ k a2

1+ a2 p2 1+ a2
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where P~[
= z/ct, p = )i /2A, and y && 1. The first

term, in the Compton limit (p —y, )/p, « 1 can be writ-
ten as [2k p/(I+ a )]zp = Dp, where D is given by ex-
pression (18). The other term is simply a phase shift due
to electron detuning with respect to the ponderomotive
FEL potential. Hence, being equal for all the electrons,
it does not contribute to the bunching or debunching of
the system.

III. CALCULATION OF THE
BUNCHING PARAMETER

From the expression of the particle phase-space or-
bits in the modulator and from Eqs. (15) and (16), we

can evaluate the bunching out of a dispersive section, of
strength D, after a first wiggler section of length z, given

by the following formula:

b( )
—

(
is($ t)) —

(
[8i(Sin)+Dp(Sin)]) (e i[80+(D+$)pp+8+Dpj)

2x +OO

dHp dpp f (Hp, pp) exp( —i[Hp + (D + z)pp + 8(z, Hp, pp) + Dp(z, Hp, pp)] j.
0 —OO

From Eqs. (13) and (14) we can evaluate the term 8+ Dp in the previous expression, defining

s
Arir(z, pp, D) = Ari(z, pp) + DAr(z, pp) = — d(As(()(D+ z —()e'p

0

we have

(2o)

8 + Dp = —[Aiir(z po D)e' ' + c c ].
Hence Eq. (19) can be rewritten as

2' +OO

b(z) = d8o dpo f(Ho, po) exp ( —i(Hp + (D+ z)po —[Anr(z, pp, D)e' '+ c.c.])).
0 —OO

(21)

(22)

Again, given the initial electron distribution function

f(Hp, pp), and hence the field A, (z) from Eq. (9), the
above expression is the analytical form of the bunching in
the linear regime of the exponential instability, including
energy-spread and dispersive section effects. It should be
noted that in the case D = 0 this expression describes
the bunching in a conventional FEL.

IV. ESTIMATES OF THE
BUNCHING PARAMETER,

LIMITS, AND OPTIMIZATIONS
OF THE DISPERSIVE SECTION

In order to evaluate expression (22) we use an
initial electron distribution of the form f(8p, pp)
(I/2z')(1/o'i/2z') exp[—(pp —b)2/20 ], corresponding to
a beam uniformly spread in phase and Gaussian dis-
tributed in energy around the value of yp [ir = Ep/py
and b = (po —p, )/pp, ]. In the limit oz « 1, the term
e'P'~ appearing in the expression (20) and the term e
in (22) can be approximated, respectively, with e' ~ and
e ' '. Thus the two integrals can be performed indepen-
dently, yielding the result

b(z) = ie' ~"' ' ' e Ji(2~Aiii[(z, b, D)), (23)

where ygly is the phase of the complex function defined
in (20) and Ji is the Bessel function of the first kind
of order one. Note that the condition crz (& 1 can ib(z)i = e

i Ji(2AoDz)i, (24)

be rewritten in terms of the relative energy spread as
Ap/y « I/(4z'N~) b,p/y~»„where N~ is the num-
ber of wiggler periods and by/y~„ i is the naiurat energy
spread of the small-gain FEL process.

The above expression leads to the inequality ~b(z)~z

& exp( —Dzoz), that shows the strong effect of the en-

ergy spread, and that the requirement Do 1, already
referenced in the low-gain regime [5], holds also when the
first wiggler operates in the high-gain exponential regime.
The above requirement, in the interesting case D &) 1,
leads to 0 & 1/D, which is much more restrictive than
the condition 0 & 1, necessary for the high-gain opera-
tion of a FEL amplifier.

Expression (23) suggests irriinediately the optimizing
criteria for the dispersive section parameter D, given the
length of the buncher z and the initial energy spread
O'. Provided that the constraint on the energy spread
is satisfied (Dcr & 1), in order to reach the maximum
bunching after the dispersive section, one has to maxi-
mize the Bessel function factor in Eq. (23), i.e., to choose
the value of D for which ~Arri

~
1. An equivalent recipe

has to be followed to find the optimum modulator length
z, given the dispersive section strength D.

In the limit z « 1 the expression (23) reduces to the
usual expression of the bunching in a small-gain optical
klystron [4, 5]. In this case (Airi(z, b, D)~ ApDz and we

obtain



4094 R. BONIFACIO, R. CORSINI, AND P. PIERINI 45

where Ao is the initial field amplitude. In this regime,
the optimal modulator length for a given D is

1 0
~.p~ =

In the high-gain regime, however, we can use the so-
lution of systems (6)—(8) in order to provide an explicit
form of expression (23). Considering a case of an initial
uniform energy spread of full width 4 around the average
value of 6, the field can be explicitly evaluated as

A~ —b, ~i4
(26)

where the A& are the solutions of the FEL dispersion relation, namely,

(A —b) i

A' — i+1= 0.(,
4) (27)

In order to derive the analytical solution of the radiation field we have used for the Gaussian energy distribution a
uniform distribution of full width 6 = 2+3(T, corresponding to the same rms value. Substitution of the self-consistent-
field evolution of (26) yields the following expression for the electron bunching parameter after the dispersive section:

3

[b(Z)[=e i 2|i 2Ae) .
~
D+ ~(e' '* —1) —z

,
- iA, ), iA, )j=l

(28)

In the limit z &( 1, expanding the exponential term
and keeping in mind that, from Eq. (26), P i cz ——1,
this expression reduces to the small-gain expression of
Eq. (24). When o' ( 1, the roots of Eq. (27) are not
significantly dift'erent from the cold-beam values, hence
we can write the previous expression taking into account
only the exponentially growing solution of the resonant
cold-beam case:

I&(z)I = e ' A(eAe (D +v3D+ 1) e~*i )

(29)

Again, if the condition Do 1 is satisfied, the optimum
value for the modulator length z corresponding to a given
D is obtained maximizing the Bessel function Ji, choos-
ing its argument to be approximately 2, namely,

100.0

1

g, (D& + +3D+ 1)i/~
(30)

When the energy-spread condition is badly violated,
or to perform a simultaneous optimization of D and z,
it is useful to look at the level curves of ib(z)i, such
as those obtained by solving numerically expression (28)
and reported in Figs. 1 and 2, respectively, in the case of
~ = 0.01 and o. = 0.1. From these plots it can be seen
easily that, increasing o, the advantage of the optical-
klystron scheme in the overall length reduction becomes
irrelevant. In fact, as we can see in Figs. 1 and 2, for
o = 0.01 the value fbi = 0.5 is reached at z = 1.5 (and
D 50), for (r = 0.1 the modulator has to be increased
to z —4.5 (and D 5), whereas the normal FEL in-

stability (D = 0) induces the same amount of bunching
at z 6. There is clearly an advantage in the decrease
of the modulator length using a dispersive section in the

20. 0

0. 0
0.0 2. 0 6. 0

0.0

FIG. 1. Level curve of the bunching factor given by ex-
pression (28) as a function of the dimensionless length of the
modulator z (horizontal axis) a.nd the dimensionless disper-
sive section strength parameter D (vertical axis). The pararn-
eters used here are o = 0.01 and Ao ——0.01.

0 ~ 0 2. 0 6.0

FIG. 2. As Fig. 1, for the parameters cr = 0.1 and Ap ——

0.01.
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FIG. 3. Bunching at the end of the dispersive section as a
function of the dimensionless modulator length. The solid line
was produced integrating the system of electron-field equation
of Ref. [3]; the symbols are evaluated from the expression
(28). The parameters used in this simulation are D = 2000,
Ap ——10, and o =10

first case, where the energy spread is small, but this ad-
vantage is nearly vanished in the second case, where the
energy spread is larger. In Fig. 3 we plot the bunching
as a solution of the full electron-radiation nonlinear sys-
tem of Ref. [3] (solid line) and expression (28) {symbols)
for a case of a small initial energy spread, o = 10 ~ and
Ao ——10 . Here, for these values of energy spread and
input field, the normal FEL saturation occurs around
z = 10 at lbl, at 0.75 and a value of Ibl 0.6 is reached
at z 9, whereas, as we can see from the figure, the in-
sertion of a suitable dispersive section (D = 2000) allows
us to reduce the modulator length by a factor 20, approx-
imately. We stress that this shortening of the first wiggler
implies a dramatic reduction of the intrinsic FEL energy
spread, as can be easily evaluated by Fig. 4, which depicts
the behavior of the induced spread, 0—:{(p—{p)) )
as a function of the distance along the wiggler. Moreover,
from Fig. 3, we can see that expression {28) turns out to
be very accurate.

In Fig. 5 we show another comparison between expres-
sion (28) (symbols) and the numerical solution of the
particle-field equations (solid line), for D = 5, Ao10, and 0 = 0.2. We can clearly see that the analyti-
cal expression fits the numerical result well even when the
condition Oz « 1 is not strictly satisfied, given the initial
value for the energy spread used in the simulation. Here

I
I 1 I I

1.0

FIG. 5. As Fig. 3, but for the following set of parameters:
D=5y A{) 10 ) and a=0.2.

the modulator clearly operates in the high-gain regime,
and the saturation of the bunching occurs at z ™4.5, at
a value of Ibl 0.4, whereas normal FEL saturation, at a
value Ibl»t 0.75, requires a gain of z 7, and the value

Ibl = 0.4 is reached for z 5.5. Note that expression (30)
provides an accurate estimate of the optimum value for
the modulator length, indeed z pt 4 ~ 53.

Clearly, for such a value of energy spread the advantage
of the dispersive section over the normal FEL bunching
process is considerably reduced with respect to the pre-
vious case, and its use is questionable. For greater values
of the beam-energy spread, in order to satisfy the con-
dition Do 1, smaller values of the dispersive section
parameter D have to be choosen, so that the use of a
dispersive section becomes a disadvantage, if not useless.

V. HARMONIC BUNCHING

The theory can be easily extended to the calculation
of the bunching on the nth harmonic:

-iu(8+DE)) (31)

To be exact, we should study the field and electron-
beam evolution in the modulator using the FEL equa-
tions that take into account the harmonic contents of
the radiation field [9]. However, since it has been shown

[2] that only the fundamental is relevant, in driving the
bunching process of the electron beam, we will use the
previous expressions for the single electron trajectories,
namely, Eqs. (13) and (14). Repeating the calculation
we obtain

(z)l = e ~
I
J (2nlArrrl(z, b, D))l (32)

0.0
0 ' 0 'l0. 0 which in the small-gain and high-gain regime become,

respectively,

FIG. 4. FEL-induced energy spread, cr as a function of
the dimensionless modulator length z for Ao ——10

Ib„(z)l = e " I IJ„(2nAoDz)l

and

(33)
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Ib (z)f = e " ~ J„(taAo (D + /SD+ I) e s/2) (34)

Hence we can easily extend all our previous conclusions
in this general case, in particular, the following.

(i) The energy-spread limitation is more restrictive for
the harmonic bunching, since the condition o & I/nD
must be satisfied.

(ii) Since J„(z) goes, for small value of its argument,
as z", taking D = 0 we recover the result that the growth
rate of the nth harmonic in a conventional FEL is n times
larger than the growth rate of the fundamental [2].

(iii) Again, when D = 0, since the maximum value of
J„decreases very slowly with n, we have the analytical
evidence of the fact that the harmonic bunching near
saturation is very large even if the harmonic field is very
small [2].

VI. CONCLUSIONS

EVe have presented here an analytical model for the
optical-klystron configuration of an FEL, valid both in
the small- and the high-gain regime. An explicit expres-
sion, describing the two cases, has been derived and con-

firmed with numerical results. This expression sugges's
both the operating constraints of such a device and the
optimization criteria. The effect of energy spread on the
operation of an optical klystron turns out to be strong
even in the high-gain regime, imposing an upper limit on
the allowable values of the dispersive section parameter,
D. In detail, the condition D & 1/o. must be always sat-
isfied, independently from the gain of the system. Hence,
the maximum D allowable scales as 1/0. A decrease in
D must be compensated, in order to retain a high value
of the bunching, by a correspondent increase in z, i.e.,

one is compelled to go to the high-gain regime in the
modulator, where the bunching itself grows due to the
FEL process. In conclusion the optical-klystron configu-
ration is convenient only for very small values of o.

, and
practically ceases to be convenient as a 0.1 (see Fig. 2)
whereas in the high-gain system high values of the bunch-
ing (~b[ 0.8) are reached until rr & l. In the framework
of the one-dimensional theory, the effect of the emittance
of the electron beam can be modeled by a suitable spread
of the resonant energy [ll], and all the limits derived in

this paper apply to this particular kind of spread as well.

' Also at Dipartimento di Fisica dell'Universita Statale di
Milano, Milano, Italy.
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