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We present a uniform method for approximating the functions that appear in the X-photon radial ma-

trix element. This matrix element is required for calculating multiphoton-ionization cross sections and

angular distributions in lowest-order perturbation theory. The functions include the initial- and final-

state radial wave functions, and the regular and irregular parts of the radial Green s function. We point
out that all of these functions satisfy a differential equation of the same form, and differ only in their

boundary conditions. The WKB method is then applied to this differential equation to obtain approxi-
mations to all of these functions. We then use these solutions to calculate two-photon-ionization cross
sections of hydrogen for photon energies between 8.5 and 13.2 eV. Also presented are two-photon-

ionization cross sections for Cs around the minimum near the 7p resonance and comparisons with previ-

ous work.

PACS number(s): 32.80.Rm, 42.50.Hz

I. INTRODUCTION

Over the past decade, experimental techniques for
measuring multiphoton-ionization cross sections and an-
gular distributions have outstripped the capability of
known theoretical techniques for calculating them. A
case in point is the existence of experimental data [I] on
the above-threshold ionization of Xe. As far as this au-
thor is aware, there has been no attempt to calculate the
cross section or angular distribution for this case in
lowest-order perturbation theory.

There are two major difficulties in performing these
calculations. First, accurate atomic wave functions are
required; and second, a method for performing the
infinite summations over the complete set of atomic states
(both bound and continuum) is needed. Many of the
methods used in the past have balanced these two re-
quirements.

Methods for evaluating the summation have included
the truncated-summation method [2), the Dalgarno-
Lewis technique [3], and the Green's-function method
[4]. In the truncated summation technique, the infinite
sums are approximated with finite sums which are evalu-
ated with accurate wave functions. These wave functions
have recently been calculated using quantum-defect
theory and also using a finite L basis [5,6] constructed
with 8 splines. The generalized Dalgarno-Lewis method
involves conversion of the summation into a system of
coupled differential equations which are then solved nu-
merically.

In the Green's-function method, the summation is con-
verted to an N-dimensional integral with the Green's
functions replacing the infinite summations. The tech-
nique consists of first evaluating the Green's function and
then evaluating the integral. A numerical technique for
evaluating the integral has been reported previously [7].
It is with the evaluation of the Green's functions that this
paper is concerned.

In Sec. II, we present the N-photon matrix element and
point out that the functions in the integrand of this ma-
trix element (the radial parts of the initial bound-state
wave function, the regular and irregular parts of the radi-
al Green's function, and the final continuum state), all
satisfy a differential equation of the same form, but have
different boundary conditions. In Sec. III, we transform
this differential equation into a form which is similar to
the Schrodinger wave equation for a particle moving in a
one-dimensional potential. The well-known WKB ap-
proximation general solution can then be immediately
written down and the inverse transformation performed.
This method of applying the WKB approximation was
first proposed by Langer [8] and elaborated upon by oth-
ers [9]. We then derive the continuum- and bound-state
wave functions and the regular and irregular parts of the
Green's function by applying the boundary conditions to
these general WKB solutions.

The WKB general solution has different forms for
different intervals of the radial coordinate. The end
points of these intervals are roughly determined by the
positions of the turning points of the classical motion of
the electron. The WKB solutions in regions far from the
turning points are termed "proper solutions" and these
solutions diverge at the turning points. Solutions valid
near a turning point are called "local solutions. "

In Sec. IV we outline the method for determining the
precise locations of the regions of validity for each piece
of the whole solution. We also show where these regions
are located as a function of photon energy for the cross-
section results presented in Sec. V. In Sec. V we use these
approximate Green's functions and wave functions to cal-
culate the two-photon-ionization cross section for photon
energies ranging from 8.5 to 13.2 eV. In addition, we

present calculated two-photon-ionization cross sections
for Cs around the minimum near the 7p resonance and

compare with previous work.
Finally, in Sec. VI we discuss the importance of the
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atomic potential in regard to the performance of the
method and present the model potential used in the Cs
cross-section calculation.

I,(r) —
—,'(2/rr)' k '~ exp[i (8„+5,,)],

Q„(0)=0,
(2.8b)

(2.9a)

II. N-PHOTON RADIAL MATRIX ELEMENT u„(~)=0, (2.9b)

The fundamental quantity needed to calculate the gen-
eralized multiphoton-ionization cross section or angular
distribution in lowest-order perturbation theory is [7]

Mv . . . v
—f dr~ J drruv (rx)

X rNgv~ (re, rz, )

X r, u„(r,),
0

(2.1)

(E H„}g„(r,—r') =fi(r r'), v=(E,—l) (2.2)

where v„=(E„,l„},E„=Eo+nfuo, (Eo is the energy of
the initial atomic state and co is the laser photon frequen-
cy}, and l„is the angular momentum of the set of inter-
mediate states reached by the absorption of n photons.
In the above equation, the quantities u„(r)and u„(r)

N 0
are the radial parts of the final continuum- and initial-
state wave functions, respectively. The factor g„(r,r'} is
the radial Green's function which satisfies the following
equation:

where

k =(2E) (2.10a)

We draw a branch cut along the positive energy axis and
take the branch of the square root which is positive when
E is on the upper side of this cut. Also,

and

8„=kr —
—,'1m. + (1/k)ln(2kr)+ r)„ (2.10b)

ri„=arg[l (I + 1 i/—k)] . (2.10c)

D„is a constant. The symbol g, is the Coulomb phase
shift and 5 is the part of the total phase shift due to the
non-Coulomb part of the potential U(r) The. fact that
all of these functions satisfy Eq. (2.5) allows us to develop
a unified method for approximating all of them based on
the WKB method. Quantities such as WKB atomic ener-

gy levels and phase shifts are also approximated using
this method. We present this method below.

where

H = —— + —'1(1+1)r +U(r) .1 d
1

—2
v 2 dr2

(2.3)

III. WKB GREEN'S FUNCTIONS
AND WAVE FUNCTIONS

A. WKB general solution
We use atomic units throughout the rest of this paper.
The function U(r) is the full potential seen by the elec-
tron. The solution of (2.2) can be written as [7]

g„(r,r') = 2rrR„(r&
)—I,(r & ), (2.4)

where r & and r & are the lesser and greater of r and r',
respectively, and R„(r)and I„(r)are, respectively, the
regular and irregular solutions of the homogeneous form
of Eq. (2.2)

The application of the WKB approximation to Eq.
(2.5) separates naturally into two parts depending on
whether E is greater than or less than zero. In this article
we shall not consider above-threshold ionization process-
es, therefore only the final continuum-state wave function
must be evaluated for E & 0.

The first step in applying the WKB method [9] is to
transform the independent variable (r) and the dependent
variable (P, } in Eq. (2.5) as follows:

(E H„}$„=0. — (2.5) r =e' (3.1)

u„(0)=0. (2.6a)

u, (r) — (2/rr)'~ k '~ sin(8 +fi„),
N N N

(2.6b)

The continuum- and bound-state wave functions also
satisfy this equation for different values of E and 1, thus
all of the functions in the integrand of Eq. (2.1) (aside
from factors of r) satisfy a differential equation of the
same form. The only difference between them is the im-
posed boundary conditions.

The boundary conditions for the functions u„(r),
N

u (r), R „(r),and I,(r) are as follows:
0

and

—e(1/2)Xy (3.2)

Transformation (3.1) has the effect of stretching the
domain of the independent variable from r E [0, + oo ) to
x E ( —~, + ~ ). Application of this transformation
yields a differential equation containing a first-derivative
term which is unsuitable for applying the WKB approxi-
mation. Subsequent application of transformation (3.2)
removes this term and gives the following equation for
P„(x):

R (0)=0,
R (r) —(2/rr)' k ' sin(8„+5„),

(2.7a)

(2.7b)

P"(x)+2e [E—U, ( s)]Px,(x)=0,

where

Ueff(X)= U(e )+ 7(& +
P

)

(3.3a)

(3.3b)

I„(r)—D, rr-0 (2.8a)
Equation (3.3a) bears a forrnal resemblance to the
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Schrodinger wave equation for a t 1a par ic e moving in a
one-dimensional potential. All of the well-known %KB
solutions for that equation may be applied to E . (3.3).
This method of applying the WKB method to the radial
wave equation was first introduced by Langer [8]. Note
that a small but significant, change has been produced by
transformations (3.1) and (3.2). The term /(/+1)r has
become (/+ —,

'
) e "and does not vanish when / =0.

Thhe second step is to write down the WKB eneral
solutions for E .

n e general

accor
or q. (3.3). The form of these solutions d'ff

ording to the sign of the coefficient multi 1 in ~ x
'ns i ers

equation. Figure 1 shows a typical plot of U,s(x)
along with horizontal lines depicting two values of E, one
greater than and one less than zero.

The points at which the line E =const and U ( )
'-

terssect are the classical turning points and are also the

Fo
points around which the proper WKB 1

or E )0, in the interval ( —~,x 0 ), (labeled region I in

ig. 1), the coefficient of P,(x) in Eq. (3.3) is less than
zero. In the inn e interval (xo, + 00 ) (labeled region II), this
coefficient is greater than zero. Al

'
1

around xo (region A), the proper WKB solution fails and
a local solution is appropriate. Thus, for E &0, the full
solution divides into three pieces which must be

' '
de joine so

e en ire approximate function is continuous.
For E &0 th, there are two turning points which divide

n ~ xp J region IIthe x axis into five regions: region I (
— );

xo,x, ; region III (x, , + ~ ), and two local re ions
around x (rxo (region A) and around x, (region B). See Fig.

oca regions

E&0
The general WKB solutions of Eq. (3.3 ) [9] f. a areL~, or

P'„"'(x)= [w (x)/q„(x)]' [ AJ+,/3(w„(x))

+BJ i/3(w (x))],
P'„ll'(x)=[q„(x)]'/ [ AIIexp[+iw (x)]

+B„exp[—iw„(x)]],

(3.4b)

(3.4c)

where

q„(x)=2e"[E—U,s(x)]

and

(3.4d)

(3.4e)

X [(B—A)exp[+ ~w„(x)~ ]

+(Ae'" +Be '" )exp[ —
~w (x)~]],

(3.5a)

y(Aj( )
i (2/ )1/2[q (x)]

—1/2

X [e ' (Ae ' / +Be™/6)exp[+iw„(x)]

w„(x)= f q„(x')dx' .
0

In E . (3.4b} Jq, +, /2(y) are Bessel functions of order +—,'.
Extreme care must be exercised

'
t k'in a ing t e proper

branch of the square root of q„(x)and when taking the
modulus of w„(x)especially when evaluating Eq. (3.4b).

The function w„(x)is defined so that it increases as x
moves away from the turning point. In order to ensure
t e continuity of the final solution we shall need the
asymptotic forms of Eq. (3.4b) for x ((xo and x ))x,
respectively,

or x &&xp and x »xp,

y(A)(x) ~1(2/~)1/2~q (x)~
—i/2

P', '(x)=~q, (x}~ ' [AIexp[ —~w„(x}~]

+Brexp[+ ~ w„(x)~ ]],

2-

1.5-

(3.4a)

+e™/4(Ae' / +Be ™/6)exp[ iw„(x—)]] .

(3.5b)

q. (3.5a) can be considered only ifThe second term in E .
the first term vanisanishes, (i.e., B is exactly equal to A), be-
cause of the dominan

'
ance of the increasing exponential in

the asymptotic form.
The WKB sol ution has the following form for E & 0:

1-
CO

0.5 --
P4

C
4P

o

-05 -—

-1.5-

P', '(x) = iq„(x)i '
I AIexp[ —iw„(x)i]

+BIexp [ + I
w „(x) I ] ]

P„"(x)= [w„(x)/q„(x)]' [ AJ+»2(w„(x))

+BJ,/2(w (x))],

(3.6a)

(3.6b)

-2-

-2.5
-2.5 -2 -1.5 -0.5

x [= 1n(r)]

0.5 1.5 2.5

'(x)=[q„(x)] '/
I Al~exp[E'w, (x)]

+BIIexp[ —iw„(x)]]. (3.6c)

FIG. 1. A lot of the eP ffective potential for hydrogen with
I =0 which iddentifies the regions associated with the different
parts of the W'KB general solutions. The parentheses indicate
t e ocal regions around the turning points and are labeled with
letters, while re io, w i e regions far from the turning points are labeled
with roman numerals.

'(x) = [q,(x) ]
'

[ AIIe 'exp[ iw„'(x)]—
—ia

+Bzle 'exp[iw„'(x)]], (3.6d)

An alternate solution in region II useful for matching
boundary conditions is
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where

x1
w', (x)=f q, (x')dx'

X

and

x1
a = q x' dx' .

Xp

The solutions for regions B and III are

(3.6e)

(3.6f}

P' '(x)=[w', (x)/q (x)]' [A'J+, /3(w„'(x))

+8'J 1/3( w,'(x) )], (3.6g)

'(x) = )q„(x)~ '
[ AIIIexp[+ ~

w' (x)(]

+Blllexp[ —
I
w '.(x }

I ] ]

The asymptotic behavior of P'„"'(x)for E &0 is identi-
cal to Eqs. (3.5). The behavior of p'„'(x)for x «xi and
x ))x„respectively, is

P' '(x)- —,'(2/ir)' [q (x)] ' [e '
( A'e ' +8'e' )exp[iw'(x)]+e™/4(A'e' +8'e ' )exp[ iw—'(x)]J,

(3.7a)

1I},
' '(x)- —'(2/~)' q„(x)~ ' [(8'—A')exp[+

~

w' (x)(]+(A'e' +8'e ' )exp[ —(w' (x))]J . (3.7b}

The last step is to determine the values of the
coefficients in the above general solutions. This is done
by applying continuity conditions in between the different
parts of the solutions (internal boundary conditions),
transforming them back to functions of r, and then im-
posing boundary conditions (2.6)—(2.9) at r =0 and oo

(external boundary conditions).

B. Internal boundary conditions

1 (2/~)1/2( Ae in/6+Be —in/6)

BI=—,'(2/ir)' (8 —A),

1(2/ )1/2 —in/4( A
—in/6+8 in/6)'

II

1(2/ )1/2 in/4( A in/6+8 —in/6)'II

(3.8a)

(3.8b)

(3.8c)

(3.8d)

For E )0, we guarantee continuity of the solutions by
matching the coefficients of exp[+iw (x)] in P'„'(x)[Eq.
(3.4a)], with those in the asymptotic form of P',"'(x) for
x «xo [Eq. (3.5a)]. Similarly, we match the appropriate
coefficients in il}'„'(x) [Eq. (3.4c)] with those in the
asymptotic form of P',"'(x) for x ))xo [Eq. (3.5b)]. This
yields the following system of linear equations for E )0:

q„(x) C„(r),
w (x)—w„(r),

and

(3.10a)

(3.10b)

(3.10c)

w'„(x)=w'„(r),

where

C (r)=2[E —[U(r)+ —,'(I+ —,') r ]],
w„(r)=f "C„(r')dr',

0

(3.10d)

(3.11a)

(3.11b)

w'(r}= f C,(r')dr' . (3.11c)

The positions of the turning points ro and r, are deter-
mined by

the increasing exponential in the asymptotic forms of the
local solutions about the turning points.

To transform the solutions P,(x) back to the P,(r) we
need only make the following replacements in Eqs. (3.4}
and (3.6):

For F. &0 we match coefficients in the following pairs
of equations: (3.6a) and (3.5a); (3.6c) and (3.5b); (3.6d) and
(3.7a); and (3.6h) and (3.7b). This matching produces a
linear system of eight equations, the first four of which
are identical to Eqs. (3.8) and the remaining four are for
F. (0,

and

C„(ro)=0

C,(r, )=0 .

(3.12a)

(3.12b)

v 1(2/ )1/2 rn/4( Ai & /6+8ni —&n/6) (3.9a)
C. %KB continuum state

8 e '= '(2/ir)' e ' —( A'e '" +8'e'" ) (3 9b)

AIII =
21 (2/~)1 l2(B' —A'),

= & (2/77 ) /2( A 'e'n/6+8'e 'n/6)III

(3.9c)

(3.9d)

Note that Eq (3.8a) can only be used if 8 = A and Eq.
(3.9d) can only be used if 8 ' = A ' due to the dominance of

To finally specify the Green's function and the continu-
um and bound states, we must impose the boundary con-
ditions specified in Eqs. (2.6)—(2.9). We begin with the
continuum-state wave function whose boundary condi-
tions are given in Eqs. (2.6). Boundary condition (2.6a)
forces the coefficient of the increasing exponential in Eq.
(3.4a) (BI) to be zero. This condition along with Eqs.
(3.8) can be solved leaving one free parameter (A) in
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which case u„(r)has the form
N

u(„)(r)=2A(2/m)' cos(~/6)[C (r)]

X sin[w, (r)+1r/4], (3.13)

where we have also used Eqs. (3.4) and (3.10). Equating
the asymptotic form of (3.13) with that given by bound-
ary condition (2.6b), we can determine the value of the
constant A and also the non-Coulomb part of the phase
shift 5„.Since [C„(r)] ' -k ' as r —+ ~, it is

clear that

A =[2cos(n/6)] (3.14)

(3.15)

where

w'„"(r)=J [2E&—2[ —(r') '+ —,((l)v+ —,') r ]j' dr'
OC

(3.16a)

and

roc= j [1+2E&(l(v+—,') ]' —1] l(2EII ) . (3.16b)

The integral in Eq. {3.16a) can easily be evaluated. The
asymptotic form of w'„"(r)for EII & 0 is

w ',"(r) —k&r —,' 1&mr+ ( 1/k)v )—

+(1/kN )ln(2kN )+rl'„' n /4, —(3.17a)

where only terms small compared to m have been neglect-
ed and where

'=(1/k1/) —(1/k)v)ln[[(1/kII) +(lII+ —,') ]]

—(l)v+ —,
' )sin

(1/k)v )

[(1/k)v) +(1)v+ —,') ]'/

(3.17b)

is the WKB approximation to the Coulomb phase shift.
It is important to compare g' ' to the exact expression
given in Eq. (2.10c). We find that the error

+ ' is small compared to ~ for E 0.2 a.u.
and that it is very weakly dependent on l.

The asymptotic form of Eq. (3.15) can then be written
as

A complete summary of the values of all constants deter-
mined by imposing boundary conditions may be found in
Table I.

Specifying the phase shifts 5 and rl„requires special
N N

consideration. We begin by rewriting Eq. (3.13) as fol-
lows:

(Il)( ) (2/ )1/2[( (r)]
—1/2

N N

Xsin[w'„"(r)+~/4+ [w (r) —w'„"(r)]],

WKB non-Coulomb phase shift as

(3.19)

It is important to make two observations about the above
equation since it is a key result of this paper. First, it is
easy to show that, if U(r) has the form of a short-range
potential plus a Coulomb part, then the WKB non-
Coulomb phase shift approaches a finite limit as r ~~.
Second, this form for the WKB non-Coulomb phase shift
holds, not only for E)0, but also for E &0. When
E &0, 5'„'acquires an imaginary part since the in-

tegration in the term w (r) begins at the smaller turning
point. This equation for the phase shift will be used in
satisfying the boundary conditions for the regu1ar and ir-
regular parts of the radial Green's function.

D. %KB bound states

E. Regular and irregular parts
of the radial Green's function

The procedure for evaluating the constants contained
in the general WKB solutions for the radial Green's func-
tion is to impose all boundary conditions which do not
involve the asymptotic behavior of the solution as r —~,
and then match the asymptotic form of the general WKB
solution with the required form.

For the regular part of the Green's function, the regu-
larity condition together with Eqs. (3.8) and (3.9) allow us
to write all ten constants in the general solution in terms
of two of them so that the solution in region III has the
following form:

X f
—AIIIexp[+ (w'„(r)(]

+&IIIexP[ lw'. (r)l]] (3.21)

where we have introduced two constants Ar'rr»d &err
defined by

The WKB solutions for bound states are well known.
We present them here to show the Green's function will
have resonances at the WKB bound-state energy levels
and for the sake of completeness. Imposing the condition
that the bound states must vanish at r =0 and ~, as well
as the normalization condition, we can determine all of
the unknown constants and also the WKB energy levels
given by the condition

I')

a,= C„(r')dr'=(n'+ —,
' )n. =(n —l —

—,')11 . (3.20)
0

Here, n' is the radial quantum number which counts the
number of nodes in the radial wave function excluding
those at r =0 and 00. The quantum numbers n and l are
the usual principal and angular momentum quantum
numbers. The values of the constants for the WKB
bound-state solutions are given in Table I.

(II) (2/ )1/2k —1/2s1 ( g +g(WKB) )
N ~ N

(3.18)

where 0„is defined by Eq. (2.10b) and we identify the
N

AIII= —2A cos(a )cos(~/6),

~III =~111{2 /~ )

{3.22a)

(3.22b)
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TABLE I. These tables present the coefficients for the WKB approximate Anal-state radial wave function, regular and irregular

parts of the Green s function, and the radial bound-state wave function. They are used in conjunction with Eqs. (3.25) and (3.26).
The constant N in the bound-state wave-function coefficients is determined by normalization. In practice, this is done numerically.

B

1/2
1 2

2
2 cos

6
2 cos

6

uv
0

1 2
N m.

' 1/2

cos
6

0 1

N

R,

' 1/2
—i(a —o )

e

4cos(a, )
0

—i(a —a )
V V

4cos(a, ) cos
6

—i(a —o )
V V

4cos(av) cos
6

0
1/2

i(a —o )

e ' cos(a )

i(a —o )

e " V sin a,——
3

cos
6

i(a —a )—e " v sin a,—
3

cos
6

Bll B'

u
N

' 1/2
—i n/41 2

2 7r

1 2

2 7T

' 1/2

e+i n/4

uV
0

' 1/2
1 2

N m
e

—in/4 cos
6

1 2

N m

1/2

e +i n/4 cos
6

1)n
—I —

1

N
( 1)n

—I —
1

N

' 1/2
—i(a —o )

V V

1/2
—i(a —a )

e
-i(a —o ' sin a,——

3

—i(a —o )' sin av ——
3

R
4cos(a, )

e
—in/4

4cos(a, )

+in/4

2cos(a ) cos
6

2cos(a ) cos
6

1

2

1/2
i(a —a ) —i(a —n/4)

e ' 'e
m

1 2

2 7T

' 1/2
i(a —a ) +i(a —n/4)v v e v

t(a --a )v v

2 cos
6

i(a —o )

e

2 cos
6

Bill

u
N

uv
0

1/2

0

' 1/2
( 1)n

—I —
1

cos
N 6

R
1 2
2 7T

/4
—i (a —o —n/4)

2
in/4 v v

+i (a —a —n'/4)

0 1 2

2

' 1/2
i(a —o )

V V
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These constants are more convenient for matching the
asymptotic forms of R „(r)[Eqs. (2.7)] and R („)(r). For
E &0, we can write the asymptotic form of R', )(r) as
follows:

P(„'(r)=)C(r)~ '
I Aiexp[ —~w„{r)~]

+BIexp[+ ~ w„(r) ~ ]],
P'„"'(r}=[w,(r)/C„(r)]' '[AJ+, /, {w (r))

(3.25a)

R ( ) (2j )1/2~k~
—1/2D

+BJ )/3(w„(r))], (3.25b)

X sin[kr —
—,
' lm + (1/k)ln (2kr)

+P~ + +8(wKB)] (3.23a)

g'„~~)(r)= [C„(r)] '
[ Aliexp[iw„(r)]

+B„exp[—iw„(r)]], (3.25c)

where we have put

AIII = Dex—p[ —i(P'„+a„+n/4)]/(2i),

Birr =D exp[i (P„'+a„+n/4) ]/(2i),

(3.23b)

where C„(r)and w, (r) are defined in Eqs. (3.11a) and
(3.11b), respectively.

For E &0,

@' '(r)=
) C„(r)

~

'
[ Aiexp[ —

~
w„(r)) ]

O~ ls

o.,= lim [w(,"(r)+rr/4 [kr —
—,
(l—m+(I/k)ln(2kr)]],

+Biexp[+ ~ w, (r)
~ ] j,

g'„")(r)=[w,(r)/C, ,(r)]' [AJ+, /3(w (r))

(3.26a)

(3.23d)

and we have used the relation w„(r)+w'(r)=a„for
r & ro Com. paring Eq. (3.23a) with Eq. (2.7b) yields

D
—i m!4

p'„=g„—o„. (3.24a)

(3.24b)

Note that since only below-threshold processes are con-
sidered in this paper, E & 0 for the Green's functions and
therefore g,=0 here.

These constants are chosen so that, in the limit where
the non-Coulomb part of the electronic potential van-
ishes, the asymptotic form of the regular part of R'„'(r)
agrees with that for R„(r)in the hydrogenic case. Also
the WKB non-Coulomb phase shift is again given by Eq.
(3.19). Comparing Eqs. (3.21) and (3.24), the constants
Ai'12) and Bl'll can be evaluated and therefore so can all
of the constants needed for a complete determination of
the regular part of the WKB radial Green's function.

To determine the constants for the irregular part we
first apply the irregularity condition at the origin. It is
easy to show that Eq. (3.6a) has the correct asymptotic
behavior for small r if Ar is set to zero in the WKB gen-
eral solution. Also, by Eq. (2.8b), the irregular Green's
function decays to zero for large r, thus we set Arrr equal
to zero. The constant Brrr is then determined by the
same method as for the regular part of the WKB Green's
function. With these conditions along with Eqs. (3.8)
and (3.9) all of the ten constants may be evaluated.

+BJ ) /3(w „(r))], (3.26b)

Q'„'(r}=[C„(r)]' [ Aiiexp[+iw„(r)]

+Bllexp[ —iw„(r)]],
P'„'(r)= [w' (r)/C„(r)]' [ A 'J+)/3(w'„(r))

(3.26c)

i(C,(r)(, r &ro
C„(r)='

~C„(r)~, r &ra

and for E &0,

i~C, (r)~, r &ro

C„(r)= ~C„(r)~, ro&r &r)

i~(C, (r)~(, r & r).

(3.27a)

(3.27b)

For the integrals w, (r) and w', (r) we have, for E &0 and
E)0,

+B'J )/3{w'„(r))], (3.26d)

)(r) = ~C,(r) ~

'
[ Aillexp[+ )w'„(r)

~ ]

+Bmexp[ I w.'{r}I]]—
and w'„(r)is defined in Eq. (3.11c).

In computing the quantities C„(r),w„(r),and w,'(r) it
is critical to take the proper branch of the complex
square root of C„(r) Since C„.(r) is always a real num-

ber, ~C„(r)( is the positive real square root of )C„(r)(.
Then, for E&0,

F. The final &KB solutions

All of the wave functions and the regular and irregular
parts of the Green's function are now determined under
the WKB approximation. Their complete definition may
be found in Table I. This table lists the constants Ar, Br,

~rr Brr ~ B ~rrr and Brrr for the four func-
tions u (r), u (r), R (r), and I (r}.

The constants in Table I correspond to those in the fol-
lowing transformed WKB solutions.

For E &0,

and

The integral w „'(r)is only used when E & 0.

(3.28a)

(3.28b)
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IV. REGIONS OF VALIDITY OF PROPER
AND LOCAL WKB SOLUTIONS

respect to x. A tolerance (e) is specified and the proper
solution appropriate to the value of I' is used whenever

The exact locations of the end points of regions A and
B around the turning points must be determined in order
to smoothly connect the solutions. These end points are
determined by the well-known [9] condition for validity
of the proper WKB solutions. This condition [in terms of
x = ln( r lao ) = ln( r), because an = 1 a.u.] is

)f (x)~ ((1,
where

2[E —U,a(x) ]—U',a(x)
(x)=

j 2[E —U,tt(x ) ] ]
' '

(4.1)

(4.2)

and where U', tr(x) denotes the derivative of U,s(x) with
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FIG. 2. (a) A plot of the solution of
~f (r)

~

=0. 1 as a function
of photon energy for hydrogen with 1=1. The dashed curve
represents the boundary between regions I and 3, the dotted
curve is the boundary between regions A and II, the dash-
dotted curve is the boundary between regions II and B, and the
solid curve is the boundary between regions B and III. The
vertical axis represents the radial electron coordinate and nega-
tive values are shown so that the lowest curve can be dis-
tinguished from the r =0 line. (b) A similar plot for Cs with
1=1. The lowest curve is actually two curves which cannot be
distinguished on the scale of the graph.

~f(x)~ &~, (4.3)

otherwise the appropriate local solution is used. In the
calculation of H and Cs cross sections a tolerance of
@=0.1 was used.

For E (0, the validity function exhibits two divergent
peaks at the locations of the turning points. The local
solution provides a good approximation to the exact solu-
tion in regions close to a turning point and also far from a
turning point. At intermediate distances, the approxima-
tion is less good. Thus, for optimum performance of this
method, the separation of the turning points should be
large compared to the size of the regions in which the lo-
cal solutions are valid. If this is only marginally the case
"glitches" appear in the graph of the WKB approximate
wave function.

Figure 2(a) shows the regions I, A, II, B, and III for
the %KB hydrogenic Green's function as a function of
photon energy. For a given photon energy (horizontal
axis), the lowest (dashed) of the four curves represents the
boundary between region I and region A. The second
lowest (dotted) curve represents the boundary between re-
gion A and region II, the next (dash-dotted) curve
represents the boundary between regions II and 8, and
the highest (solid) curve is the boundary between regions
8 and III. The vertical axis is the radial coordinate and
negative values are shown so that the lowest curve can be
distinguished from the r =0 line. These curves are the
solutions of

~f (x)
~

=e (where a=0 lto matc.h the case of
the cross section curve presented later).

Note that region II [between the middle two curves in

Fig. 2(a)] is always much smaller than region B (between
the upper two curves). This indicates that the approxi-
mation of "well-spaced" turning points is marginal for
hydrogen. This does not radically affect the accuracy of
the calculated cross sections as will be seen in Sec. V. It
is also possible to treat the case of "closely spaced" turn-
ing points [9].

Although it may seem inappropriate to use a "local
solution" in the rather large region B, we emphasize here
that these solutions satisfy the differential equation in the
neighborhood of the turning points and also at large dis-
tances away from them. Thus, at large distances from
the turning points, the difference between the proper
solution and the local solution is negligible. This pro-
vides for a smooth transition from local to proper solu-
tion at the end point of the local region. It also indicates
that there may be a better criterion for deciding which
solution to use other than the traditional WKB validity
function.

The corresponding validity region plot for Cs is shown
in Fig. 2(b). Here the lowest curve is actually two curves
which are so close together on the scale of the graph that
they coalesce. This indicates that regions I and A are ex-
tremely small compared to regions II and B. The well»

spaced turning point approximation is therefore much
better for Cs than for H.
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V. TWO-PHOTON IONIZATION
OF HYDROGEN AND CESIUM

To assess the performance of this method we have cal-
culated the cross section for two-photon ionization of hy-
drogen and cesium with linearly polarized light. The
two-photon radial matrix elements [Eq. (2.1)] were calcu-
lated by a method similar to that of Ref. [7] which we
brieAy recount here.

For linearly polarized light, the two-photon-ionization
cross section can be written as

o' '=(8.069X10 ' )E —'(iM' '
i

+4iM' '
i )2 Ph 9 v20v1v0 5 v22v]v0

(5.1)

where M' ', , M', ', , and F. h are expressed in atomic
20 1 0 22 1vo

units, o z
' is expressed in cm sec, and

vo = ( Eo, l o ) = (
—E;,„,0),

vi =(E, , l, ) =( —E;,„+E„„,1 ),
vq2

= (Eq, l~~ ) —( E—
,,„+2Eph, 2),

2o
= ( E2, l2o ) = ( E;—,„+2Eph, 0),

(5.2a)

(5.2b)

(5.2c)

(5.2d)

where E;,
„

is the ionization energy of the atom in atomic
units.

The double integral over all values of r
&

and r2
represented by M' ' is split into two integrals. One of

2 1 0

these has as its region of integration that part of the r, r2
plane for which r, ) r2 and the other that for which
r2 ) r, . Inside these regions the r & and r & coordinates
may be explicitly assigned. We then choose to perform
each of these double integrals in an order such that the
inner integral is over the smaller coordinate. Thus
M' ' may be expressed as210

t'2

(
—1/2m)M'„'„,= dr2u„(r2)r2I„(r2) dr, R, (r, )r&u (r, )+ dr, I,, (r&)r&u (r, ) f dr2u„(rz)r&R (r2) .210 O 2 1 0

(5.3)

Each of these integrals can be converted into a system
of first-order differential equations. The differential sys-
tems were evaluated with a fourth-order Runge-Kutta al-
gorithm. In contrast to the method in Ref. [7], however,
no rotation of the integration contour into the complex
plane was performed.

The calculated hydrogenic cross sections are presented
in Table II and also in Fig. 3(a). Table II shows a quanti-
tative comparison of hydrogenic cross sections from the
present work with those calculated by Karule [10]. The
differences range from less than l%%uo to just larger than a
factor of 2. Figure 3(a) contains a graph of the hydrogen-
ic cross section as a function of the photon energy. The
resonances are in the correct positions. This is not
surprising because the regular part of the WKB Green's
function depends inversely on cos(a„)and, for resonant
photon energies, a equals a half-integral multiple of m.

Thus, since the WKB approximation produces exact
energy-level positions for H, the resonances in the WKB
Green's function will be correctly positioned. This point

TABLE II. A comparison of WKB hydrogenic two-photon-
ionization cross sections using linearly polarized laser light with
the exact cross sections of Ref. [10]. The quantities in square
brackets indicate the power of 10 by which the number preced-
ing the brackets is multiplied.
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FIG. 3. {a) A plot of the two-photon-ionization cross section
of H vs photon energy. (b) A similar plot for Cs around the 7p
resonance. The points marked with an "X"are the results of
Ref. [14].
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In deciding what form to use for the potential for Cs
we were guided by the simple argument of the preceding
section regarding the positions of the hydrogenic cross-
section resonances. For hydrogen, the exact potential is
known, and it is a fortuitous circumstance that the %KB
energy levels for H are equal to the exact ones. It is clear
that, if the WKB approximate energies had been different
from the exact ones, the cross-section results would have
been very poor because the resonances would have been
out of position.

We chose the Cs atomic potential such that the WKB
energy levels for this potentia1 agree with the experimen-
tal levels. The form of the potential used in the present
work follows an analytical form used previously in con-
nection with the Thomas-Fermi potential [15]. We
present here the electronic potential energy [the quantity
U(r) in Eq. 3.11(a)]

U(r) = —( 1 lr)[(Z —1)P(r /p)+ I ], (6.1a)

is critical in choosing the potential for Cs which is op-
timal for this method.

We have chosen to calculate Cs cross sections around
the 7p resonance as a first test of this method for two
reasons. First, it is one of the few cases for which there
exist measurements of absolute cross sections [11].
Second, a large body of careful theoretical work exists for
this case [12—14]. Especially useful is the calculation of
Ref. [14] whose results are in tabular rather than graphi-
cal form allowing a careful comparison with the present
work. Figure 3(b) contains a graph of the two-photon-
ionization cross section of Cs with linearly polarized light
for photon energies ranging from 2.5 to 3.1 eV. This
range scans across the 7p resonance. The points marked
with an "X"are the data of Ref. [14]. The agreement is
reasonable considering the fact that the calculation of
Ref. [14] included spin-orbit effects and the present work
did not (note that the cross section data of Ref. [14] ex-
hibit two resonances, the 7p, /2 and 7p3/2). It is worth
noting that the experimental position of the antireso-
nance falls at approximately 2.58 eV, which is between
that of this work and that of Ref. [14].

The cross sections in this work were calculated using a
SUN SparcStation 2-6S. Each cross section required ap-
proximately 5 min on this machine. One numerical ad-
vantage of this method is that about the same amount of
computing time is required for Cs as for H. The only
difference in the computer program is the atomic poten-
tial.

The most critical element required for the success of
this method is choosing the optimal atomic potential.
The potential chosen for Cs and the criterion for choos-
ing it will be discussed in the following section.

VI. DISCUSSION:
CHOOSING THK ATOMIC POTENTIAL

TABLE III. A list of the values of the parameters aI, used in
the model potential for Cs [Eqs. (6.1)].

—0.555 802
+2.898 796
—2.077 431
+0.338 513
+0.363 840
—0.011988

where

6

y
k /2 (6.1b)

and
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p =0.8853Z

The symbol Z is the atomic number.
The six parameters aI, were determined so that the

WKB energy levels, as determined by Eq. (3.20), matched
the 6s, 7pii2, 8p&t2 9pin 10pIn and 11p,&2 experimen-
tal levels [16]. We also note that it is crucial that one of
the fitted energy levels be the ground state. The values of
these parameters are listed in Table III. How these
values were obtained and values of the al, for other atoms
will be subject of a forthcoming article.

The idea of using the experimental energy levels to
determine the form of the potential is not new [17]; in
fact it is quite old, but it is certainly different in this con-
text. It is also possible to include spin-orbit effects in this
technique.

In conclusion, we have presented a method for uni-
formly approximating all of the functions which appear
in the N-photon radial matrix element using the WKB
approximation. Furthermore, we have calculated cross
sections for two-photon ionization of H and Cs ionized
by linearly polarized light and compared the results with
other work.

This method can also be applied to the calculation of
other useful quantities such as atomic parameters used in
effective Hamiltonian calculations and optical parameters
of gases such as indexes of refraction. More work, how-
ever, is needed on the determination of the best potential
to use, on the refinement of the WKB validity criterion,
on the inclusion of spin-orbit effects, and on further test-
ing with other atoms.
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