PHYSICAL REVIEW A

VOLUME 45, NUMBER 6

Theory and simulation of high-gain ion-ripple lasers

K. R. Chen* and J. M. Dawson
Department of Physics, University of California at Los Angeles, Los Angeles, California 90024
(Received 21 October 1991)

Both the Raman, coherent Compton, and Compton regimes of high-gain ion-ripple Lasers (IRL’s) are
studied. The IRL works by coupling a negative-energy beam wave (or ponderomotive potential) to an
electromagnetic wave by means of the ion ripple (backward Raman scattering or backward coherent
Compton scattering) or by amplification of an em wave by negative Landau damping (backward Comp-
ton scattering). By employing fluid theory, the dispersion relation for wave coupling is derived and used
to calculate the radiation frequency and linear growth rate. The nonlinear saturation mechanism is ex-
plored. A multidimensional (one dimension in space, three dimensions in momenta and fields) particle-
in-cell simulation code was developed to verify the ideas, scaling laws, and nonlinear mechanisms. The
effect of momentum spread is also studied; there is a slow decrease in the growth rate and efficiency as
well as broadening of the radiation spectrum. This scheme may provide tunable sources of coherent
high-power radiation. By proper choice of device parameters, sources of microwaves, optical, and
perhaps even x rays can be made. An ion ripple in a plasma can provide a very short undulator wave-
length (e.g., ~ 1072 cm) and strong dc electric fields (e.g., ~ 10'® V/m; equivalent to a magnetic field of
30 T). The plasma also produces an ion channel that provides guiding of electron and laser beams. The
IRL’s may generate high-power (e.g., > 1 MW), coherent, short-wavelength photons with relatively low
beam energy (e.g., ~ 10 MeV) and possibly low beam quality requirement. The availability of tunable
sources for wide wavelength regimes, coherence and high power, as well as lower cost and simplicity of
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equipment are emphasized.

PACS number(s): 41.60.Cr, 52.35.Fp, 52.40.Mj, 52.65.+z

I. INTRODUCTION

A scheme [1] to generate tunable coherent radiation in
a high-gain regime is studied here. The basic concept is
to use a relativistic electron beam propagating obliquely
across an ion ripple, as shown in Fig. 1. Electromagnetic
radiation is generated with a peak growth rate at a reso-
nance frequency, @ ~2y3k;.c cosf, where y, is the beam’s
Lorentz factor, k;, is the wave number of the ion ripple,
and 6 is the angle between the beam and the ripple.

The first step is to create a plasma density ripple. As
one possibility, a sound wave can be used to modulate the
density of a neutral gas which is then ionized by a laser
pulse [2]. The wavelength of the gas ripple is limited by
the molecular mean free path (it should be > 10Apgp).
The mean free path can be estimated from

Avpp=(m4°n,)7", (1)

where 4 is the radius of a gas molecule and n, is the gas
number density. Thus a shorter ripple length can be ob-
tained by using higher gas densities and larger atoms or
molecules. The amplitude of such density ripple can be
large (~50%) for realistic situations. Another way to
create the ion ripple is to excite an ion acoustic wave [3]
in the plasma. The wave number and frequency of the
plasma ripple are those of an ion acoustic wave:
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where ;, is the frequency, ,, is the ion plasma frequen-
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cy, k;; is the wave number, and A, is the electron Debye
length. For k; Ap, <<1, we get the wave number to be

kirzwir/cs ’ (3)

where ¢, =(kT,/m;)!/? is the ion acoustic speed, T, is

the plasma electron temperature, and m; is the ion mass.
We have assumed the ion temperature is low. The ion
ripple is shielded by plasma electrons.

In order to produce radiation from the ion ripple, a rel-
ativistic electron beam is injected into the plasma at an
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FIG. 1. A relativistic electron beam propagates through an
ion ripple with an angle 6. The dashed curve is the actual beam
electrons’ trajectory, while the straight arrow is the original
beam path. The radiation direction is the beam direction.
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angle 6 with respect to the ripple. As long as the beam
density n, is equal to, or higher than, the plasma density
ny, the plasma electrons are expelled from the path of
electron beam [4,5] by its space charge. The ion ripple
will then be seen as a stationary undulating force by the
beam electrons. The electron oscillation frequency
caused by the undulated force is k;v,cos6, where v, is
the beam velocity.
We take the density of the ion ripple to be

n;=ng[1+e€sin(k,.r)], 4)

where €;. is the fractional perturbation ripple density.
The ion ripple is assumed to be stationary because the in-
teraction time scale is much shorter than that for ion
motion. The electric field induced by this ion ripple is
that produced by unshielded ions because the plasma
electrons are expelled and the beam is so stiff it does not
shield the ions; therefore it is

4mngye
Eir= - k

1r

€,cos(k,.r)t, (5)

where T is the ripple direction (we assume the beam den-
sity is equal to or greater than the plasma density).

Since the beam velocity v, is much greater than the
acoustic velocity c,, the ion ripple can be treated as sta-
tionary. If the transverse (X and §) variation of the ion-
ripple field on the beam electrons is negligible, as shown
in Fig. 1, the problem can be simplified to one dimension.
The electric field acting upon the beam can be written as

E — 4mnge
ir k

€;cos(k,z ) (X sin6—2Z cos6) , (6)

where €; =¢€;.cos0 is the fractional ripple of ion density,
and k, =k;.cosf is the effective wave number of the ion
ripple along the beam direction. The longitudinal (Z)
part of E;, may excite electrostatic instabilities [6,7] on
the beam. However, since the time scale of the elec-
tromagnetic (em) radiation growth is much shorter than
that of the electrostatic (es) waves, this becomes unimpor-
tant if [6]

1)
kye>>—20 0

Yo
where wf,e=47rnoez/me is the plasma frequency. This

will be checked in the computer simulation. Subjected to
the transverse (X) field of E;,, the beam electrons execute
transverse oscillations. These transverse oscillations are
the source of the energy needed to produce electromag-
netic radiation[8].

The low-gain regime for the ion-ripple laser (IRL) can
be described by the unified theory of our previous paper
[8]. There the IRL is treated as an initial-value problem
and the amplitude of the radiation wave field is approxi-
mated to be a constant. In this paper, we are going to
study the ion-ripple laser in the high-gain regime, where
collective effects are important. The dispersion relation
will be derived in the following section using Fourier
analysis. Section III studies the ion-ripple laser in the
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Raman regime (collective space-charge effects are impor-
tant); while the coherent Compton regime (collective
space-charge effects are negligible, but the electron
motion is coherent) will be divided into two domains ac-
cording to the undulator length and will be discussed in
Sec. IV. In the long-undulator-wavelength domain for
the high-gain coherent Compton regime, we will see that
the transverse electron oscillations are much stronger
than those in the short-undulator-wavelength domain due
to the magnetic field associated with the equilibrium os-
cillatory motion of the beam. The simulation model we
developed in an our paper [10] is used to check the validi-
ty of the theory and to study the nonlinear saturation
mechanisms; the results are shown in Sec. V. Possible ap-
plications are discussed and comparisons made with the
free-electron laser [11]-[29] in Sec. VI. Section VII gives
a summary and some discussion.

II. THEORY AND DISPERSION RELATION

In the low-gain regime, the energy gain of wave fields is
small comparing with the initial energy of the waves.
The amplitude of wave fields can be assumed to be a con-
stant during the interaction. This is usually true for early
times in the interaction. The interaction can be studied
as an initial-value problem. However, in the high-gain
regime, the wave fields gain a lot of energy; the amplitude
of the wave can grow exponentially. The motion of the
beam electrons is also strongly modulated by the growth
of the wave fields. Thus it is necessary to study the in-
teraction self-consistently; that is, a dispersion relation
needs to be derived. Fourier analysis is the natural way
to attack this problem.

The equations needed to derive the dispersion relation
are Maxwell equations, the continuity equation, and the
equation for electron motion. They are given by

V,-E,=4m(n;—nye , (8)
doB
v},><Ex=—l L )
c Ot
41 1 aEx
XB,="Tj +——2> 10
VZ By c ]x c at ’ ( )
on P, on n P,
0=—2% e M 8 |22 | 1
ot ym, 0z m, 3z |y
on
A pe o |p+EXB | _HT T, (12)
dt ym,c n, 0z

where E,, E,, and E are the electric fields, B, and B are
the magnetic fields, j, = —n,ev, is the transverse current
of the electron beam, m, is the rest mass of the electron,
P,=ym,v,, P,=ym,v,, and P=XP +2P, are the
momentum components of the beam electron, and «T is
the beam electron temperature and is assumed small (if it
is not small, a pressure tensor or a covariant formalism
[30] shall be used). We have taken the beam density to
be, on average, equal to the plasma (ion) density to sim-
plify the analysis; we could of course carry through the
analysis for other situations. The wave fields induced by
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the charge density and current are given by Maxwell
equations [Egs. (8)-(10)]. The electron’s response to the
wave fields is described by the equation of motion [Eq.
(12)]. The continuity equation [Eq. (11)] assures the con-
servation of beam charge and provides a relation between
the perturbations of the charge density and longitudinal
velocity. The momentum transfer between the longitudi-
nal and transverse motion is via jX B, which provides a
ponderomotive force.

To simplify the algebraic calculation, we use the fol-
lowing dimensionless scales:

t<—wpet ,
X,2¢X Wy /C,Z00, /C

n;,n,<n;/ny,n,/ng ,

(13)
P_,P,<P /(im,c),P,/(m,c),
T<—«T /m,c?,
E.,E,B,
«—eE, /(m,wy.c),eE, /(m,wp.c),eB,/(m,o,c) .
Then, Egs. (8)-(12) become
d
EEz=n,~—n,, , (14)
Op __9
2z 13
d,__ . 9
3, By = T a:E" , (16)
=9 9 9
0 ot n, +Bz dz nb+nb asz ’ (17)
d b (E4+BXB)-3Ttp (18
e d az =’ )

where B, =v,/c and B=v/c.
If we assume €; << 1, then the equilibrium state (includ-
ing the ion-ripple fields ) is given by

nyo=ny[1+e,sin(k,z)], (19)
P,,=P,[1—y3e,sin(k,z)]Z , (20)
P, =vy,B,sin(k, z)X , (21)
B,y=— i—ucos( k,z)p , (22)
u
Yoo=vol 1 —¥3B3€,sin(k,z)], (23)
B,=— ﬁ_{%—%e,sino , (24)
1/v3

€,= €;c080 , (25)
© (138D /vi—kiBS
where Py=vy,B, is the initial beam momentum,
Bo=vo/c, B,=v,/c, and v, is the electron thermal veloci-
ty.

For small-amplitude electrostatic and electromagnetic
waves (E,,E, <<|E,|), perturbation theory can be used.
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The first- order equations (for the perturbed fields) of Egs.
(14)-(18) can be obtained by a perturbation expansion us-
ing the equilibrium state:

%Ef*n : (26)
5%—68—; ’Ex=—Bu%%sinkuz—ylo 8;’:
%&sinkuz , 27
Yo Ot
%Bﬁ—;’Ex, (28)
58;4.30% n:—ylg%Pz , 29)

d .58 |p _ B
S, TBog, [Px=—E<+BoB, s P,cosk,z , (30)

ad 4 _ .
Y +Bo—a; P,=—E,—B,B,sink,z

B P cosk,z—3T on
YOku 9

_Z ’

where the dependent variables (E,, B, E,, n, P,, and P,)
are first-order terms. Let us further restrict our con-
siderations to k,v >>w,, /¥(’%, then €, is very small and
we can neglect products of €, and first-order terms. We
will also neglect terms which are of order €? times first-
order terms in solving these equations. At the moment
we have six equations, six dependent variables, and two
independent variables (¢,z). Since the functions sink,z
and cosk,z in the equations are periodic, the dependent
variables must also have this periodicity. We therefore
look for solutions of the form

+

(31)

i itk
2 ak+lkue' “, (32)

I=—o

azei(kz—a)t)

where a stands for any one of the six dependent variables.
We know that

(acoskuz)k‘:%(ak_ku+ak+ku) N (33)
(asinkuz)k=—é(ak_ku~ak+k“) . (34)

Thus, for a particular mode k, Egs. (26)—-(31) become

Ez,k=-k_nk s (35)
k

By="Eei, (36)

me=—>% P, (37)
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of ; 22
2_ 12 — Pu _ io 1+3k“B B.
(0" —=kDE, ) =—— (Mg —Hprp )+ yon,k (w—kﬁo)Pz,sztnk— 2(0[(k—ku)Ex’k_ku
wBuB — +
NV e (38) (ktk)Ex i+, ]
2yo “ “ iB,
) w.....kBo + ZYoku (Px,k*ku+Px,k+ku) ’ (40)
(0—kBo)Py =i ® E, k
) where we have already used Egs. (36) and (37) in obtain-
_iB, {o—(k—k,)By ing Eq. (39), and Egs. (35) and (36) in getting Eq. (40).
2k, k—k, Mk —k, Here the six equations for six dependent variables have
been reduced to four equations [Egs. (37)-(40)] for four
@ —(k+k,)By dependent variables. We need to further simplify them.
k+k, kth|” Substituting Eqgs. (37) and (39) into Egs. (38) and (40),
and changing the subscript of the density perturbation,
(39) we obtain
]
wf o—(k—k,)
ﬂ’z_kz—i E  =—> - %o lha 0 1 Mg —k
Yo 2 k —k, Yok, (0—kBy) u
o—(k—k,)By | , i
[ k—k, |10 i o—kBy | |t [ @D
1+3(k+k, B2 Mh+k,
— 2 T ul P
[o—(ktk,)B] i~ X M,
__ Ktk B, || [ +O 1 E, . ) NS Eic+ax, w“
2ydw —2k, | yok, Ey o, —0 Yok E, x

The left-hand-side term of Eq. (41) is the dispersion relation of the electromagnetic mode with a wave number & in a
uniform electron beam. The electric-field perturbation has a current density perturbation (which is proportional to the
electron density perturbation) as its source terms. Their electron density and em wave numbers differ by k,, they are
coupled through the ion ripple. The dispersion relation for an electrostatic mode with a wave number k +k, or k —k,
in the uniform electron beam is the coefficient of n, ., on the left-hand side of Eq. (42); the electric-field perturbation
couples to it via the current variations due to the ion ri;;ple.

Substituting Eq. (42) into Eq. (41), we obtain the dimensionless dispersion relation

1+3(k+k, B>
0=k = | |[o—(ktk, Byt~ ———
Yo Yo
kT —1 |(ktk,)B,
Yok, . o—(ktk,)B} 35 1 @3)
— _— 7/ R
473 ktk, ’ ¥ okaBo J
[
P w2, +3k2v}?
where the upper (lower) sign is for the upper (lower) half e =(w—k vy)i——F Pt (46)
o plane. Choosing the upper sign and making use of the p0 v ’
dimension scales, we rewrite the dispersion relation as )
___pe 2 2
8emgesch ’ (44) k ')/()kucz kpBuwpe
C =
where 4 473
2 —k ?
(2] 2 Vo pe
=@’ — k22— 2= X [1———2= |y3Bo+—3— ||, @7
Eem—0 —k*c Ve’ (45) kpc Yobo 70k3UOC
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_ wIZJe /7/0
(@he /70)B5+ kv

B,= €;sinf . 48)

€.m=0 is the dispersion relation for electromagnetic
modes in a uniform plasma; €,,=0 is the dispersion rela-
tion for electrostatic modes for wave numbers k, =k +k,
(conservation of momentum) in a uniform plasma. The
wave frequency can be determined by the intersection of
the electromagnetic and electrostatic dispersion curves;
that is, w.,=w. (conservation of energy), where
O =(k%c?*+ w2, /v,)'/? is the frequency of the em mode,
and o4 (*)=kv,+S, S==x[S|, and [S|=(a},
+3k2v2)!2/y3/% is the frequency of fast (+) and slow
(=) electrostatic beam modes. C, in Eq. (44) is under-
stood as the coupling factor of em modes and es modes
through the ion-ripple pump mode. It gives a small vari-
ation to the radiation frequency and it gives a finite band-
width of unstable modes.

III. HIGH-GAIN RAMAN REGIME
OF THE ION-RIPPLE LASER

In this section, we analyze the growth rate and
efficiency of the ion-ripple laser in the high-gain Raman
regime. In the high-gain regime, the wave fields grow
significantly. The wave-field growth and electron’s dy-
namics need to be studied self-consistently. In the Ra-
man regime, the space-charge effect is important; this
separates the slow and the fast space-charge modes. We
know that the radiant wave frequency can be estimated
from the intersection of electromagnetic and electrostatic
dispersion curves. For ¥ >>1, the wave number of the em
mode is k ~2y3(k;vocos0+S)/c. This reveals the scal-
ing of the radiation frequency, including Doppler shifts
and space-charge effects. The mode is called the back-
ward Raman instability since, in the beam frame, the un-
dulator field looks like an incoming wave and the radia-
tion is in the opposite direction.

To obtain the growth rate and more accurate radiation
wave frequency, we need to solve the dispersion relation,
Eq. (44). From resonance of the slow electrostatic mode
with the electromagnetic mode, we have

o—(k,po—|S])=8 49)

=Aw+A~0, (50
Av=0—w0,, , (51)
A= 0 —k,vo+]S] . (52)

The dispersion relation can be rewritten as

¢y
Ao(5-2IS|)Aw+A)=5" . (53)

em

Since space charge is important, we assume |S|>>|8[;
that is, the slow mode is decoupled from the fast mode.
Then, Eq. (53) becomes
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f
Ao’ +AAo+———=0. (54
@ TP )
There are complex conjugate solutions of Aw if
C
L _>a?, (55)
|S|@em
Therefore the radiation frequency is
o=0,tio; , (56)
0, =g, — % , (57)
172
C
;=1 |-a2——7 , (58)
b2 SWerm

where A=w ., —w,. We define §, =w, —w.,=A/2 as the
mismatch factor including space-charge effects [8].

Equation (57) reveals that the radiation frequency is
halfway between the frequencies of the uncoupled elec-
tromagnetic wave mode and the slow electrostatic beam
mode as shown in Fig. 2. This is a characteristic for
two-wave coupling.

Resonance occurs at § ~0 so that the condition for in-
stability can be expressed by C,S <0. This can be ex-
plained as follows. We rewrite the dispersion relation,
Eq. (44), to read

(@* =)0~ t)][o—w—)]=C, . (59)

When the slow electrostatic beam mode and the back-
ward scattered em mode are at resonance [i.e.,
0= (—)~8 and w—w.l+)~2S8<0], as §<0 (>0)
the requirement for resonance is @>— w2, >0 (<0), which
can be understood from the w-k diagram (Fig. 2). Thus
the coupling factor needs to be positive; that is, C,S <O0.
In other words, we can find a solution between the elec-
tromagnetic wave mode and the slow space-charge mode
[Wem > @ > @ —) OF W (—)>0>w,,], but there is no
solution between the fast space-charge mode and the elec-
tromagnetic wave mode [@.,>®>w(+) or w.(+)

[O)]
4 EM
a)f
8
siow ES
><7]
k

FIG. 2. The radiation frequency is midway between that of
the electromagnetic mode (EM) and the slow space-charge
mode (ES).
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> W > W,y ] to satisfy the dispersion relation.

The bandwidth of the spectrum can be estimated from
the coupling factor C, > |S|w., A% that is, the waves cou-
pling should overcome the mismatch. As shown in Fig.
3, when the coupling factor increases (e.g., by increasing
the amplitude of the ion ripple €; and hence the trans-
verse velocity), the unstable bandwidth becomes broader
and the maximum growth rate increases.

The maximum growth rate is at A=0; that is,

1/2
¢y

|S|a)em

1
@i max 2

(60)

For an energetic electron beam, y >>1, the maximum
growth rate is

@ max _ 1

@pe 2

(61)

2 @pe

B%l '\/70]("(‘ ]1/2

where the growth rate depends on the transverse oscilla-
tion velocity. The transverse oscillation velocity depends
on the plasma (and beam) density. If k,c>>w,, /74’
the maximum growth rate becomes

32
/ €,;sin0

2

w (0]

pe

Vrok,e

i,max

~

(62)

@pe

the growth rate is inversely proportional to y3/%.

The nonlinear saturation mechanism of the ion-ripple
laser is expected to be due to trapping of beam electrons
in the electrostatic potential wells of the beam plasma
wave. The mean velocity of the beam electrons after
trapping is the phase velocity of the slow space-charge
wave. The average energy of the beam after trapping will
be Y pho where

.006

.004

.002

Coupling foctor C; and lslwemb2

22.0 22.4 22.8 23.2

ke/wpe

FIG. 3. Coupling factor C; (straight lines) and |S|w,,A® (par-
abolic curve, 8= A /2 is mismatch) vs wave number for the cases
of yo=3, 0=45", k,c/w, = 1.6, and €;=0.2 and 0.3, respective-
ly.
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— Uph

7/ph_ [ - C2 > (63)

|S|
R (64)

ph 0 ’
k]’

where v, is the phase velocity of the slow electrostatic
beam mode. The efficiency for a cold beam may be es-
timated to be

Yo~ Vph
n=—7_ . (65)
Yo~ 1
For y,>>1, the efficiency is
2 1S
N~Yo
k,c
w e
. (66)

2y8/2kuc

The efficiency of the Raman regime is insensitive to the
3/2

undulator velocity and is inversely proportional to y5’“.
IV. HIGH-GAIN COHERENT COMPTON REGIME
OF THE ION-RIPPLE LASER

The difference between the high-gain coherent Comp-
ton regime and the high-gain Raman regime is due to the
importance of space-charge effects. Quantitatively speak-
ing, it is determined by the relation of the mismatch fac-
tor and the space-charge term. As the mismatch factor
®— . (including the space-charge term) is smaller than
the space-charge term w/y3’?, the scaling law of the Ra-
man regime is applicable. In other word, the coherent
Compton regime is realized if the mismatch factor
w—k,v, is much greater than the space-charge term.

In the coherent Compton regime, the slow and fast
electrostatic beam modes both are involved in the insta-
bility; they are strongly coupled and grow together.
Therefore, as

lo—k,vo| >8], (67)

we must now keep a third-order approximation to the
dispersion relation, Eq. (44),
Cr

2
(@— o, (0—k,v5)"= m

(68)

The radiation frequency is approximately determined by
the intersection of the electromagnetic wave and the
mean frequency of the beam modes. Since we are in-
terested in an energetic electron beams, y,>>1, the radi-
ant frequency is o ~ 2y 3k;,c cosd. We let

O— @y, =6—A , (69)
d=w—k,vq , (70)
A=wem—k,v, , (7D

then, the dispersion relation (high-gain coherent Comp-
ton regime) can be written as

5 —A8*=C,, , (72)
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c, = (73)
fe™ 20em
If
4A®
— 4
21C;, >—1, (74)

Eq. (72) has a pair of complex-conjugate roots and one
real root. They are

51=(s,+sz)+% , (75)
8,=— (8, +sz)+§+z%(51 S5, (76)
8= — (S, +5)+ 5 — i?(s,—sz), 77
where
C 172
S, = Tf] [1+5+(1+20)]7, 78)
C 1/3
$,= |55 | [+g—a+20'717, (79
281
= . (80)
27C,,

The unstable spectrum can be divided into three parame-
ter regimes. For A%< — —27Cy, /4, there are three stable
roots. As A is increasing [for A>—(27C; /4)'], the
growth rate rapidly increase and peaks at A=0. Then,
the growth rate slowly decreases with increasing A. We
are interested in the maximum growth rate, that is,

em—kpUo=0. At this point, the electromagnetic wave
and the beam modes are strongly coupled. However, the
real part of the mismatch factor 8 is not equal to zero.
The imaginary part of the radiation frequency and a
small deviation of its real part are provided by the cou-
pling factor. The small deviation of the radiation fre-
quency gives a difference between the beam velocity and
the phase velocity of the electrostatic potential; that is, it
determines the efficiency. At the maximum growth rate,
the radiation frequency is

‘/
wo—k,00=—3C} A+ CI, (81)
where
/3
k c
Ccl/3= s Dpe
X 274 (82)
Then, we can rewrite condition (67) to be
2 2 172
u@pekyC @pe 83)
47 e
or
172
Dpe 4
B.>> |7 (84)
k,c yl?
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If this condition is satisfied, the scaling law of the high-
gain coherent Compton regime is applicable and its max-
imum growth rate is

2 2 1/3
wi,max Bu wpe

4 ?’ok302 (®3

k,c 2

For a monoenergetic electron beam, the efficiency of
the high-gain coherent Compton regime can be estimated
from electron trapping in the electrostatic potential of
the beam modes. From Eg. (81), we know the phase ve-
locity of the beam mode for the maximum growth rate
mode is

1/3

k, ’

(86)

where the amphtude of the mismatch factor is used. If
C}/3/k ¢ >>1, using Eq. (65), the efficiency is
Bﬁ w:e ] 1/3

4 7’0’%%"2

1
=7 87
n=5 (87)

We know that o; ../k,c =v3y by comparing the
efficiency and the maximum growth rate; that is, both
these quantities have same parameter dependence. One
of the parameters, 3,, needs further discussions since it
depends on different plasma density, energy, and undula-
tor length; the scaling law is thus more complicated than
it might seem.

A. Short-undulator-wavelength domain
of high-gain coherent Compton regime

The maximum growth rate and the efficiency given in
Egs. (85) and (87), respectively, depend on the transverse,
undulator velocity. As shown in Eq. (48), the transverse
undulator velocity also depends on the plasma (and beam)
density. For the equilibrium state, the transverse ion-
ripple force produces undulations in the beam electron’s
trajectories. This oscillating motion produces a trans-
verse current j,. This current produces a transverse
magnetic field B, through Ampere’s law. This trans-
verse magnetic field crossed with the beam electrons’ z
velocity produce an undulating force in the transverse, X,
direction. The force modifies the transverse motion via
the equations of motion; it must be computed self con-
sistently with B. Thus the ion-ripple force, which must
be used in the numerator of Eq. (48), depends on the plas-
ma density. The first term in the denominator arises
from the equilibrium undulator force which depends on
the beam density; the second term is from the inertial
force of the beam electrons. Since the scaling of the oscil-
lation velocity is different for different ku,wpe, or ¥q, We
separate them into two domains according the relative
importance of the equilibrium undulator force and iner-
tial force of beam electrons.

The short-undulator-wavelength domain is defined as

wpe
kye>> =2 (88)
0
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The inertial force of the beam electrons is dominant over
the ponderomotive force in this domain. This gives the
undulation velocity to be

2

[0
pe
BuN

Yokic®

€;sinf . (89)

The condition, Eq. (67), for the high-gain coherent
Compton regime to be applicable becomes
2/3

>>1 . (90)

wpe

172
Yo kuc

€;sinf
2

Yo

From this inequality, we note that increasing plasma (and
beam) density moves one into the coherent Compton re-
gime, not into the Raman regime. The reason for this is
that the undulator velocity (which also depends on the
plasma density) becomes larger. This is in contrast to the
situation for free-electron lasers.

Once this condition is satisfied, the maximum growth
rate is

— . 3,
Di,max V3 | €Sin0 @, o1
k,c 2 2 yoke?’
and the efficiency is
1 | €sin@ wf,e 92)
7 2 2 Yokac? .

B. Long-undulator-wavelength domain
of the high-gain coherent Compton regime

When the equilibrium ponderomotive force is compa-
rable to the inertial force of the beam electrons, then we
are in the long-undulator-wavelength domain

D0 ki cosf>> —25 ©3)
e
the transverse undulator velocity, Eq. (48), becomes
B,= I—_EFe,sinO , (94)
k,c
K= W , (95)

where 1~k>>1/y,. The transverse undulator motion is
insensitive to the beam energy and its spread. Longer-
undulator-wavelengths give stronger undulation veloci-
ties. But, the beam radius is required to be larger than
the wavelength to satisfy the one-dimensionality assump-
tion. The condition (67) for the coherent Compton re-
gime becomes

—>>1. (96)

This condition is easily satisfied for a high-energy beam.
The radiation frequency is @~2ygk;c cos6~2y3 %w,,.
This scaling is something of a disadvantage to compare
with the short-undulator-wavelength domain for using a
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same electron beam. But, it may be still better than for
free-electron lasers (FEL’s) since the undulator wave-
length may be shorter than that for FEL’s. The max-
imum growth rate and the efficiency are

= . 2/3
Dimax _ V'3 | €sinf L o
k“c B 2 2 K+K3 s
1 €;sinf 2 1 2/3 o8
" 2 2 k+i3

The maximum growth rate and efficiency are much
greater than that of the short-undulator-wavelength
domain.

We note that there are some problems which need to
be considered in the long-undulator-wavelength domain.
Since the undulator frequency of the ion-ripple laser is
comparable to that of the ion-channel laser (ICL), ion
focusing effects may play an important role and need to
be studied. However, the results may be better since the
ion focusing force may provide beam guiding for the ion-
ripple laser, just as an axial magnetic field does for a
free-electron laser.

V. RESULTS OF ELECTROMAGNETIC
PARTICLE SIMULATION

We checked the validity of the ion-ripple laser theory
using the multidimensional (one dimension in space,
three dimensions in momenta and fields) periodic elec-
tromagnetic particle-in-cell simulation code [10]. The
simulation began in the equilibrium state, given by Egs.
(19)-(25), plus a small amount of random thermal veloci-
ty.

The simulation’s numerical parameters were as follow-
ing: the grid size Ax is set to 1, the periodic system
length is 1024 grids, the time is normalized to cop_el, the
speed of light is equal to 26, the particle size a =0.6, the
number of electrons is 10240, the ions are a motionless
background with a given ripple, and the thermal momen-
tum spread is 0.6.

Figure 4 shows the growth rate of em waves vs k for
the cases of ¥y =3, k,c=1.60,,, 6=45°, and €;=0.3 and
0.2, respectively. The simulations agree well with the
theoretical predictions and verify that increasing the frac-
tional ripple of the ion density (i.e., increasing the cou-
pling factor) makes the growth rate larger and the unsta-
ble bandwidth broader as discussed and shown in Fig. 3.
The electromagnetic and electrostatic waves’ power spec-
tra for the case €;,=0.3 is shown in Fig. 5; at @,z =500
both waves have already grown to significant amplitudes.
Momentum conservation k, =k +k, is satisfied and we
also observe that w.,~w,. (not shown). These results
agree with the theory of backward Raman scattering.

The efficiency is defined by the percentage of the initial
beam energy converted to the electromagnetic wave ener-
gy. The time evolution of the radiation wave energy for
the case of y,=3, 6=45°, k,c/w, =1.6, and €;=0.3
(Fig. 6) gives an efficiency of 7~ 7%, while the theoreti-
cal estimate gives 7~9%. An absolute instability of the
forward-scattering mode is observed and is believed to be
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FIG. 4. Growth rate from theory (solid lines) and simulation
(discrete points) vs wave number for the cases of y,=3, 6=45°,
k,c/w, =1.6,and €;=0.2 and 0.3, respectively.

responsible for this reduction. The instability of the
forward-scattered mode can be decreased by increasing
the effective wave number of the ion ripple and/or the
beam energy [20,21]. The simulation showed an interest-
ing phenomena, at ¢t ~1000, the wave growth driven by
the Raman scattering seems to have reached a peak, the
wave begins to grow linearly instead of exponentially.
We note that, at that moment, the electron beam has ac-
quired substantial thermal spread; at this time the system
should be in the incoherent Compton scattering (negative
Landau damping) regime. We also observe that lower
wave number em modes grow at later times for this case;
this may be due to the beam slowing and/or parasitic
parametric instability [22]. This is shown in Fig. 7.

The efficiencies and maximum growth rates of different
k,c are given in Fig. 8 for the case of y =3, ¢;=0.3, and
6=45°. As the undulator wave number increases, both
the efficiency and maximum growth rate decrease. The
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FIG. 5. Unstable electromagnetic (EM) and electrostatic (ES)
power spectrum for the case of y,=3, 6=45°, k,c/w, =1.6,
and ¢;=0.3. The electrostatic amplitude is multiplied by a fac-
tor of 100.
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FIG. 6. Time evolution of beam Kkinetic, total electrostatic,
total electromagnetic, and radiant electromagnetic wave ener-
gies for the case of y,=3, 6=45°, k,c/w,.=1.6, and €;=0.3.
The electrostatic energy is multiplied by a factor of 1000.

results of the simulations agree well with theory. Note
that the efficiency decreases slower than the growth rate.
Figure 9 shows the dependence of efficiency and max-
imum growth rate on beam energy for the case of
k,c=1.6, ,=0.3, and 6=45°. Both the efficiency and
maximum growth rate decrease with increasing the beam
energy. The theoretical and simulation results agree well.
The theory shows that the decline of efficiency is faster
than that of the maximum growth rate.

The effects of beam energy spread on the maximum
growth rate and efficiency were also studied. In the simu-
lation, we assign every electron the same beam drift ener-
gy. Then, a thermal momentum spread is randomly
given to electron. Thus the momentum spread also
causes an energy spread; that is, AP,/P,
=(Ay /y)(1+1/y2).

Figures 10 and 11 show the effects of momentum
spread on the maximum growth rate and the efficiency,
respectively, for the case of y,=3, kyc/w, =1.6,
€;=0.3, and 6=45°. Even though both of them decrease
with increasing momentum spread, the decrease is slow
for a few percent of momentum spread. The fractional
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FIG. 7. Unstable electromagnetic waves’ power spectrum for
the case of y,=3, 0=45°, k,c/w,.=1.6, and ¢€;=0.3. Lower
wave-number modes appear in the wave spectrum at later time.
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FIG. 8. Maximum growth rate and efficiency from theory
(solid lines) and simulation (discrete points) as a function of
effective undulator wave number for the case of y,=3, 6=45",
and €;=0.3.

spread of axial momentum should be smaller than the
cold-beam efficiency.

VI. POSSIBLE APPLICATION OF IRL’S AND
COMPARISON WITH FEL’S

Before comparing the ion-ripple laser with FEL’s and
ICL’s and also discussing possible applications of the
IRL, we would like to list the condition, for the max-
imum growth rates, and the efficiencies for three regimes
(domains). These are given in Table I for easy compar-
ison. The three regimes are the high-gain Raman regime,
the short-undulator-wavelength domain of the high-gain
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FIG. 10. Maximum growth rate from the simulation as a
function of momentum spread AP, /P, for the case of y,=3,
kyc/wp,=1.6,0=45° and €;=0.3.

coherent Compton regime, and the long-undulator-
wavelength domain of the high-gain coherent Compton
regime.

Due to technical limitations of undulator wavelengths
(e.g., A,Z1 cm) and magnetic-field strength (e.g.,
<5X10* G), conventional FEL requires a very-high-y
(e.g., ~10%) electron beam to produce a short wavelength
(e.g., A~500 A) and operate there with a low efficiency.
This increases many beam requirements: higher energy,
higher current, and higher quality as well as the magnet
requirements of stronger and more precise magnetic field,
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FIG. 9. Maximum growth rate and efficiency from theory
(solid lines) and simulation (discrete points) as a function of

beam v, for the case of k, ¢ /w,, =1.6, 6=45°, and €, =0.3.
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FIG. 11.

momentum spread AP,/P,,

kyc/wp=1.6,0=45° and €;,=0.3.

Efficiency from the simulation as a function of
the
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TABLE 1. A list of the validity condition, the maximum growth rate, and the efficiency for high-gain Raman, short-undulator-
wavelength coherent Compton, and long-undulator-wavelength coherent Compton regimes.

Condition ®; max n
R X ®p, ©; max @pe 372 €;sinf @pe
aman — ~— = — = —_—
ma w pV0 78/2 Wpe \/Yokuc 22 27’(3)/2".40
. 2/3 _ 2 . 2/3
Short @ pe €;5in6 o1 @ max =_1/_3 @, €;sinf 1 Oimax
Viyekae 0| 2 ke | 2 pokle? | 2 V3 ke
3 — 273 . 2/3
2 K Yo @ max ‘/3 1 eiSIne 1 @i max
Lo B ~k,c, —>>1 = —_— —
ne V7e O Txe 4 ke 2 |k+e 2 V3 ke

very accurate undulator wavelengths and alignment. In
addition, the gain and efficiency are small. Neutrons and
v rays produced by the energetic beam require elaborate
shielding. Although some nonconventional FEL’s [23,24]
can provide short undulator wavelengths, these have
their limitations. ICL’s [31,32] can have higher electron
oscillation frequencies (@, /7¢"?) and stronger effective
fields than conventional FEL’s; however, the scaling of
the radiation frequency with y (i.e., 0~2y3/ 2cope) is
something of a disadvantage.

By employing an IRL, the undulator wave number can
be larger (e.g., k,c>w,~2.5X10" rad/sec for
ny,=1.9x10" cm~?) and can easily be adjusted; the ion-
ripple field is essentially steady and very high (e.g.,
|E,.| ~100 KG for na=1.9X10" cm3, k;.c =2w,,, and
€;,=0.1). The ion ripple is produced in a neutral plasma,
it should be easy to generate and requires little energy;
there is no need for an external magnet system. Thus the
IRL’s using relatively-low-energy beams can provide the
same frequencies with higher efficiencies than standard
FEL’s. Power supplies can be simpler and heavy radia-
tion shield required for very-high-energy beams may be
eliminated. Alternatively, an IRL using the same energy
beam as an FEL can produce shorter-wavelength
coherent radiation.

Beam quality is a major concern for coherent radiation
sources, especially at short wavelengths. The ion channel
in the ion-ripple laser provides some advantages for the
beam emittance requirement. In a FEL, to ensure the
maximum geometrical overlap (filling factor) of the radia-
tion field and the electron beam, the emittance of an elec-
tron beam is related to the radiation wavelength, that is,

e=A/m. This is a severe requirement for making an ul-
traviolet or shorter radiation source. For IRL’s, the ion-
focusing force can prevent the increase of the electron
beam diameter. The radiation can be confined to some
degree by dielectric guiding by the plasma since the
dielectric constant in the beam is larger than that of the
outside plasma due to the relativistic mass increase of its
electron. These effects may help with emittance require-
ments. This whole problem needs much more study.
Also, beam emittance gives an effective beam energy
spread. The relation is

2

Ar. 1

~ =

Yo 2

where €, =By o€ is the normalized beam emittance, and
a is the radial size of the beam.

In addition to the beam emittance, another important
aspect is the axial velocity spread (and/or the axial beam
energy spread). We can define the scaled velocity spread
as

€n

a

) 99)

vy
Vi=——, (100)
IUphl

where v; is the velocity spread, v, is the phase velocity
of electrostatic wave, and the superscript denotes the
quantities in the beam frame. When ¥V, approaches 1, the
velocity spread approaches the phase velocity of the es
mode (or ponderomotive force wave) in the beam frame
and, thus, the cold-beam limit breaks down and we must
use a warm-beam (kinetic) approximation [9]. Lorentz

TABLE II. Numerical examples of ion-ripple laser scalings in the high-gain Raman regime. The an-
gle between beam and ion ripple is 45° and k, ¢ ~2w,,.

Microwave Infrared Ultraviolet X ray
E (MeV) 1 5 30 2X10?
AE (keV) <50 <34 <16 <26
I (kA) 1 1 1 4
n, (cm™3) 8.6 X 10° 47X 101 4.4%x 10" 4.0X 10"
A (cm) 13 0.17 0.05 0.019
@i max/Dpe 42%x1073 1.5x1073 4.1x107* 1x107*
n 5X1072 6.9%1073 54X107* 3.3X1073
A (A) 1Xx 108 1X10° 1X10° 9
P (MW) 50 34 16 26
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TABLE IIl. Numerical examples of ion-ripple laser scalings in the high-gain coherent Compton re-

gime. The angle between beam and ion ripple is 45°.

Infrared Ultraviolet X ray
E (MeV) 5 30 2% 107
AE (keV) <170 <110 <220
I (kA) 1 1 4
n, (em™3) 4,7x 10" 44X 10" 40Xx10"°
Air (cm) 1.1 0.2 0.053
kyc /@y 0.3 0.5 0.7
@ max/kyC 5.9%X1072 6.1Xx1073 48%X10°*
M 3.4x1072 3.6x107° 2.8X107*
A (A) 6.5%10° 4.0X10° 24
P (MW) 170 108 224

transformation gives the relation of the quantities in the
beam frame and laboratory frame as v, =y%v, and

Uph = Y Uph — Vo). In the laboratory frame,

vS
V,=—"—"—. (101)
Vo™V ph
For y,>>1, the scaled velocity spread can also be ex-
pressed, in terms of the cold-beam efficiency, as

el
ne
~ Ay

YN
The fractional spread of axial beam energy is required to
be small compared to the efficiency. The efficiency in the
coherent Compton regime is proportional to the undula-
tion velocity. In the IRL’s, the driving force is stronger
and, thus, provides a larger oscillation velocity than in a
FEL for the same undulator wavelength. Thus IRL’s
have higher efficiency and hence allow a larger energy
spread. Also, IRL’s require lower beam energy than
FEL’s for the same wavelength radiation. The efficiency
for both the coherent Compton and the Raman regime is
inversely proportional to ¥ such that a lower beam ener-
gy means a larger beam energy spread is allowed.

Table II gives numerical exmaples for the ion-ripple
laser scaling from the scaling laws for backward Raman
scattering in four frequency regimes for an electron beam
whose parameters are accessible with current technology,
6=45° ¢€;~0.1, and kuc~2wpe. E is the beam energy,
AE is the energy spread, I is the beam current, the beam
density n, is assumed to be the same as the plasma (ion)
density, A;; is the ripple length, A is the radiation wave-
length, and P is the peak output power. The peak power
of the radiation is estimated from the Raman scattering
scaling law (see Sec. III).

We also give numerical examples from the scaling law
for the high-gain coherent Compton scattering regime for
the ion-ripple laser for three frqeuency ranges; these are
shown in Table III. The electron beam parameters are
the same as those used above. The fractional rippie in
the ion density and the angle between the electron beam
and the ion ripple remain the same. We changed the

V.

s

(102)

wavelength of the ion ripple to satisfy the condition for
the high-gain coherent Compton regime. The IRL’s nu-
merical examples of both coherent Compton and Raman
regimes show that high-power, high-efficiency, and
short-wavelength lasers may be achieved with relative
low energy and quality beams. For instance, to have uv
lasing in the coherent Compton regime, the axial beam
energy spread is required to be smaller than 0.36%:; that
is, for a beam y =60, the energy spread is required to be
smaller than 110 keV. If the beam employed for the uv
lasing in Tables II and III has a normalized emittance
€, =3X10"*7 cmrad, the axial energy spread caused by
the emittance is about 9 keV (or Ay, /y,~3.1X107%; it
is smaller than that required for the application in both
the Raman and the coherent Compton regimes. For the
x-ray case in the coherent Compton regime, the beam
normalized emittance is required to be smaller than
2X10™%r cm rad.

VII. SUMMARY AND DISCUSSION

We have studied a laser concept which should be cap-
able of producing radiation in the microwave region, in
the optical region, or even in the x-ray region by properly
choosing parameters. The laser uses a plasma ion ripple
for the undulator; the electron beam propagates at an an-
gle to the k vector of the ion ripple. We call this the ion-
ripple laser. We believe that the IRL can provide a sim-
ple system with high-frequency output, high-efficiency,
and output power at relatively modest energies and beam
quality; in many situations it may be superior to FELs.
Analytic theory and an electromagnetic particle-in-cell
simulation code were used to verify the concept and to
study the mechanisms of nonlinear saturation, efficiency
limits and the effects of momentum spread.

The dispersion relation was derived from fluid theory;
the analysis involves radiation and beam mode coupling
by the ion ripple; growth rates for unstable modes are ob-
tained. When the slow- and fast-beam space-charge
mode can be decoupled, a quadratic equation is obtained
and solved to obtain the growth rate and bandwidth for
so called ‘“backward Raman scattering.” In this case the
fast mode is stable. The efficiency is estimated from beam
electron trapping in the electrostatic or ponderomotive
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potential wells. As the beam energy increases, the num-
ber of ion ripples required for the saturation is lower. A
multidimensional electromagnetic relativistic particle-in-
cell simulation model has been developed to study this
problem. The growth rate, frequency bandwidth, non-
linear saturation, and efficiency are found; they agree well
with our theoretical predictions. The effect of momen-
tum (energy) spread parallel to the beams direction of
propagation was studied.

When space-charge effects are not important, the slow
and fast modes both play a role. The coupling of these
two modes and the electromagnetic mode gives a cubic
equation for high-gain backward coherent Compton
scattering. For long-undulator wavelengths, the equilib-
rium oscillations of the beam electrons produce currents
and magnetic fields which modify the undulator force;
this occurs only when the beam radius is large compared
to the ripple wavelength. The conditions required for the
high-gain coherent Compton regime to be valid are given.
As the plasma (and beam) density becomes large, it be-
comes more likely to operate in the high-gain coherent
Compton regime than in the Raman regime. This is be-
cause the pump field is stronger. The high-gain condition
for the long-undulator-wavelength domain is easily
satisfied, but the scaling of radiation frequency with ener-
gy is less favored. The maximum growth rate
(@; max/ky,c) and the efficiency have the same parameter
scaling. Since the high-gain coherent Compton regime
usually requires a high-beam y, new particle simulation
codes, such as a moving frame code, need to be developed
to fully investigate it.

The electron beam produces an ion channel, whose
focusing force can guide the beam. The channel has a
higher dielectric constant than the surrounding plasma
(because of the relativistic mass increase) and this can act
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as a waveguide for the radiation generated. To study this
effect will require a two-dimensional in space and three-
dimensional in momenta and fields electromagnetic code.

Since ion ripples can be created with very short wave-
lengths and the effective undulator field is quite high, we
expected the IRL to be a realistic means for generating
short-wavelength tunable coherent lasers; it may even
prove practical to produce x rays by this means. Further-
more, the channel effect can reduce emittance require-
ment and the high efficiency can allow larger axial energy
spread; that is, the requirements on beam quality may be
lower than for FEL’s. Proof of principal experiments are
called for; these may begin with low-frequency devices.

The scaling law shown in this paper are for a uniform
ion ripple and a plane electromagnetic wave. Tapering of
the ripple wavelength and the effects of partial dielectric
waveguiding may enhance lasing. A shorter wavelength
can be achieved by increasing the undulator wave num-
ber and/or the beam energy and by adjusting the angle of
beam injection.

One problem that may arise is the following. The
theory given is derived from a fluid model for the beam
electrons. We note that, for a wavelength equal to or
shorter than x rays, the electron spacing (n, !’3) may be
larger than the radiation wavelength so the theory may
be called into question. However, the linear density of a
1-kA beam is 2.1X10!! cm_l; that is, there are more
than 10* particles per wavelength for A~5 A. Thus we
expect the collective picture to hold for the essentially
plane waves we are trying to generate.

Although the lasing mechanism discussed in this paper
is applied to laboratory radiation sources with their very
coherent beams and waves, the mechanism may also
occur in nature and particularly in some astrophysical ra-
diation sources.

*Present address: Institute for Fusion Studies, University
of Texas, Austin, TX 78712.
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