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Small-signal theory of pulse propagation in free-electron lasers
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We reconsider the theory of pulse propagation in free-electron lasers operating with arbitrary gain.
We show that the dynamics can be accounted for by collective longitudinal excitations of supermode

type and discuss their properties. We study the interplay between the optical-packet longitudinal dimen-

sion and the electron-beam energy spread, along with the induced gain depression. Semianalytical for-

mulas for the gain, pulse length, etc., are presented.

PACS number(s): 41.60.Cr, 41.85.Lc, 52.75.Ms, 07.77.+p

I. INTRODUCTION

The phenomeno1ogy connected to the pulse-
propagation problem in free-electron lasers (FEL's) is
rich and is one of the peculiar features of its dynamical
behavior with respect to conventional lasers. As is well
known, it was one of the puzzles contained in the first ex-
perimental results [1]. It soon becaine clear, however,
that the so-called lethargy, with the consequent depen-
dence of the gain and output laser power on the cavity
mismatch, was just a by-product of the dynamical behav-
ior of FEL's operating with short electron pulses.

The longitudinal FEL dynamics is a fairly well-
established subject, both for single-pass and recirculated
(storage-ring) operation. Within this framework a partic-
ular importance can be ascribed to the supermodes [2],
which provide the proper expansion basis for the pulse
FEL dynamics [3,4]. The supermodes are the eigenvec-
tors of the FEL integral equation accounting for the field
evolution after one cavity round trip and, from the physi-
cal point of view, can be understood as collections of lon-
gitudinal self-reproducing modes which, under some cir-
cumstances, can be expressed in terms of harmonic-
oscillator functions (see Refs. [3,4]). The practical impor-
tance of supermodes as a tool to investigate the experi-
mental results has been stressed in Ref. [5], where it was
also pointed out that early predictions on, e.g. , the
operating laser bandwidth [6], were confirmed by the ex-
periment. Although, as already stressed, longitudinal dy-
namics is now well understood, there is still the necessity
of a simple semianalytical approach to the problem, cap-
able of incorporating, with a relatively modest mathemat-
ical effort, as many features of an actual experimental
configuration as possible. It would indeed be desirable to
have, e.g. , a gain formula accounting for energy spread
and emittance degradation, nonlinear contributions, slip-

page, diffraction, focusing, etc. Partial attempts to in-
clude the above-quoted effects were accomplished in Ref.
[7] and, within a more general framework, in Refs. [8,9].

In this paper we analyze the FEL small-signal pulse-
propagation equation and pay particular attention to
"collective longitudinal excitations" of supermode type.
We study the FEL pulse evolution in both the hypotheses

of quasicontinuous and bunched electron beams. We dis-
cuss the coupling mechanism between supermodes, and
the reasons leading to gain depression, optical bunch
dispersion, and longitudinal deceleration.

The paper is organized in four sections. In Sec. II we
discuss the pulse problem in the quasicontinuous-
electron-beam limit and study the amplification of an in-

put mode-locked field, along with the modification in-
duced by the FEL interaction. Particular attention is de-
voted to the gain depression due to the combined effects
of the slippage and of the input optical bunch rms length.
Furthermore, we discuss a simple argument leading to
the understanding of the supermode gain correction. The
case of finite-electron-beam limit is analyzed in Sec. III,
where we discuss the quasiparticle nature of the collective
longitudinal modes (CLM's) and the mode coupling in-
duced by the electron bunch longitudinal shape. Section
IV is devoted to concluding remarks where we clarify
some physical aspects of the CLM dynamics and the role
played by the electron-bunch structure in the high-gain
correction.

II. FEL PULSE-PROPAGATION
AND QUASICONTINUOUS-ELECTRON-BEAM LIMIT

The evolution of the optical field complex amplitude
a(Z, r) in a FEL operating with a longitudinally shaped
electron beam is accounted for, in the small-signal regime
and in the slowly-varying-amplitude approximation, by
the equation [10]

a(Z, r)8
a~

imgof(Z+p—Er)I drYe'"a(Z+pEr', r r'), —
(2.1)

where go is the small-signal gain coefticient, v is the gain
detuning parameter [specifically defined as
v =2m N(coo ai)jeio, coo=—2m'c IA,O], and with r and Z
representing the time and longitudinal coordinates, re-
spectively, normalized to the interaction time and to the
width o.z of the input optical field. The parameter pE
gives the ratio of the slippage distance b, =NA.

O to o.z (N
is the number of undulator periods and A.o is the central
emission frequency):
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an expansion parameter. Writing, indeed [12],

a(Z, ~}= g a„(r)u„(Z},
n=0

(2.3)

in terms of the Hermite function u„(Z) defined as [11]

Finally, the electron-beam distribution is described by the
function f ( Z ). Expanding the field a (Z, r },

a„('T)—g g Oa„( r)
k=0

(2.&)

a„'"'(r)= i—vr g drYe' 'f„„(r,2')

and inserting it into (2.5) yields the following recursive
relations:

u„(Z) = —»2 H„(Z)e
(n!2" n )'

(2.4)

a„' "'(r)=0, k =0, 1, . . .

Xa„'". "(T 7),'

(2.9)

with H„bei ng the nth Hermite polynomial, Eq. (2.1)
turns into the following set of coupled equations for the
coefficients a„(r) of the expansion (2.3):

with the initial conditions

a (0}=a (0)5ko (2.10)

a„(r)= ing—o g f d~'r'e'"' Consequently, the optical field can be expressed as a
series of contributions at the various orders in go as

Xf„„.(r, r')a„(r—r'), (2.5) a(Z, r)= g g()a'"'(Z, ~),
k=0

(2.11)

with the initial conditions being specified by the input
field through the overlap integrals:

a„(0)=f dZa(Z, O)u„(Z) . (2.6)

with

a'"'(Z, r)= g a„'" (r)u„(Z) .
n=0

(2.12)

The matrix elements f„„defined as (for the details of the
derivation, see the Appendix)

f„„(~,r')= f dZ u„(Z)f(Z+pEr)u„(Z+p~~')

(2.7)

represent a kind of current form factor and account for
the coupling between the basis functions u„(Z), as a
consequence of the slippage phenomenon, the electron-
beam longitudinal distribution providing a further cou-
pling source.

Equation (2.5) can be treated within the context of a
perturbative analysis which uses the gain coefficient go as

Correspondingly, the gain defined as

G(v)= f ~a(Z, l)~ dZ —1 (2.13)

G(v)ygk+! ya(!)(1)ae((k1))
k1=1 n =0

(2.14)

In particular, for an initially Gaussian-shaped optical
field, the above expression becomes

(for the sake of simplicity we have assumed an input field

normalized to unity) can be expressed in the form of a
power series in go with coefficients specified by the func-
tions a„' ', evaluated at t = 1, according to

T

G(v)=g02Reaz"(1)+go g ~a("(1)~ +2Reao'{1) +go 2Reao'(1)+2Re g a„"'(1)a„"'{1) +0(go),
n=0 n=0

(2.15)

where only terms up to go have been explicitly reported.
As a preliminary analysis, let us consider a longitudi-

nally uniform electron beam, which amounts to assuming

yl( 2) n

(n +1)!

1/2

x le —X /21 (!)(x2)
n (2.18}

f'(Z)=1 .

f„„(&)=P„" PE&
v'2

where P"„"denotes the function

The matrix elements f„„.(w, r') are then [13]

(2.16)

(2.17)

a„("'(r)= imgf —dr. 'e'"'(t)'„
2 '

PE 'T

v'2

Xa +l {r T) (2.19)

(2.20)

thus providing the following explicit expression for the
recursive relations (2.9):
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At the zero order in go we immediately recover the initial
conditions

interest to consider in detail the first-order coefficients
a„"'(r) as given by (2.25), which can be rewritten as

a„"'(r)=a„(0) . (2.21)

As a consequence, assuming the initial field to be given by
the basis function of zero order uo(Z), i.e.,

a(i)(r)— lPE
v'2

gn
Gl(v, pz, r),&n! av"

where the function G, (v, pz, r ), explicitly given by

(2.29)

a(Z, O)=, exp( —Z /2),1
(2.22)

pt2
Gi(v, pz, r)= i~ —f'dr' f 'dr"e" e" (2.30)

a„"'(r)= — ' 'dr'r'e'-'
dr " v'n! 0

'n
IJ,E7

the equation for the first-order coefficient a„'"(r) takes
the simple form

can be regarded as a first-order gain function relevant to
a Gaussian-shaped input field.

Just to share the language of Ref. [14], let us rewrite
the above equation as

n

X exp( pzr—' /4), (2.23) a„(r)=[i) I E
v'2

1—Gn+)(v~pz~r) ~n!
(2.31)

where the property of the Laguerre function

P„"(x') = —exp( —x '/2)z (
—x)"
&n! (2.24)

has been exploited.
Equation (2.23) can be formally integrated, thus giving

n

i) n+I)

—PEv' /4
X e Ivy e E (2.25)

—PEP /4Xe' e (2.26)

It is easy to verify that kth-order function a„'"'(r) can be
given the explicit expression

(k)( )
( i m)" — .1

k! (2k —1)!&n!
Pe
v'2

2 g2/4
X f dr'r' "+" '(r r')"e~~~e—

0

The above discussion clearly reveals that the slippage
mechanism, accounted for in the evolution equation (2.1),
by the parameter pE, provides the CLM coupling. In
fact, starting, e.g., with the fundamental CLM, the FEL
interaction turns into an excitation of all the other
modes, whose contribution in modeling the field is ex-
pressed at the first order in go by the coefficients a„'"(r).
In particular, according to (2.14) at the lowest order in go
the gain is provided by the real part of a„"'(r) evaluated
at ~=1, i.e.,

G (v)-2goRea„"'(1), (2.28)

which therefore can be understood as a first-order gain
function relevant to an initial optical field given by the
nth-order basis function (2.3). Consequently, it is of some

Inserting the above expression into (2.20) relevant to
k =2, after some algebra, we can specialize the second-
order coefficient a„' '(r) as

'n
( —in. ) PE
12&n! &2

with G„+((v,pz, r) being defined in terms of the nth
derivative of 6, with respect to v, i.e.,

gn
G„+((v,pz, r)=( —i)" G((v, pz~r) .

Bv
(2.32)

v,„(pz) -=2.6+1.2(Mz

0.085goG,„((Mz)= 1+0.086p

(2.33)

According to the above-noticed correspondence between

(Mz and (M„ the expressions (2.33) are in good agreement
with the numerical fit, provided in Refs. [14] and [17] for
6 „and v,„ in terms of the parameters p, . Just to
visualize the effect of the higher-order terms in the ex-
pression (2.15), we have reported in Fig. 4 the gain curves
for go=5.0 and pE ranging from 0 to 1. The correspon-
dence of pE to p, is further confirmed by the general
trend of the gain curves, which by increasing pE recovers
the antisymmetric shape, thus indicating that the param-

For p, z=O, the expression (2.30) turns into the "one-
dimensional" gain function, the parameter pE playing
within the present context a role similar to that of the in-
homogeneous broadening parameter (M, (linked to the e
beam energy spread) [15].

In Fig. 1 we show the gain curve for go=0. 1 and
different values of pE. The plots are relevant to Eq.
(2.28). The validity of such results has been checked with
a full numerical integration of the pulse-propagation
equation and for this range of parameters both pro-
cedures yield the same answer. The parameter pE pro-
duces a broadening and a reduction of the gain curve. A
more detailed discussion of this topic is carried out in
Ref. [16] within the context of an analysis of the viola-
tions to Madey's theorem, induced by the transverse and
longitudinal dynamics.

The value of the resonance parameter v,„(pz ), where
the gain is maximum and the corresponding values of the
gain G,„((Mz ) as functions of pz are reported for
go=0. 1 in Figs. 2 and 3, respectively. The behavior of
v,„(pz ) and Gm, „((Mz ) in the range of pz shown in the
figures can be accounted for by the following functional
relations, obtained from a numerical fit:
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FIG. 1. Gain function vs v for different values of pE.

f +"Z~a(z, r}l dZ
Z(r)—:

f "dZ~a(Z, r)~'
(2.34)

eter LMz reduces the contribution of higher-order terms in
(2.15), which destroy the antisymmetric behavior of the
gain curves.

Let us consider now the efFect of the FEL interaction
on the "optical field. " %e assume as indicative parame-
ters, the "center of gravity" of the optical packet defined
as

cr(r}=

Z(r) —=~2goRea', "(r)= gopFReGz(v, p—E, r) (2.36)

and the standard deviation given by

f dZ(Z —Z)~ a(z, r)~
(2.35)

f dz(a(z, r)~

Assuming as input field the lowest-order H function
uo(Z), according to (2.34) and (2.11) we can write Z and
o to the first order in go as

0.95-
&max

0.85-

1.20

Vmax

1.16-

1.12-

0.75-
1.08-

0.65- 1.04-

0.55

FIG. 2. Maximum gain vs pE. FIG. 3. v,„vs pE.
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10 An accurate analysis of the trend of the functions G2
and 63 vs v at ~=1 allows us to state that, at the max-
imum gain, Z(1) is negative, thus indicating that the gain
acts as the propagation through a medium with refractive
index greater than unity. It is easy indeed to deduce from
(2.36) the phase velocity as

~E-
P(r) =1+ Z(r) =1—

go ReG2(v, pz, r),I„L„ (2.38)

0

-10 -6 6 10

which at the maximum gain (ReGz &0) is less than 1 (the
pulse is delayed with respect to an ideal packet, traveling
at the light velocity). Therefore, the FEL refractive index
can be given by the following expression at the lowest or-
der in go.

and

FIG. 4. Gain vs pE with values ranging from 0 to 1. go5n(r)= —1+ ReG~(v, pE, r),L„
(2.39)

cr(r) =—oo[1+go~2Rea2" (r)]
2

PE
=pro I+go ReG3(v, pE, r)

2
(2.37)

with oo denoting o(0), which for the case we are consid-
ering is o(0)= I/~2.

which contains the dependence on v and pE.
Correspondingly, cr(1) is greater than ao; as a conse-

quence, the "propagation" occurs "through a dispersive
medium. "

In Figs. 5(a) and 5(b), Z(1) and o.(1) are, respectively,
reported as functions of v for go=0. 1,0.2,0.5 and pE
ranging from 0 to 1. Figure 6 shows the behavior of Z(1)
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FIG. 5. (a) and (c) "center of gravity" and (b) and (d) rms of the optical packet vs v and for different values of go. The values of p~
are 0, 0.5, 1, 2, and 3. The curves with largest amplitudes have lower values of pz.
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FIG. 6. Same as in Fig. 5 for different values of pz and for go=5. The values of pz are 0, 0.4, 0.6, 0.8, and l. The curves with
largest amplitudes have lower values of pz.

and cr(1) as functions of v for go =5 and Iuz =0—: 1. The
different shapes between the curves in Figs. 5 and 6 are
due to the different values of the small-signal gain param-
eter.

The above analysis allows one to dispel a "long-
standing mystery, " namely, that relevant to the depen-
dence of the supermode gain on the coupling parameter

Pc=
z

(2.40)

where o.z is the rms length of the electron bunch. Ac-
cording to Ref. [18] the spatial width of the fundamental
supermode is just

A( =cTzo'~ (2.45)

is a conserved quantity. The gain coefficient go is propor-
tional to the peak current, which is in turn linked to the
average current I and to the duty cycle 5 by the relation

II=—.
5

(2.46)

I=I~@„ I~ = I, (2.47)

The duty cycle is the ratio between the electron-bunch
length az and the bunch-bunch distance I-I Axed by the
rf period (LI = 2mc /co, r); for this reason we have

o E -0.5+ho z .

The corresponding o.z is thus given by

pE 2+8

(2.41)

(2.42)

where (L
&
/b, ) /I is the peak current corresponding to a

bunch, whose length is equal to the slippage. According
to Eqs. (2.47) and (2.45), the gain dependence can be
parametrized in terms of the coupling parameter only as
follows:

Inserting therefore the above expression in the second of
Eqs. (2.33) we find G,„=O.85gp g 1+1.7[—,'p, , +16(AI /A, )p2]

(2.48)

G,„(p,, ) —=0.85 1+ 3@~
(2.43)

which is the gain expression containing the supermode
correction and quoted in Ref. [18]. The above considera-
tions offer the possibility of including the effect of gain
depression due to the energy spread in a rather simple
way. Since, as already stressed, the effects of energy
spread and longitudinal mode width combine quadrati-
cally, we get the following simple relation including both
energy spread and coupling parameter:

p,*=0.19
A,

1

(2.49)

which corresponds to a bunch length and to an energy
spread, respectively, given by

where go z is the gain coefficient corresponding to I&.
The last equation holds true, within the framework of

low-gain approximation. The value of p, which maxim-
izes (2.48) can be found immediately, thus getting

0.85goG,„(u„u,) —=max. c. e 1+1 7($ + P)
(2.44)

o z -5(NAi ), o,'— 1
(2.50)

As a further example of the flexibility of the so-far-
developed analysis, we quote the possibility of getting
from Eq. (2.44) a gain optimization criterion, for FEL s
operating, e.g., with rf linac. In this case the longitudinal
phase-space area (o, is the e-beam rms relative energy
spread)

which are within the values attainable with a convention-
al rf linac [19]. Equation (2.48) contains further impor-
tant information and in fact it states that with increasing
p, (and thus with decreasing crz) the gain does not reach
a value which is just proportional to the charge in the
bunch, but starts to decrease when the effect due to the
energy spread becomes dominant.
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2.4
t max

2.2-

20-

0.5 1.0 1.5 2.0 2.5

electron-beam distribution acts like a potential, specify-
ing the form and the interaction of the CLM which can
also be viewed as a kind of quasiparticle. The above
point of view can be further supported by the following
rather simple examples. Going back to Eq. (2.5) and
making the low-gain approximation, namely, neglecting
the ~' dependence of a„ in its right-hand side and then ex-
panding the integral in Eq. (2.7) up to the first order in

pE, assuming that f (Z) = 1, we get [20]

FIG. 7. Maximum gain vs pz (continuous line) and fit curve
(dotted line).

We have so far discussed simple gain formulas which
are capable of including contributions up to the lowest
order in o.p. We want to emphasize that high-gain effects
can be accounted for, still within the framework of easily
manageable expressions. Inspecting, e.g., Fig. 7 we can
state that the gain dependence on pE (valid for
0.5 (gp (4) can be cast in the form

F(v, r) —f d'T 7 e
0

(3.2)

Equation (3.1) is a kind of Schrodinger equation that can
be derived from a Hamiltonian, which in the second
quantization formalism is written as

~ d kg p (ji a„=mgpF(v 7)a„i ——iJF F(v, r)
d'T Bv

X(+n + la„+, &—n a„,),
(3.1)

where

0 85go+0. 19go

1+(0.086+1.52X10 gp)p~
(2.51) H =~gpF(v, r)1 i pF— F(v, r)( A —A + ),v'2 ~ av

(3.3)

The above relation also allows one to get the high-gain
correction for the supermode operations. According to
Eqs. (2.51) and (2.42), maximum gain scales vs p, and gp
as (p, ~1),

0.85 2 0. 19
'(I+@ /3) '(1+i y3)'

(2.52)

III. LONGITUDINALLY SHAPED ELECTRON
BUNCHES AND COLLECTIVE LONGITUDINAL

MODE DYNAMICS

In the preceding section we have discussed the FEL
optical-field evolution, using an expansion on a
harmonic-oscillator basis. The analysis developed so far
has been specialized to the case of an electron beam
whose longitudinal shape can be considered as almost
continuous. This approximation holds true when the
slippage distance is negligibly small with respect to the
electron-bunch length (typically short-wave storage-ring
FEL's). Furthermore, the analysis of the preceding sec-
tion has elucidated what is the gain of a continuous-
electron-beam FEL amplifying a mode-locked input opti-
cal beam and what is the interplay with the inhomogene-
ous broadening gain reduction induced by the electron
energy spread. On the other hand, the role played by a
noncontinuous bunch distribution has been touched on,
discussing the gain of the fundamental supermode. In
some previous works [3], it has been shown that the

The above relations must be taken as rough indications of
the FEL gain scaling versus the relevant parameters; they
provide, however, clear examples of the possibility of
combining numerical and analytical results to get simple,
insightful, and useful expressions to be exploited to
design FEL devices.

where A, A + are annihilation and creation operators.
[It is to be stressed that we are just borrowing the formal-
ism from quantum mechanics but we are not claiming
real quantum effects (depending on the Planck constant)
in FEL theory. ] The above Hamiltonian has the typical
structure of that accounting for the coupling of a quan-
tized electromagnetic field with an external classical di-
pole, which in this case is provided by

7Tg pd= —pE F(v, r) .
2 Bv

(3.4)

1 m a T
X gpss~ dr'F(v, r')

n! v2 Bv p

n

(3.5)

and recognizing that the "probability amplitudes" Ia„ I

yield a Poisson distribution. Accordingly, the average
number of excited CLM's can be calculated as follows
[22]:

n = g n ~a„~ —=exp[gpReG, (v)] .
n=0

(3.6)

The above result, albeit of limited practical interest,
yields at least two important conclusions: (a) It justifies
the interpretation of the CLM as quasiparticles; and (b) it
allows an immediate link with other problems in quan-
tum optics such as, e.g. , the generation of coherent states.
This last point can be better understood noticing that the
solution of Eq. (3.1) can be written in the form [21]
[a„(O)=5„p)

7

a„(r)=exp i m g p d r'F—(v, r')
0

1 aXexp —— —gpss~ dr'F(v, r')
2 v'2 Bv
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The statistical behavior of CLM s induced by Eq. (3.1) is
similar to that of coherent Glauber states. We can indeed
easily prove that, within the framework of the approxi-
mations leading to Eq. (3.1), the "state" a (Z, r) is an ei-
genvalue of the annihilation operator (see the concluding
section for further remarks). It is clear that, keeping fur-
ther terms in the expansion (2.7), one gets equivalent
Hamiltonians of the type (3.2) involving nonlinear terms
in the creation and annihilation operators and thus justi-
fying the possibility of non-Poissonian CLM statistics.
Let us now consider the case of nonconstant electron-
beam distribution f (Z) and assume that it has a parabol-
ic shape, namely.

Z2f (Z)=1— (3.7)22'

0.6-

0.4-

0.2-

-10

pE = 0. 1

Qp = 0.1

Oz =OE
v= 2.6

-6 6 10

where 0 =o., /o, . The equation of motion for the time-
dependent coefficients a„(r) now becomes

FIG. 8. Output (dotted line) and input (solid line) optical
field distribution vs z for v= v,„.

. d 1 Kgp . ~gp ai a„=ego 1 — F(v, r)a„—
2

F(v, r)na„i —— F(v, r) pE(v'n + la„+, v'n a—„,)dr 4o 2g 2 ~v

kg p
F(v, r)[v'(n + l)(n +2)a„+2+V'n (n —1)a„2],4~2 (3.8)

where it has been assumed that p, «cr, which amounts
to saying b, «o'z and OE (&Oz (the so-called long-
bunch approximation).

It is clear that the parabolic shape induces coupling be-
tween modes which are not the nearest neighbors only. It
is therefore clear that, owing to the further CLM cou-
pling induced by the longitudinal current shape, the FEL
gain will experience a further reduction, which is in turn
linked to the electron-bunch length. It is furthemore evi-
dent that the number of CLM's involved in the interac-
tion becomes larger and larger with decreasing electron-
bunch length crz (or better when rr (&1). The above
point can be understood analytically. It can be shown
(see the Appendix) that in the limit o E &(az the current
form factor f„(r) can be cast, to lowest order in 0, in

the form

f„~(r)=( —)"+ v 2~au„(pEr)u (pE(r r')) . —(3.9)

I

Accordingly, it can be shown that at the lowest order in

gp and cr, the gain for an input Gaussian field, scales as

0.85go v'2o.
G(v, cr, pE ) -=

(1+0.086juE )
(3.10)

thus indicating that, for very short electron bunches, the
gain is just proportional to the charge in the bunch.
(Here we have assumed a very short input bunch and we
did not include the effect of the energy spread. )

After the above discussion aimed at clarifying the role
played by the various physical quantities we comment on
some numerical results.

In Fig. 8 we show the low-gain evolution for an input
Gaussian field undergoing a FEL interaction with
go=0. 1 (the other relevant parameters are quoted in the
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FIG. 9. Gain vs v for a z-shaped e beam. FIG. 10. Same as in Fig. 8 for larger go.
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FIG. 11. Gain curve vs v for pz =0.1 and 0, =O. 5 (a) output (dotted line} and input (solid line) optical 6eld distribution vs z.

G,„-=O.8Sgo+0. 19g 0, (3.11)

where the effective gain coefficient is defined as

go =+2go& (3.12)

figure caption). It is evident that the packet undergoes an
amplification and a shift back of the centroid (although
very tiny) due to the lethargy. In Fig 9th. e relevant gain
curve is reported and a significant reduction of the max-
imurn is shown, due to the combined effect of the finite-
ness of the electron and input field bunches. An example
of the laser operation in the intermediate-gain region is
provided in Fig. 10 relevant to go=S. Owing to the
larger gain, the packet shifting back due to the lethargy is
more evident. Figures 11 and 12 are relevant to a physi-
cal situation in which the optical bunch is much shorter
than the input optical field. It is easy to realize that the
maximum gain of Fig. 11 scales according to Eq. (3.10),
while the rnaximurn gain of Fig. 12 can be calculated
from the simple relation

In this section we have developed some considerations
which may be helpful to understanding the FEL evolu-
tion in the small-signal pulsed regime. Use has been
made of rather simple analytical and numerical tools.
The physical effects underlying the combined dynamics
of pulsed electron beams and input optical fields have
been partially elucidated. Further comments will be
presented in the next section.

IV. CONCLUDING REMARKS

In this paper we have discussed the role played by the
CLM in the FEL longitudinal dynamics. We have seen
that this type of mode behaves as a quasiparticle and that
typical concepts of quantum optics can be used to under-
stand their relevant phenomenology. Collective longitu-
dinal modes can, in fact, undergo processes like squeez-
ing, antibunching, and so on. The above language has
not been used just to establish a formal, albeit useful,
analogy with another field in physics, but to stress physi-
cally pregnant points. Although the above ideas are

P(0
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FIG. 12. Same as in Fig. 11 in the case of larger gain.
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planned to be developed further, here we notice that
quantities like the average number of excited CLM's may
give an idea of the structure of the amplified input field.
Furthermore, the rms values of the operators [see Eq.
(3.2)]

A, = A+A+

A —A+
2l

(4.1)

may give an idea of how the optical-bunch dimensions
are modified by the FEL interaction and whether they
can undergo positive or negative squeezing. Within the
above framework, it is worth stressing that the FEL in-

teraction may be exploited in many flexible ways, to
modify, e.g. , the structure of an input optical bunch. It is
indeed shown in Fig. 13 that, working at a value of v cor-
responding to minimum gain, at g0 =5 and pE =1 FEL
amplifiers may transform a Gaussian input field in an
output configuration, exhibiting two narrow peaks.

In the preceding section we discussed the gain depres-
sion induced on the fundamental CLM by the pE param-
eter. It is therefore worth discussing how higher-order
CLM's are affected by the slippage. Assuming that the
input field is an mth-order mode, we get for the first-
order coefficient a„"'(r) the following equation of motion:
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0.2-

PE = 1.0
so= 5.0
oz = 0.5

V = Vmin
I~

gl

I
I

I
l

1
I 1
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)I
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-15 -5

L

'21
PET
v'2

iJF.r pJ:r—1 —m -=exp —2m
2 4

which inserted into (4.4) yields

G) (v pE)—= 2mi—

X f 'dr f 'dr'r'e'"
0 0

(4.5)

FIG. 13. Output (dotted line) input (solid line) beam distribu-
tion vs z input (solid line) beam distribution for v= v,„.

d ($)a„"'(r)= i~ —dr'r'e'"P„ PEW

v'2 (4.2)
p2 ~&2

Xexp —(2m +1)
4

The equation relevant to the mth mode can, therefore, be
cast in the form

(4.6)

The effect of pE is therefore (2m +1) times more impor-
tant for the mth CLM. We can, therefore, expect that

2 &2

a"'(r) = i nd—r'r'.e'" exp
0.85g0

( )=
1+0.086(2m + 1)pE

(4.7)

XL
2

PE~
v'2

and finally the gain function is written as

&2
PE&

G (v, p )=2mi dr dr'r'exp ivy'
1, m & E 4

(4.3)

(For a more general expression, see the Appendix. )

We have so far discussed the role played on the gain by
the finite electron- and optical-bunch lengths. We have
studied limiting cases where the effect of one or the other
is dominant. We did not specify, however, a unique pa-
rameter which may account for both effects.

The pulse FEL evolution equation can be solved in the
low-gain regime, and in the hypothesis of a quasicontinu-
ous electron beam (i.e., o z &)b ) we get

XL
PE7

(4.4) —Z'r2~'
& (Z, 1)= 1+go/2e G& v i b, a(Z, O) . —

The gain depression is not transparent from the above
equation; we can, however, gain some insight. For
&m pE «1 we have

(4.8)

Assuming that the input field is Gaussian, we end up with
a rather simple expression,

gn —Z /2o E (4.9)

We can, therefore, rearrange the above equation as follows:
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Z
0'z

'2 1/2 '

(4.10)

where Z=Z/0. and

OE

[1+(oz/crz) ]'
(4. 1 1)

Albeit it appears rather difticult to get the gain in a closed
form (see the Appendix), Eq. (4.10) yields the strong indi-
cation that the parameter which can play the above-
quoted role is

2 I/2
Pc

P =PE 1+
PE

a = a a
a (Z, r) = —ngp iF(v, r)+pz F(v, r) a(Z, r),

a~
' ' ' av

' az

Another important point touched on in the paper is that
relevant to the lethargy, and we provided an explicit ex-
pression for the packet-velocity slowing down. It is
perhaps worth giving a more transparent feeling of the
lethargy dynamics within the framework of a simple ex-
ample. Equation (2. 1) can be written in the low-gain ap-
proximation, at first order in pz and for constant f (Z),
as follows:

a
a(Z, r) = ing pf (Z—+pgr)

a7

a
V —v lp Eaz

X J d r'r'e' 'a (Z, r r'), —
0 (4.15)

The exponent in (4.14) accounts just for the amplification
process, while the second term provides, in a rather in-
sightful way, the role of the lethargy centroid shift back.
One may argue that, when higher-order terms in pE
come into play, the situation will not be so simple. This
is certainly true, but one can easily separate the roles.
Second-order contributions in pE, and thus second-order
derivatives on Z, will behave like a diffusive term which
will be responsible for the packet spread given by Eq.
(2.37). The sizeable effect of third-order terms may be of
relevance if pE & 2.

Before concluding this section, we will address a final
comment on the possibility of getting a perturbative solu-
tion of Eq. (2.1) including f (Z) and passing through an
expansion of the type (2.3). We write, therefore,

(4.13)
Furthermore, we assume that

whose solution is rather straightforwardly written as

[a(Z, O) =a(Z)]
7

a (Z, r) =exp ng pi —F(v, r')dr'
0

'7 aXa Z ngppz —F(v, r')dr' . (4.14)
0 av

a (Z, r) = g gpa„(Z, r),
n=0

a„(Z,O) =ap(Z)5„p .

We get, therefore,

(4.16)

a&(Z, r)= inf(Z+p&r—) J dr'f dr"r"e' ' ap(Z),
II

a (Z, r) = n. f(Z+pEr) I—dr'r' J dr"e' f(Z+pEr")e' f dr r 'e' ' +' 'ap(Z),
d~ 2 0 0 0

aIld So OI1.

Noticing that
&2

e' 'f(Z)e ' =f(Z) —ir'[f(Z), V] — [[f(Z),0],v]+ ' ' '

(4.17)

(4.18)

and retaining the first commutator only in the expansion, we end up with

I ll

a~(Z, r)= n f(Z+pFr) J dr'r'f —dr"f(Z+pzr") f dr"'r'"e'+'+'"'ap(Z)
d7 '

0 0 0
I II—rr~p~f(Z +ij~r) f dr'r' f ' ' f (Z +pzr") f dr"'r"'e' '+' 'ap(Z)

0 0 dZ 0
II

+n p&f( Zp+& )Jrdr r 1 dr f(Z+pgr ) J dr r 'e' '+' ' ap(Z)
0 dz

(4.19)
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where the effect off (Z}, its derivative, and the derivative
of the input field are clearly displayed. Finally, let us

point out that the paper, albeit preliminary, has been
aimed at analyzing a large body of the FEL pulse-
propagation dynamics. However, many problems, like
the pulse behavior in the very-high-gain regime, have not
been discussed. They will, however, be a matter of future
investigation.

1. Derivation of the matrix elements f„(r)
for a Gaussian-shaped longitudinal current

Equation (2.7) yields

f„(r'r)=f dZ u„(Z)exp[ —(Z+pEr) l2cr ]

X u (Z+pEr'), (Al)

which, using the addition theorem for Hermite polynomi-
als,

APPENDIX

This appendix is devoted to some computational de-
tails not explicitly carried out in the paper.

m

H (Z+pEr')= g k (2pEr') "Hk(Z)
k=0

becomes

(A2)

mf„(r)= +»2 g k (2pEr') "exp[ 2(pE(—r' —+r lo )]
(n.2"+ n!m!)'" k=o .

X f dZ H„(Z)Hk(Z)exp —Z 1+
00 2CT

ZpE(r'—+rlo ) (A3)

1

+mn!m!
f„(r,r') =

The integrals in (A3) can be worked out explicitly, thus getting
' 1/2 2

2
cT exp ~

IE,2 1 21+ + (2 rr')—
1+20 4(1+1/2o ) CT CT

m min(n, k)
X g k (2pEr') " g 2Jj!

k=0 ' j=o . J J . 1+2CT

which in the limit (T « 1 yields Eq. (3.8).

(n +k)/2 —j
H. +k-2j

PE7 +CT 7

&1+2o2
(A4)

2. Gain function for higher-order CLM's

Recalling that

n

L„(x)= g, k ( —x)",
k=0

we can cast the gain function (4.4) in the form

i vY —(1/4)
GI „(v,pE) = 2ni f dr f—dr'r'e'"

0 0 k
PE7

2 k

(A5)

k=0

( —1)" 'n PE
kI k v2

'2k
g2k

„GI(vI E)2k
(A6)

Furthermore, since
2$

(
—1)' PE () '

GI(v, pE)= g, —
2 G, (v),

o s. 2 Bv
(A7)

and since

gn
G„+,(v) =( i)" G, (v)—, (A9)

we end up with

n
( 1)k+s p

GI, (v PE}
s=O k=O

' 2(k+s)

' 2(k+s)

we finally get

g PE
GI „(v,PE)= g

s=O k=O

2(k +s)

G 2( k +s) + I ( v }

(A 10)

x a
Bv

G, (v), (A8} which can be easily exploited to get the explicit values of
the gain function.
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