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Temporal profile and linewidth of coherent harmonics generated by fundamental mode bunching
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In this paper, we have obtained the power expression of the coherent harmonic emissions generated by
fundamental mode bunching and explained their temporal profile and linewidth.
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I. INTRODUCTION

The measurements for the temporal profile, linewidth,
and absolute energy of the first seven coherent harmonics
emitted in the Mark III free-electron laser (FEL) at Stan-
ford University have been published [1]. In this paper we
try to give the physical explanation for the main mea-
surement results.
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II. POWER OF THE COHERENT HARMONICS
GENERATED BY FUNDAMENTAL MODE BUNCHING

where m& is the frequency of the fundamental mode and

t =to+ dz . (7)

A. Equation of mode evolution

According to Ref. [2], we can obtain a general equation
that describes the evolution of longitudinal modes in a
free-electron laser:

If the thermal effects of the electron beam are not tak-
en into account, the current is
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Substituting (7), (8), and (9) into (5) and (1) yields
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If we only consider the fundamental mode bunching
and neglect the self-bunching of the modes considered,
sideband instability and the effective energy spread
caused by the applied focusing magnetic field, we have [2]
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We first calculate the phase factor as follows:
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Among the coherent harmonics generated by the fun-
darnental mode bunching in the free-electron laser oscil-
lator, the odd harmonics are excited by the linear polar-
ization wiggler, and the even harmonics are excited by
the misalignment [3] between the optical beam and the
electron beam.

Thus, for a linear polarization wiggler, we have
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where 0 is the rnisalignrnent angle between the optical
beam and the electron beam,
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Substituting (13) and (16) into (10), we note the exponen-
tial terms
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Substituting (14) and (21) into (10), we obtain
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where Ia,B I
and (p, B are the real amplitude and phase of

the optical field of the bunching fundamental mode, re-
spectively, and tt/)B is the phase of the electrons in the
ponderomotive potential well formed by the optical field
of the bunching fundamental mode and the wiggler field.

In (29), co(/c f t()p(("dz is the modulated term caused by
the bunching fundamental mode.
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i.e., this term can be neglected.
Assuming that the fundamental mode nearly resonates

with the electron beam
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Substituting (34) into (28), (27), and (26), we obtain
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C. Temporal profile of the coherent harmonic

1. Saturation length

At the saturation point, we have
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d
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From (38), we obtain
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where hy, d is the modulation width.
Inserting (35) in (22) and integrating over to, we have

where z,'"' is the saturation length of the nth-order
coherent harmonic.

There are a series of zero-point positions R „ofBessel
function. Let us use an approximate formula to get the
values of R „ I4]:

Equation (38) describes the coherent harmonics gen-
erated by the fundamental mode bunching.
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B. Expression of power

a„(0)=0, (39)

we obtain

In the Mark III FEL oscillator, when the fundamental
mode grows large enough but does not reach saturation,
coherent harmonics will appear in the system due to the
slippage effects between the optical beam and the electron
beam. The coherent-harmonic generation includes three
physical processes, i.e., modulation, dispersion, and emis-
sions, which are performed in the same wiggler. As the
fundamental mode passes through the wiggler each time
(in each pass), a series of coherent-harmonic micropulses
are emitted. Each coherent-harmonic macropulse is a su-
perposition of its micropulses. The macropulses reach
saturation when their growth rate becomes equal to their
decay rate. The saturation legnth is a characteristic
quantity of coherent harmonics.

Integrating both sides of Eq. (38) over z, under the con-
dition of
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From (46), we have
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Using formula (45), we calculate out the values of R,„
listed in Table I. From (47) and Table I, we calculate out
the values of z,'"+"/z,'"' listed in Table II. It is shown in

Table II that the higher the order n of the coherent har-
monic, the shorter its saturated length.

where m and n, respectively, represent the orders of the
zero points and the coherent harmonics.

We take the first zero point of Bessel function as the
saturation point, after which the power of the coherent
harmonics will appear as oscillation.

From (44), we have
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2. Oscillatory +at top

All intervals between two zero points of Bessel func-
tion are equal, as follows from (45):

Then, the power of the coherent harmonic is
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Formula (41) shows that the coherent hartnonic is a su-
perradiance; its power is proportional to the square of the
electron-beam density

TABLE I. Values of R,„calculated from Eq. (45).

P„~no . (42) R,„ 3.92 5.50 7.07 8.64 10.2 11.78 13.35
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TABLE II. Values of z,' + "/z,'"' calculated from Eq. {47)and Table I.

(n+1) g (n)
C c 0.702 0.857 0.917 0.944 0.962 0.971

therefore,
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In other words, there is a Hat top for the higher-order
harmonic.

As n increases, R „ increases and Z'n' decreases,
which leads bZ +& to decrease, i.e., the larger n, the
higher the oscillatory frequency. But the oscillatory am-
plitude decreases because of
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D. Linewidth of the coherent harmonic

Frotn (40), we can derive a complex electrical field with
dimension

Since the power of the coherent harmonic reaches a
maximum at the saturation point, we come to evaluate
the inverse Fourier transform of the complex electrical
field with dimension at the saturation point:
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where T„ is the first kind of Chebyshev polynomial; its
form and property can be seen in Ref. [5].

7d is the delay time of emission:
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From (57) and (56), the following can be derived:
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d
(62)

ics reach saturation, we have

Ay, ~ =const, (71)

where cp is a function of t —~d"' and y.
Substituting (59) and (62) into (52) and noticing the

change of the integral limits
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then
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But the measured results in Ref. [1]show
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In fact, since

which shows that Ay, z varies in the interval. There-
fore, we obtain
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By the principle of indeterminacy, from (66), the aver-

age absolute linewidth of the coherent harmonic can be
obtained:
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Though both of ( I/rt)'"' and (1/q) " are to be weighed
mean of the function I/[b, y,z(y)], their results are
different because of the different mean regions and
weights. In the case of the experiment in Ref. [1],there is
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Thus, the relationship among the relative linewidths of
the coherence harmonics, using (47) and (68), becomes

(n)
1
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where R» and R,„are the positions of the first zero
point of Bessel functions J& and J„,respectively.

If in all intervals from the time the fundamental mode
approaches saturation to the time the coherent harmon-

From (70), we could design a laser to make the follow-

ing inequality hold:

(n)

(80)

Then we can acquire the high coherent harmonies with
narrower linewidth.
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