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Self-consistent interaction between the plasma wake field and the driving relativistic electron beam
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It is shown that the self-consistent interaction between wake fields and the driving electron bunch in a
collisionless, unmagnetizcd, overdense {np &&nb ) plasma is governed by three coupled equations. In the
long-beam limit, they reduce to a pair consisting of an appropriate nonlinear Schrodinger equation for
the beam wave function 4, and an equation for the wake-field potential that is driven by the transverse
profile of the beam density, which is proportional to ~%~ . The pair of equations are suitable for studying
the beam self-focusing (self-pinching equilibrium) for the case in which the beam-spot size is larger
(smaller) than the wavelength of the wake fields. It is demonstrated that our self-consistent theory,
which is based on the recently proposed thermal blaue modei for relatiuistic charged particle-beam propa
gation, is capable of reproducing the main results for the beam-filamentation threshold and the self-

pinching equilibrium condition that are already known in the conventional theory of the beam self-
interaction in collisionless plasmas.

PACS number(s): 41.85.—p, 03.65.—w, 52.40.Mj, 29.17.+w

I. INTRODUCTION

It is widely believed that plasma-based particle ac-
celerators ~ould be capable of accelerating charged parti-
cles to extremely high energies. In particular, for particle
energies beyond 10 TeV one must invent schemes that
can produce accelerating fields of 10 MeV cm '. Such an
intense longitudinal electric field can be theoretically pro-
duced by space charge waves driven by (i) the resonant
beating of two laser beams in a high-density plasma [1]
(known as the plasma beat-wave accelerator or PBWA),
(ii) bunched relativistic electron beams [2,3] (termed the
plasma wake-field accelerator or PWFA), and (iii) short
intense single laser pulses [1,4] (referred to as the laser
wake-field accelerator or LWFA).

Of these three schemes, the PWFA concept has re-
ceived a great deal of attention [5—8] because of the pos-
sibility of achieving ultrahigh accelerating gradients for
high-energy particles through this scheme. Furthermore,
the transverse wake field in plasmas can have a possible
application as a final focusing scheme for linear colliders
[5,6] in order to produce very high luminosity at the in-
teraction point. The experimental test of the physical
principles of the PWFA scheme has been successfully
performed at the Argonne National Laboratory [7] and
in Japan [8].

On the other hand, the interaction of a relativistic
charged-particle beam with plasmas is also of interest in
connection with the generation of short-wavelength radi-
ation [9,10] through the free-electron-laser process in-
volving plasma waves as wigglers (undulators). Thus, the
study of the intense charged-particle beam-plasma in-
teraction is of much significance.

Beam-plasma interactions can produce several plasma
instabilities [11—15], as well as have relevance to adiabat-

ic focusing [16]. Specifically, a high-intensity electron
beam of finite extent can be subjected to longitudinal in-
stabilities such as the two-stream instability [12],whereas
transverse effects can cause self-focusing or self-
defocusing, beam filamentation, and self-pinching. The
longitudinal instabilities could be avoided, but the trans-
verse instabilities can cause distortion of the beam profile.
Thus, the efficiency of energy transfer from the driving
beam to the plasma wakefield can be drastically reduced.

The transverse beam dynamics is related to the trans-
verse density profile of the beam, where the focusing or
defocusing effect occurs at the same time as the beam-
emittance spreading. Clearly, one of the problems still
open is related to the proper determination of the real
transverse density profile of the beam, taking into ac-
count both the emittance spreading and the transverse
self-force. This calculation would be quite valuable for
estimating the luminosity at the interaction point of
linear colliders (allowing for spherical aberrations), and it
would also provide a better understanding of changes
that have occurred in the transverse profile while a rela-
tivistic charged-particle beam propagates through the
plasma.

Recently, a waue model for relativistic charged particle-
propagation has been proposed [17,18]. This model suc-
cessfully recovers all the usual results of the relativistic
charged-particle-beam optics and appears to be useful for
describing and understanding several important problems
in particle accelerators, viz. luminosity estimates in linear
colliders by taking into account the spherical aberration
corrections, and the interaction of wake fields with the
driving bunch in both the conventional and the new ac-
celerator schemes.

In this paper, we employ the recently proposed thermal
waue model [17] in order to study the self-consistent in-
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teraction between the plasma wake fields and the driving
relativistic electron (positron) bunch in a collisionless, un-

magnetized, overdense plasma. The paper is organized as
follows. In Sec. II we briefly summarize the salient
features of the thermal wave model. In Sec. III we derive
the dynamical equations for the plasma wake field in the
presence of the transverse profile of the beam density. In
the long beam-limit (or coasting beam), we find a pair of
equations that describe the coupling between the beam
wave function (BWF) and the wake-field potential. The
beam self-focusing (self-pinching) is considered in Sec.
IV, by assuming that the beam spot size R is much larger
(smaller) than the wavelength k ' of the wake field. Fi-
nally, Sec. V contains a summary of our results.

g=z p—ct (t being the time). Then, it is easy to prove
that the beam volumic number density pb(r, P, z) assumes
the form

R(z}= f deaf rdrr I1pl (7)

pb(r, z, y }=nbg (g) Iqi(r, z, y) I

where nb =N/(JV o, ).
Third, by defining the averaged total energy 6 and the

effective beam radius (spot size) R as (for more details see
Ref. [17]):

2

8(z)= f dp f r dr —' IV,1pl2+ UI1pl2
0 0 2

1/2

II. MAIN FEATURES
OF THE THERMAL WAVE MODEL

we can derive the following relations assuming cylindrical
symmetry:

In this section, we briefly summarize the salient
features of the thermal wave model [17]. First, the sta-
tionary configuration of a relativistic charged-particle
beam of transverse emittance e, traveling along the z axis
with velocity pc (p= 1), under the action of a potential
u(r, P, z), is described by the Schrodinger-like equation
for the so-called beam waue function %(r, P,z):

and

d2
R (z)=4@ 4V—4m —f r U I1pI r dr,

dz2 o Br

(8)

(9)

where Vi is the gradient, and

which are the energy-variation equation and the virial
theorem, respectively. Here, the averaged potential ener-

gy is denoted by

U( ~)
u (r, z, Q)

moyp c
(2) V(z)= f

deaf

r dr U Vl (10)

Here m~ is the particle rest mass, c is the speed of light,
and y=(1 —p )

'i is the relativistic factor. Equation
(1) must be coupled with an equation for the total field
force (Fj=—moyp c VjU) acting on the system. In
analogy with nonrelativistic quantum mechanics, z and e
play the role of time and Planck's constant, respectively;
while in analogy with electromagnetic beam optics in the
geometrical approximation, e plays the role of the inverse
of the wave number k '=)1,/2n, and U that of the re-
fractive index of the nonlinear medium, so that Eq. (1)
corresponds to the well-known Fock-Leontovich equa-
tion [19].

Second, the norm A of 1II, viz.

(3)

is conserved (dJV/dz =0) and the BWF has the following
meaning: If N is the total number of the particles of the
beam, then the transverse beam-number density o (r, P, z)
(number of particles per unit transverse section) is given
by

I'(z)=e f dP f "r drIV11PI (12)

By denoting with P„and P& the radial and the azimuthal
components of P, respectively,

and

P„= R,=d
dz

(13)

Following Ref. [17], it is instructive to note that Eqs. (8)
and (9) are derived by differentiating (6) once and the
square of (7) twice, respectively, and making use of (1)
and its complex conjugate. We observe that the energy is
conserved only if the potential does not explicitly depend
on z.

Fourth, an uncertainty principle, similar to the one in
quantum mechanics, holds [17]. That means

RP) e,
where the total averaged transverse linear momentum is
denoted by

1/2

o(r, z, P)= IVIII(r, z, g}I
iV

p (p2 p2)1/2 (14)

Thus, I
1I1

I gives the transverse beam-density profile.
Note that here %' is dimensionless. Let us denote with

g (g) and o, the dimensionless longitudinal density profile
and the longitudinal beam length, respectively; where

we have

PR = dR
dz

2 1/2

R ~P~R . (15)
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In general P&R ~ e. However, if the beam wave function
is Gaussian, then the following equalities hold:

PyR =PpR p
=E' (16)

where RD=R (z =0) and PD=P(z =0) A. ccording to a
well-known quantum theorem, this circumstance occurs
for both the free motion (U=0) and the harmoniclike
potential [U= —,'K(z)r ] only. For other beam profiles,
the minimum value of PR is larger than e (for more de-
tails see Ref. [17]).

III. WAKE-FIELD DYNAMICS IN THE PRESENCE
OF THE BEAM

Let us now consider, in cylindrical symmetry, a relativ-
istic electron (positron) beam traveling along the z axis
with velocity Pc in a collisionless, unmagnetized plasma
of density nr As .theoretically investigated [3,5,6] and
experimentally confirmed [7,8], the self-focusing of the
beam can occur while it is propagating through an over-
dense plasma (nr »nb). This efFect is an aspect of the
plasma wake field that is excited by the beam itself. On
using the fluid theory, it can be shown that within the
linear approximation the wake field driven by the
charged-particle beam obeys the following equations [3]:

and

pe
+k2 n, =+kzpb(r, z, g), (17)

(Vj —k )Q= 4nen, —, (18)

where n& =n&(r, z, g} is the plasma number-density per-
turbation, pb( r, z, g) is the beam-number density,
Q=Q(r, z, f) is the plasma wake-field potential, and

kz =cur /Pc =(4mn~e /m0)' /Pc is the wave number of
the plasma wave. On the right-hand side of Eq. (17) the
—(+) sign is for the electron (positron) beam. All the
previous papers [3,5] have considered pb(r, z, g) as a given
source and have computed the wake fields. However, this
procedure is not self-consistent because it does not take
into account the reaction of the wake field on the evolu-
tion of the transverse beam profile. In a realistic situa-
tion, the expression pb(r, z, g) in terms of ~'P~ given by
Eqs. (1) and (5) with U=u/m0yP c =+eQ/mayP c
must be supplemented with Eqs. (17}and (18). In the fol-
lowing, we present a self-consistent description of the
wake-field-beam interaction in the long-beam limit (viz.
k a, » 1 or k »

~
8 /Bg ~

). Here, we get

screening of the beam space charge is provided by Eq.
(19). This is the so-called adiabatic screening. Equations
(20) and (21) describe the self-interaction of a relativistic
electron (positron) beam traveling in a collisionless un-
magnetized plasma. If we solve (20) for Q, we should find
that it is a function of

~ V~, i.e., Q =Q(
~ 4( ). Consequent-

ly, by putting the latter in (21) we get a nonlinear
Schrodinger equation, which can be analyzed.

IV. SELF-FOCUSING AND SELF-PINCHING
OF THE DRIVING BEAM

In order to illustrate how the system of equations (20)
and (21}self-consistently describes the beam self-focusing,
we consider two limiting cases. First, we assume that the
beam-spot size is larger than the plasma wavelength (viz.
k R »1 or k »

~ Vj ~
). Here, Eq. (20) becomes

4~enbQ=+
2 (%(r,z)

~

k
(22)

Substituting for Q from (22) into (21), we obtain the cubic
nonlinear Schrodinger equation

%=——V,%—8
az 2

(23)
n y

Note that in (23), we have U = (nb /—n~ y )
~
4

~
. Equation

(23) is similar in structure to the equation that describes
the self-focusing of a coherent electromagnetic beam in a
nonlinear medium [19].

By using (6), we obtain the average energy associated
with the relativistic charged-particle beam

2

f —'fV, ef' — ' fef' r dr,

(25)

is conserved; namely

d A=0.
dz

(26)

and by using (8) it is readily seen that the beam energy is
not conserved. In fact, the charged-particle beam in-
teracting with the plasma is an open system. However,
by using (8) it can be proved that the quantity

A=@+— ' f "iei4 d
2 ~ny 0

n, = Tnbg/e/' . -

Substituting for n
&

from (19) into (18), we have

(V~ —k )Q=+4menbg~+~

(19)

(20)

However, this is not the averaged beam energy. Further-
more, by substituting (25) into the virial equation (9), we
get

On the other hand, Eq. (1) takes the form R =4A =const,
dz

(27)

ie O'= ——V 4+e2
2 e

, , Q% .
Bz 2 m0yp c

(21) which can be immediately solved with the initial condi-
tions RD=R (z =0) and (dR/dz), 0=0. We find

We observe that, in the long-beam limit, g =1, and the R2(z) =R2+~z2 (28)
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P (z), PoA= ——'V (z)= ——'V =constb 2 2 0

where

(29)

Equation (25) shows that A is negative (positive) if the
thermal energy,

(2m/JV )(E /2) f ~Vi+~ r dr,

is smaller (larger} than half of the self-energy,

(2m/JV )(nb/n y) f ~+~ r dr .
0

Consequently, the charged-particle beam would focus
(defocus), as is evident from Eq. (28) for the beam caustic.
A stationary solution also occurs when the thermal ener-

gy is exactly balanced by half of the self-energy (A =0).
It corresponds to a stabilization of the beam at the initial
radius, which is analogous to the Bennett pinch equilibri-
um [20]. A simple criterion for finding the threshold of
self-focusing can now be established. First of all, we ob-
serve that

ar U=-
Br

2ICo f ~%(r', z)~ r dr',
0

(38)

where we have made use of the relation between U and
0, and have defined

N/0. ,
I( o=e

moyp c

Consequently, the virial equation (9) becomes

d'
2R2=48 —4V — Ko f f +(r', z)~ r'dr'16~ ~ '

r

dz2 Q4 o . o

(39)

X ~%(r, z)
~

r dr . (40)

mention that if the plasma number density is np 10'
cm, the beam-number density is nb =10' cm, and
the beam energy is y = 100, then (37) gives v„„/c =0.022.

Next, we consider the limit in which the beam-spot size
is smaller than the plasma wavelength [viz. k R «1 or

kz « ~'tl'i~ )]. For this case, (20) gives

and

V&(z):— f ~%~ r dr
n y o

Vo =—V&(z =0), Po=P(z =0) .

(30)

(31)

By observing that

d R /dz =2[Rd R/dz +(dR/dz) ],
Eq. (40) with the initial conditions Ro=R (z =0) and
(dR/dz), o=0 allows us to establish the equilibrium
condition (d R/dz =0):

If we assume a Gaussian profile as an initial condition
for the BWF, we find then

2
2

Po=
Ro

and

2 E' f ~V'i'k(r, O)~ r dr
0

Eof f ~%(r', 0)~ r'dr' X ~%(r, O)~ r dr,
0 . 0

7fb

2yn,

Accordingly, we have

1 nbA=—
2 R02 2 nay

(33)

(34)

(41)

where (6) and (10) have been used. Note that 'P(r, O)

represents the initial condition for (1) when the potential
U is given by (38). Since it is arbitrary, we choose an ini-
tial Gaussian profile in order to find the pinch equilibri-
um. In this case, we have

By imposing A =0, we immediately obtain the threshold
condition

f "~Vi+(r, O)) rdr=~' 2 o
' ' 2R' ' (42}

Since

1

2 n
(35)

and

Ko f" f "j+(r',0)~ r'dr' ~W(r, O)~ r dr =
—,'Eo .

0 . 0

2

Ro
T

2 7

moyp c moyc
(36)

Thus, the equilibrium condition (41) becomes

(43)

Pi = =0.7
C

)lb

n y
(37)

Equation (37) is precisely the threshold for the Weibel (or
the filamentation) instability [14]. As an illustration, we

where T is the transverse beam temperature expressed in
energy units, we can write (35) in terms of the thermal ve-
locity v,„=(T/moy )'

1/2

2

=Ko,
Ro

(44)

which is the well-known Bennett self-pinch equilibrium
condition [20]. It can be equivalently obtained by start-
ing from the well-known envelope equation including the
self-interaction, and imposing a perfect beam neutraliza-
tion [21]. By introducing the definition of the beain
current
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(45)

and using the transverse-beam-emittance definition in
terms of the transverse temperature T [see, Eq. (36)], Eq.
(45} gives the well-known Bennett pinch relation [20,21]
(cgs units):

I2
=W, T,

C
(46)

where N, =N/0. , estimates the number of particles per
unit longitudinal beam length.

V. SUMMARY

In this paper, we have presented a theory for a self-
consistent interaction between the wake field and the
driving relativistic electron (positron) beam in an unmag-
netized, overdense, collisionless plasma. For our pur-
poses, we have employed the recently proposed thermal
wave model for relativistic charged-particle-beam propaga
tion [17], and in addition, the fiuid equations are used to
study the wake-field dynamics in the presence of the
transverse profile of the beam density. We thus have a
consistent coupling between the driving beam and the
wake fields, and our treatment represents an improve-
ment of previous approaches [3,5], which have complete-
ly ignored the reaction of the wake field on the driver and
did not consider the spatial evolution of the beam.

When the wavelength of the wake field is smaller than
the longitudinal beam length, then the self-consistent in-

teraction of the plasma wake field and the driving bunch
is governed by the pair of equations (20) and (21). The
latter are analyzed in two limiting cases in order to inves-
tigate the beam self-focusing or self-defocusing and the
self-pinch equilibrium. It is found that the present model
is capable of reproducing the main results found in the
conventional theory of the beam self-interaction.

It is of interest to note that in two space dimensions
our equations (20) and (21) are similar in structure to Eqs.
(1) and (2) of Mironov et al. [22], who considered local-
ized nonlinear wave structures in the nonlinear photon
accelerator. Accordingly, for the two-dimensional prob-
lem, we expect that the numerical solutions of (20) and
(21) could also yield a specific class of nonlinear wave
structures consisting of spatially localized BWF's trapped
by a locally deformed plasma-wave lattice, which are
similar to the self-localized color centers in ionic crystals.

Finally, we stress that the thermal wave model has the
advantage of describing the evolution of the relativistic
beam profile due to its interaction with the plasma waves
which are excited by the beam itself. Our results have
demonstrated that the self-consistent beam-plasma in-
teraction in multidimensional space is governed by Eqs.
(1), (17},and (18). Numerical studies of the latter using
realistic boundary conditions are planned. It is anticipat-
ed that numerical investigations involving the boundary-
value problems of our general set of equations could be
quite involved. However, the results deduced from this
study should certainly throw significant light on the dy-
namics of the relativistic beam, which is employed for
producing intense wake fields for the purpose of ac-
celerating electrons to very high energies.
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