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Nonlinear beam-dynamics calculations with an illustrative example
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Nonlinear beam-dynamics calculations are described that account for space-charge and image-charge
effects. The calculation technique is explained and, as an illustration, is applied to two elements in an in-

tense beam-combining funnel: an rf rebuncher and an rf deflector. For the case of the rebuncher, the
calculations make use of the cylindrical symmetry of the device. For the deflector, both two-dimensional
and three-dimensional calculations are performed. Emittance growth is analyzed for both the rebuncher
and the deflector. For the rebuncher, a technique is proposed that considerably reduces the emittance
growth.

PACS number(s): 41.80.—y, 29.17.+w, 41.70.+t

I. NONLINEAR BEAM-DYNAMICS CALCULATIONS

For a description of intense beam dynamics, nonlinear
space-charge and image-charge forces must be included.
The dynamic systems that we will consider for a non-
linear description including space charge and image
charge are

V P(r, t)= ff(r, v, t)dv,

Bf(r, v, t) +v Vf(r, v, t)+V/(r, t) V„f(r,v, t)=0.
at

(2)

Equation (1) is the Poisson equation for an ion-
distribution function, f (r, v, t). Equation (2) is the
Vlasov equation that describes the time evolution of this
ion-distribution function.

The analysis technique can best be understood with
reference to Fig. 1, which shows the path of the calcula-
tion. First, the Poisson equation is considered. For this
first pass, the source terms are set equal to zero and a La-
place equation is solved by successive overrelaxation
(SOR), finite difference, and boundary interpolation
within a cell, using a Gauss-Seidel implicit method [1].
Iteration reduces memory requirements, and boundary
interpolation contributes to the accuracy per cell. Gen-
erally, individual convergence of the solutions is not war-
ranted on each pass, since the iteration procedure lends
itself to incomplete convergence of the intermediate solu-
tions. As noted before, the finite-difference method [2]
compared with the finite-element method [3] has in our
experience reduced memory requirements by a factor of
20 for a Poisson solution of the same accuracy. Bound-
ary conditions for arbitrarily shaped metal surfaces can
be specified as time-dependent Dirichlet conditions.
Neumann boundary conditions can also be specified.

Second, the Vlasov equation is solved for a specified in-
itial condition using the solution to the Laplace equation
for a time step dt. The technique has been described [2,4]
and significant advances in storage requirements and ac-
curacy are reported. Some of this work [4] reports a
speedup of the Vlasov solver by a factor of 10 from that
reported elsewhere [5,6] while at the same time improv-

ing the accuracy by over a factor of 10. Resource utiliza-
tion has been decreased [2] over results previously report-
ed [3] by a factor of 400 with the same accuracy. The
trivial relationship between the coordinates inside an ele-
ment and the global elements for the uniform Cartesian
grid used in this algorithm allows a factor-of-20 (of the
400) savings in the Vlasov solver over that obtained with
irregular elements [3]. As mentioned [4] the Vlasov
solver is made self-regulating in accuracy, and trajectory
refinement is undertaken only in those places that need it.

Third, charge deposition is done in three dimensions
by interpolation over the grid [2] and is "exact" in the
sense that as the three-dimensional grid is made finer and
the number of trajectories is increased, a result as accu-
rate as desired can be obtained. Notice that nowhere is
any paraxial-like assumption made, and the fields "to all
orders" are directly calculated. Therefore, aberrations
(to all orders) are also directly computed. Other
nonlinear-optics efFects computed include space charge to
all orders caused by nonuniform beam density and/or
boundaries. (Boundaries also cause nonlinear space-
charge forces because they alter the dependence of 4 on r
which is required for linearity. )

Fourth, the beam charge is taken as an inhornogeneous
term to the Laplace equation solved in step 1 above.
Now, one can also include an inhomogeneous plasma
term which may be large, of opposite sign, extremely
nonlinear, and three dimensional. This is the cause of nu-
merical difficulties that were first surmounted in the two-
dimensional steady-state case [5]. The technique used,
accelerated under-relaxation, improved the prior art [7]
by a factor of 1000 for the beam perveance of interest and
by a greater factor for higher per veance. Another
factor-of-10 increase in speed was achieved, while at the
same time the accuracy was increased by more than a
factor of 100 as reported [6]. This technique was extend-
ed to three dimensions [2,3]. Essentially the best tech-
nique we have found is to use an unconverged Newton
SOR outside its established range of validity [8]. The in-

homogeneous plasma term is not relevant to the calcula-
tions discussed here.

Fifth, the time is moved back by dt, the ions are moved
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FIG. 1. Path of calculation for 3D time-dependent Vlasov-
Poisson analysis.

back to their phase-space positions at that previous time,
and the Vlasov equation is again solved with the new
fields computed from the Poisson-equation solution of
step 4. The trajectories are different from those comput-
ed in step 2 because of the presence of the space-charge
terms (steps 3 and 4).

Sixth, since the trajectories of step 5 are different from
those of step 2, steps 3, 4, and 5 are repeated (Vlasov-
Poisson iteration) until no change obtains. This com-
pletes the convergence procedure and one can proceed to
the next time step. However, one should note the impli-
cation of the iteration consisting of steps 5 and 6.

Seventh, the time is advanced by dt and steps 2
through 6 are repeated. Thus, the beam evolution
through the device under consideration is followed.

which does not account for image charges and neglects
azimuthal nonlinear space-charge forces. A highly
resolved, accurate assessment of rms emittance growth
has not been obtained with this original analysis. Howev-
er, for the 3D analysis at least the precision is significant,
as will be shown. First, we will consider the simple re-
buncher; second, the rf deflector; and third, we will intro-
duce a nonlinear longitudinal emittance-reducing "opti-
cal" element.

The rms longitudinal emittance growth is due to the
longitudinal velocity kick being dependent on a trans-
verse dimension as well as the longitudinal dimension
forming an oblique surface in the three-dimensional
phase space, z, V„andx. A plane surface parallel to z in
this space has zero rms emittance. A curved surface or a
plane not parallel to z in this space has finite rms emit-
tance under the conventional definition:

—A y 2y 2 'y '2 i/2

J J J

III. NONLINEAR BEAM DYNAMICS
OF A FUNNEL: rf REBUNCHER

We turn now to an examination of a 425-MHz re-
buncher on a 2-MeV beam. A typical rebuncher is illus-
trated in Fig. 2. It is cylindrically symmetric and these
calculations will take advantage of that fact. An emit-
tanceless beam bunch of constant density (water-bag dis-
tribution) is shown entering the fringe fields of an rf re-

II. ILLUSTRATION EXAMPLE: A FUNNEL

The concept of funnels was introduced in recent years
with the idea of increasing beam intensity by combining
two beams in the following fashion: The beam is, in each
case, produced by an rf accelerator and thereby com-
posed of bunches. The beam bunches are made to occupy
relatively small fractions of the rf cycle in these cases.
The respective bunches from the two beams, having been
appropriately phased, are made to enter an rf deflector,
which causes them to interlace. The funnel itself, in one
embodiment called the magnetic funnel, is composed of
many transport elements with strong transverse focusing
produced by quadrupole permanent magnetic fields. An
occasional rf rebuncher is introduced to recompress the
bunches. Crucial elements of the funnel are the beam dy-
namics in the rf rebuncher and in the deflector. Beam dy-
namics in either case must be assessed using a detailed
analysis of the kind we have described above.

Several components in a magnetic funnel [9] have been
examined using a full three-dimensional (3D) solution to
the time-dependent Vlasov-Poisson equations with all im-
age charges included [10,11]. Specifically, the rms emit-
tance growth of the subsystems is examined in detail.
For the systems considered, a significant longitudinal em-
ittance growth occurs. Details on the development of
this emittance growth are studied. These systems were
originally designed using the 2 —,'D-type analysis [12]

(b)

FIG. 2. Rebuncher at two different time periods: (a) when
the rf field is at a maximum and (b) when the field is at a null.



4038 J. H. WHEALTON et al. 45

buncher in Fig. 2(a). It should be kept in mind that when
applying this technique to a particular experimental sys-
tem, one would ideally have a matched beam. Our main
purpose here, however, is to demonstrate the technique
and we have thus chosen to use a cold beam. At the part
of the cycle depicted in Fig. 2(a), the fields are near the
maximum. When the center of the bunch is at the center
of the rebuncher, the rf fields are at a null and only the
space-charge and image-charge fields are present, as can
be seen in Fig. 2(b). Longitudinal emittance as a function
of time is shown in Fig. 3 for both zero and 100-mA
beam current. The double-humped structure represents
partial canceling of aberrational shear forces on both
sides of the null field (denoted as 4=0 in Fig. 3). The
partial cancellation occurs because of the extreme fringe
fields such as those shown in Fig. 2(a). The radial center
of the bunch is affected much more than the edges. As
the bunch proceeds, the edge catches up, partially miti-
gating the aberrations. Immediately after the null, the
edge is affected more than the center (overshoots) and the
emittance climbs again. Near the trailing edge of the
fringe fields, the center catches up again. The net result,
at least in the case of zero beam current, is that most of
the aberrations cancel (90%). The reason the rms emit-
tance growth, at zero current, does not completely cancel
is that some ion relative motion occurs during traversal
of the rebuncher. However, in the high-current case in
Fig. 3 there is a noticeable space-charge —image-charge
component which is superimposed on the above-
described shear aberrational phenomena.

The effect of bunch shape on longitudinal emittance is
shown in Fig. 4 for a 100-mA beam (and for a somewhat
different beam radius). The emittance growth for the
hard (pillbox) beam (SO) is significantly greater than the
softer (ellipsoidal) beams (Sl and S2); however, there is
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FIG. 4. Effect of bunch shape on longitudinal emittance in an
rf rebuncher for a 100-mA beam.

not much difference between S1 and S2 over the region
considered (numerical noise was found to be considerably
lower than the emittance values of interest).

A longitudinal normalized rms emittance growth on
the order of 0.003~ em mrad is expected for the "simple"
rebuncher. Since there are several rebunchers, the total
emittance growth due to rebunchers is expected to be
higher than this. The complex double rebunchers, neces-
sary near the rf deflector, will probably add more than
this because of the possible degradation of mode purity;
the smoothness of the phase-space distribution will possi-
bly cause this to be halved. For the whole funnel, the to-
tal longitudinal emittance growth due to the rebunchers
is probably greater than 0.005m. cm mrad.
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IV. NONLINEAR BEAM DYNAMICS OF A FUNNEL

A. rf de8ector (2D)

Visualization of the behavior of an rf deflector is aided
by reference to the three-dimensional isometric drawing
shown in Fig. 5. Initially, we will discuss a two-
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FIG. 3. Longitudinal emittance as a function of time (in arbi-
trary units) in an rf rebuncher.

SEAM

FIG. 5. Isometric drawing of an rf deflector.
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FIG. 6. An rf deflector with a zero-current beam in two-dimensional slot geometry, showing gaps G1 and G2 between the trans-

port channel and the rf deflector and three beagn bunches B1,B2, and B3 traversing the deflector, all mo~ing to the right.

dimensional Cartesian variant of the deflector (Fig. 6).
This is conventionally referred to as slot geometry. Fig-
ure 6 should be considered as a slice through the device.
The situation is extended in the y direction. When mak-
ing comparisons with 3D situations, we will simulate a
given beam current by requiring the charge density in the
slot geometry to be the same as for the particular beam in
3D. The errors introduced by the simplification of slot
geometry will be discussed later. Three bunches in an rf
deflector are shown at a particular instant of time in Fig.
6, labeled B1, B2, and B3. The dashed lines are electric
potentials at that instant of time. For this figure, the
beam space charge is zero. The potential contours are at
linear increments: a coarse increment for extreme poten-
tials and a finer increment near the center of the potential
range where the beam bunch is located. Fringe fields due
to the boundary conditions can be clearly seen in Fig. 6.
The corresponding situation for a charge density
equivalent to a 50-mA beam in three dimensions is shown
in Fig. 7. Space-charge fields interact with the fringe
fields in the case of bunch numbers 1 and 3 in Fig. 7,
whereas the main steering field can be seen to be per-
turbed for bunch number 2.

Now we will consider the effect of a 425-MHz deQector
on a beam composed of bunches occupying 28' of the rf
cycle and which are 2.5 mm in height (see Fig. 8 and note
that this is again slot geometry). The longitudinal emit-
tance growth of such a beam is shown in Fig. 9 for both
the 0-mA case and the 50-mA equivalent case. To get an
idea of the properties of such a deflector, we consider first
the time-reversed deflector. This is done for convenience.
Time reversal does not introduce significant error into
the calculations. Similar results apply either way when
correctly interpreted. Slot geometry probably shows the
emittance growth to within a factor of 2 in either the ion/a

gitudinal or the transverse direction. Azimuthal non-
linear space-charge effects are neglected by such a repre-
sentation. The main point of the computation is to get a
clear idea of the space-charge, image-charge, and
apphed-field aberration issues as quickly as possible, so

we can focus on the relevant causes.
In Fig. 8(a) a bunch is entering (leaving) the fringe

fields of the deAector. The space-charge and image-
charge fields are clearly interacting with the fringe fields.
In Figs. 8(b) and 8(c) the time is near an rf null [as is Fig.
8(I)] and the space-charge fields dominate the applied rf
fields. In Figs. 8(d) —8(e) the applied fields dominate, but
are clearly perturbed by the space-charge fields.

The shear fields are partially canceled by having the
field reversed in the gap. This is one of the advantages of
having the field reversed in the gap. Another advantage
is that these nonlinear shear fields will, on the average, be
smaller in the gap since the rf fields are nearer zero. A
major disadvantage is that the steering is mitigated as a
result. As the bunch enters the first gap, the steering is
initially in the wrong direction. When exiting the second

gap, the steering is once again in the wrong direction.
This results in the steering being less than intended. (In a
test calculation, assuming no fringe fields, agreement was
found to be within 0.1% when compared with a simple
ballistic calculation. ) Such a deficit in steering may ap-
pear at first sight to be an issue; however, to produce
higher steering, say, 10% higher, requires higher fields in
the deQection section which impact reliability and cause
higher heat loading since the rf power to the device is
proportional to E, so the rf power and heat loading must
go up by about 20%. There may, in fact, be a heat-
dissipation problem even without this inconvenience.

The effect of the deQector length on both steering angle
and emittance growth is shown in Figs. 10 and 11, respec-
tively. These calculations are for a 50-mA beam. A
deflector length somewhat smaller than pA, /2 appears
desirable since the steering increases a few percent with
no reverse fringes to counter and the emittance growth is
less (p is v/c and A, is the rf wavelength). In Fig. 10 one
can clearly see that the steering is reduced because of
field reversal in the gaps. Specifically, for a deflector
length of pA, /2 the actual steering is 1.36' rather than 1.5'
as planned.

Also shown in Fig. 11 is the situation without deflector
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FIG. 7. An rf deflector in two dimensions with the equivalent of a 50-mA beam, showing three beam bunches B1, B2, and B3
traversing the deflector, all moving to the right.
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fields (and therefore no field aberrations). The longitudi-
nal emittance grows, even in this case, about the same as
for the thin plate TD =0.7 PA, /2 case, indicating that vir-

tually all of this emittance growth is due to nonlinear
space charge and image charge.
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Results for a 100-mA equivalent beam whose height is
4mm and longitudinal phase occupation is 28.30' are
shown in Fig. 12 (together with the situation for the
zero-current beam). This is qualitatively similar to Fig. 9.
An important feature of both Fig. 9 and Fig. 12 is a quali-
tative difference between the emittance growth in the
high-current case and the low-current case. The low-
current case, when not affected by fringe fields, shows no
rms emittance growth. However, the high-current case
seems to suggest a prevailing emittance growth with time,
or distance traversed, on which the shear aberrational
fields are only a perturbation. This prevailing emittance
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To x 0.7, V = 0

FIG. 10. rf deflector steering showing mitigation by fringe
fields. Results for three different deflector lengths are shown.
Deflector lengths are given in terms of the "cell length"
PA, /2 (P=v /c and A, is the rf wavelength).
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FIG. 9. Longitudinal emittance growth in the deflector
shown in Fig. 8. Both the 0-mA and 50-mA cases are shown.
The points A through H correspond to the configurations (a)
through (h), respectively, as depicted in Fig. 8.

FIG. 11. Longitudinal emittance growth as a function of
time for various length rf deflectors. The case without deflector
fields is indicated by V=O.
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FIG. 15. Transverse emittance growth in an rf deflector
determined by a three-dimensional analysis. This is the com-
ponent which is transverse to the surfaces of the deAector elec-
trodes. It is shown for both a zero-current and a 100-mA beam.

V. NEW LONGITUDINAL rms
EMITTANCE-REDUCING LENS

For a typical rebuncher, the longitudinal emittance
growth for a hard (pillbox) beam bunch, as a function of
distance traveled by the bunch, is shown by the curves in

geometry. As the comparison shows, the 2D and 3D re-
sults are within 30% of one another. The emittance
growth and the edge effects are seen to be lower in the 3D
case and this is not unexpected since the aberrations in
the 2D case are not mitigated by the electrodes in the
third dimension.

In all of these cases, the initial distribution has zero
emittance and all of the ernittance that we see comes
from the funnel itself. If the emittance were finite to be-
gin with (e.g., for the case of a matched beam), then the
emittance growth would presumably be less than is
shown here. If the beam, for example, had an initial em-
ittance of 0.005 and a current of 100 mA, then instead of
the final emittance being 0.0085, as is shown here, it
would probably be around 0.01, reflecting the emittance
growth obtained when adding in quadrature with the ini-
tial emittance of the beam.

The component of the emittance transverse to both the
beam direction and the surface of the deflector electrodes
is shown in Fig. 15 as a function of time. Again, there
are the usual edge effects as the beam bunch passes both
ends of the deflection plate. Furthermore, in both the
zero-current and 100-mA cases a significant emittance
growth occurs because of noncancellation of these
fringe-field effects from one end to the other.

In the case of a 100-mA beam, the emittance-growth
calculations after traversal of the rf deflector give approx-
imately 0.008~em rnrad for the longitudinal direction
and for the transverse direction shown and slightly less
for the other transverse direction.

FIG. 16. Longitudinal emittance growth in a rebuncher for
pillbox-shaped beam bunches. The curve labeled symmetric"
refers to the situation where the zero of the rf Geld occurs when
the beam is at the center of the device. The curve labeled
"asymmetric" refers to a situation where the zero of the field is
offset such that it does not coincide with the bunch being at the
center.
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FIG. 17. The longitudinal emittance for pillbox-shaped beam

pulses for the symmetric case shown in Fig. 16 and extended for
a longer distance and time. Point A is towards the end of the
rebuncher, 8 is typical of the drift space where the longitudinal
emittance is increasing, C is where the emittance levels off, and
D is where the emittance has dropped off and started to increase
again. Parts A —D are a11 in a transport channel, as is shown in

Fig. 18.

Fig. 16. The curve labeled "symmetric" refers to the
conventional arrangement for a rebuncher, i.e., the zero
of the field occurs when the bunch is at the center of the
device. By adjusting the phasing of the bunch with
respect to the rebuncher, it is possible to counteract some
of the nonlinear space-charge —image-charge forces [11].
The successful use of this technique is indicated by the
curve labeled "asymmetric" in Fig. 16 showing noticeable
improvements in longitudinal emittance growth (approxi-
mately a factor of 2). The same effect was demonstrated
using a soft (ellipsoidal) beam. Further development of
this, and similar, techniques holds out the prospect of
significantly enhancing beam quality.

Now consider Fig. 17, which refers to the symmetric
case. It is similar to Fig. 16 but is continued for about
twice the time and distance. It shows that the longitudi-
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FIG. 18. An rf rebuncher followed by a drift channel. The
beam pulse is shown at point A of Fig. 17. Also shown are the
positions corresponding to points B, C, and D of Fig. 17.

nal emittance of a bunch, as a function of time, increases
after the region of the rebuncher, starting at the point la-
beled A. The longitudinal emittance continues to in-
crease rather strongly in the drift space to beyond point

(o)

B, until it levels off to a maximum at point C. It then
dips about 10% and increases again. An examination of
the beam in these four regions will show why the emit-
tance has this property. Figure 18 is a simple rebuncher
with a beam pulse. The location of this beam pulse corre-
sponds to point A of the curve in Fig. 17. The rebuncher
is joined by a transport channel with no fields but with a
Dirichlet metal boundary condition. The beam simply
drifts along this channel and the emittance is examined.
In Fig. 18, as explained, the beam pulse is at point A.
Also indicated in Fig. 18 are the positions corresponding
to points B, C, and D of Fig. 17. Figure 19 shows the lon-
gitudinal emittance at points A, B, C, and D. Figure
19(a) is the longitudinal emittance at point A with the ax-
ial velocity as the vertical axis and the longitudinal posi-
tion of the beam as the horizontal axis. The points fall
approximately along a straight line indicating relatively
low emittance. Slight aberrations occur at the ends. The
velocity is characteristic of a rebuncher which means the
beam is being compressed. Part (b) of Fig. 19 corre-
sponds to point B in Figs. 17 and 18. The longitudinal
emittance has obviously increased. The effect of
significant aberrations, basically from nonlinear space-
charge forces between A and B, can be seen in the longi-
tudinal emittance diagram. This is consistent with Fig.
17. At point C, the longitudinal emittance [Fig. 19(c)j is
seen to be very high and very different from point B.
Essentially, the beam is crossing over from a bunched to
a debunched case. At point D we can see that the beam
is clearly debunching. Space-charge forces have caused
the beam to expand. The beam continues to expand in a
very nonlinear fashion. This kind of growth is a
significant concern for intense unneutralized beams drift-
ing in long transport systems where there is a require-
ment for a very low longitudinal emittance growth.

C

~ (b)

N0

(c)
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FIG. 19. Longitudinal emittance of a beam bunch in a drift
channel following a rebuncher. Parts (a)-(d) of this figure cor-
respond to points A -D in Figs. 17 and 18.

VI. SUMMARY AND CONCLUSIONS

A new nonlinear 3D beam-dynamics calculation is de-
scribed and applied to a funnel. Emittance growth for
two crucial elements in a funnel, a rebuncher and a
deflector, has been calculated. The rebuncher calcula-
tions make use of the cylindrical symmetry of the device.
In the case of the deflector, a simpler 2D calculation us-
ing slot geometry is found to give results within 30% of
the complete 3D calculation. The calculations show
what the optimum deflector length should be and that in
such a case the nonlinear beam space charge and image
charge dominates the longitudinal emittance.

A modification to the rebuncher is introduced and it is
shown to reduce the longitudinal emittance growth by a
considerable amount. In a drift channel following a re-
buncher the calculations show how the longitudinal emit-
tance grows.

Using full space-charge and image-charge calculations
in both 2D and 3D we have shown that a typical funnel
will probably contribute to a longitudinal emittance
growth, end to end, of about 0.015m. cm mrad, assuming
perfect alignment according to calculations performed
thus far. The transverse emittance growth is expected to
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be slightly less, but still on the order of 0.010m. cm mrad.
By employing the modified rebuncher, the value for the
longitudinal emittance may be decreased significantly.
These conclusions may be important for applications in-
volving rebunchers and funneling where beam emittance
is of concern.

ACKNOWLEDGMENT

Our research was sponsored by the Office of Fusion
Energy, U.S. Department of Energy, under Contract No.
DE-AC05-84OR21400 with Martin Marietta Energy Sys-
tems, Inc.

'Also at, Grumman Space Systems, P.O. Box 3056, Oak
Ridge, TN 37831.

~Present address: Fermi National Accelerator Lab. , Ac-
celerator Div. , P.O. Box 500, Batavia, IL 60510.

[l] G. D. Smith, Numerical Solution of Partial Difference
Equations: Finite Difference Methods, 2nd ed. (Oxford
University Press, Oxford, 1978).

[2] J. H. Whealton, R. W. McGaffey, and P. S. Meszaros, J.
~~+~bvtn ia'R 'lA C1A&M

Phys. 28, 408 (1978); J. H. Whealton and J. C. Whitson,
Part. Accel. 10, 235 (1980).

[7] E. F. Jaeger and J. C. Whitson, Oak Ridge National La-

bratory Report No. ORNL/TM-4990, 1975 (unpublished).

[8] J. M. Ortega and W. D. Rheinboldt, Iteratiue Solution of
Nonlinear Equations in Seueral Variables (Academic, New

York, 1970).
[9] K. Bongardt et al. (unpublished); F. W. Guy, in High.Bn~h tnaes ~~ IIipb. Abattu Eizrttv ta~njpr






