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Linear undulator brightness: Inclusion of sextupolar magnetic-field contributions
and of higher-order energy corrections
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In this paper we discuss the theory of emission by relativistic electrons in linearly polarized undula-
tors. We show that the analytical computations are greatly simplified by the introduction of the so-
called generalized Bessel functions, originally introduced to treat problems for which the dipolar ap-
proximation does not hold. We also discuss the modification induced in the brightness by the inclusion
of the sextupolar terms, which arise when electrons are injected off the undulator axis. We show that the
phenomonology inherent to this problem is very rich, as additional harmonics come into play and may
cause sizable effects. The analysis we develop may be useful to obtain further insight in the physics un-

derlying the so-called inhomogeneously broadened regime. Finally, we also discuss the inclusion of ener-

gy corrections up to 1/y' and the relevant physical consequences.

PACS number(s): 41.60.Ap, 41.60.Cr, 41.75.Ht, 52.75.Ms

I. INTRODUCTION

Synchrotron radiation, produced using undulators or
wigglers, has been used, during recent years, as a power-
ful tool for many problems in pure and applied research
[1]. These devices have been utilized as insertion ele-
ments on storage rings and, more recently, as an "active
medium" for free-electron-laser experiments using low-
energy accelerators.

An undulator can be exploited in a variety of ways and
in fact its radiation may be the too1 for a wide number of
applications as, e.g., the diagnostics of the quality of the
emitting beam or of the undulator itself [2]. At the same
time the spectral features of the undulator radiation de-
pend on a large number of effects. For this reason nu-
merical codes, able to include the various aspects of an
actual experimental configuration, have been developed
during recent years. However, sometimes the codes, al-
beit very useful, may not allow a transparent understand-
ing of the underlying physical problems.

&e have stressed that undulator magnets have been
used both on storage rings and on low-energy accelera-
tors. Although the basic physical effects underlying the
emission process are the same in both devices, obvious
differences arise due to, e.g., the energies, sometimes
differing by orders of magnitude, or to the beam qualities
(energy spread and emittances) which are much worse in
low-energy accelerators. For this reason some approxi-
mations, useful to treat high-energy undulator radiation,
cannot be used in all cases. Just to give an example,

terms containing inverse powers of the electron energy
should be retained in a correct treatment of the very
low-energy undulator radiation. Furthermore the effects
induced by the imperfect beam qualities, the so-called in-
homogeneous broadening, cannot be ignored at all.

In this paper we reconsider the calcu1ation of the
linearly polarized undulator brightness, using analytical
means and showing that one can go further than the usu-
al approximation including corrections [3] up to the or-
der 1 ly and studying the distortion induced in the radi-
ated spectrum by the combined effects of the off-axis
motion and of the magnet inhomogeneities.

An essential tool of the present analytical approach
will be a class of generalized Bessel functions (GBF's)
which will allow a synthetic and insightful approach to
the problem [4].

II. UNDULATOR BRIGHTNESS, INCLUSION
OF (K /y )' CONTRIBUTIONS,

AND GENERALIZED BESSELFUNCTIONS

In the introductory part of this section we sketch the
well-known derivation of the linear undulator spectrum,
mainly to show how GBF's come into play and what is
the simplification induced in the analysis.

%'e recall that the energy radiated per unit solid angle
and frequency interval, in other words the brightness, is
given by the well-known expression [5]

d I et' +~2 2 2 n.rnX nX Xexp imdQ de 4wc c
dt

2

(2.1)
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where n is a unit vector determining the direction of ob-
servation, r refers to the particle position, and p to its re-
duced velocity. We assume that the electron moves in an
undulator with N periods and with the magnetic-field dis-
tribution which, very near the axis, varies along z with
the following sinusoidal dependence:

n—:( g cosP, g sing, 1 —
—,
' f )

and therefore

(2.4)

where K is the so-called undulator parameter, usually of
the order of unity. Since the emission angle is of the or-
der of K /y, we obtain

B=80 O,Sin, 0
27TZ

Q

(2.2) c K
n r-=—g cos(P)sin(Q„t )

Q„

with A,„being the undulator period.
The equations of motion for an electron moving i.n

such a field can be easily obtained. Keeping contribu-
tions up to the second order in y

' (see Appendix A),
one gets

c K .—sin(Q„t ),0,P'ct
Q„

and

+(1—
—,'P )P"ct —— — sin(2Q„t )

8 Q„y

[n X(n XpX )]„=-icos(p)— co—s(Q„t ),E

(2.5)

1 I(

8 y
sin(2Q„t )

Q„

[n X (n XP) ]»
=—/sin(P),

[n X (n Xp) ],=- /co—s(p)cos(Q„t ) —g

(2.6)

e80A, „P'=1 — 1+, E =
2y 2 277m 0g

Q„=, Q„=Q„P, ,
Q

(2.3)
In deriving both Eqs. (2.5) and (2.6) we have neglected

terms o((E/y )") with n ~ 3. The oscillating part in Eq.
(2.1) can be written in the form

nr
exp ice t—

C

+ oo E
exp i 1+ +y f —mQ„ t J (Z, —g„),

m = —oo . 2r'
(2.7)

where we have defined

Z =(E/y)(to/Q„)icos(P),

g =
—,'(K/y) (co/Q„) .

(2.g)

The integral over time in Eq. (2.1) can be factorized out
and integrating from 0 to L„/cp, =2mN/0„, where an.
effective acceleration exists, we get

2~%/Ou K
(v )=f dt exp i 1+ +y 1(

0 2y' 2

—mQ„

The function J (x,y) is the GBF of the first kind
whose properties are discussed in Appendix B and whose
generating function is provided by [4]

T

X 1 P 2 1
t J (x,y)=exp —t ——+—t~

2 t 2

2y Q„m
m=

I+K /2+
CO CO

U =2m.N
~m

2y Q„m

I+K /2+y Q
(2.10)

It is now easy to show that

d I
d dQ

= ', g~' I~ (v )I'(IT" I'+IT'I')
dc' dQ 4~ g

where

(2.11)

T" =icos(P)J (mZ, —mg)

K [J +&(mZ, —mg)+J &(mZ, —mg)],
y (212)

T» =/sin(P)J (mZ, —mg) .

where

sin(mv /2)

Q mU /2
exp( im v /2 ),— (2.9)

The quantities T ' are the radial and vertical com-
ponents of the radiated spectrum. The expression usually
given in the literature is easily recovered, noticing that
(see Appendix B)
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~ (x y)= g & 2t—(&)J (2.13)

However, the assumption still holds for relatively low-N
values when the harmonics are not overlapping.

With this substitution the expressions for Z and g in
Eq. (2.8), turn into

K /4
1+K /2+y g

2Kyfcos($)
1+K /2+y tP

(2.15)

(2.16)

The frequency selection is immediately understood. In
fact, from Eq. (2.11), it follows that the width of each
harmonic contribution is inversely proportional to the
number of undulator periods.

The advantages offered by the GBF's are both analyti-
cal and computational and become more evident when
GBF's with larger numbers of variables are involved (see
Sec. III and Appendix B for further details).

The expression (2.11) has been derived in the large-N
limit, assuming that the spectrum consists essentially in a
series of isolated peaks and by replacing, in Eqs. (2.11)
and (2.12), to by io . In the large N-limit we have indeed

sin[nN(to/. to, m)—]
nN(to. /co, —m )

1 E+
16 y

P (t)=—cos(Q t)E
X Q

[sin(Q„t) —
—,'sin(3Q„t)], (2.17)

0„

3

+ — [cos(Q„t ) cos( 3Q—„t ) ] .
16 y

As shown in Appendix A, the z component remains the
same as that given in Eq. (2.3), since it contains even
powers of (K /y ) only.

(2.18)

We have stressed that the above results are valid only
when contributions of the order of (K/y)", with n ~3,
are neglected.

Sometimes, when the undulator radiation brightness
produced by a low-energy electron beam is analyzed,
such an assumption is not fully justi6ed. It is therefore
worth including higher-order corrections, which also pro-
vide a more accurate control of the above-quoted approx-
imation. The analysis of the brightness including terms
of the order of (K/y) is rather intriguing according to
the above formalism. We therefore limit the present ap-
proach to the inclusion of (K/y) terms. Within this
perturbative analysis the correction arises from the x
component of motion, which now reads (see Appendix A)

E cx(t) =— sin(Q„t )
p 0„

3
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FICx. 1. Brightness vs yg for the first odd harmonic (k =3 and y =5); continuous line; this theory; dotted line; ultrarelativistic ap-
proximation.
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n:—((g—6g )cos(((o), (P—
6P }sin(P), 1 ——'g ) (2.19)

The derivation of the brightness is straightforward, the
only problem is computational due to a larger number of
terms to be retained. The vector n now writes

Limiting the expansion up to the third order in K/y
the exponential term in (2.1) is still given by Eq. (2.7). On
the other hand, the effect of this approximation appears
in a more complicated structure of the following expres-
sion:

E 41+ +—yg2 3
[nX(nXP}]„=— 1— 1 icos(P}

2y' .
'2

1 E
1( cos(p)cos(2Q„t )+ 1 E

4 y 16 y

1 —g cos (I())+
E 2 2 1 E
y

''
16y

'3

cos(3Q„t ),

2

cos(Q„t )

(2.20)

[nX(nXP)] —= 1 — 1+ +—y~g~E 4
2y' 2 3

[n X (n Xp)],-=f+ —/co—s(p)cos(Q„t ) .
y

2
1 E 1 II

l(t sin(p)+ ——g sin(2$)cos(Q„t )
———g sin(p)cos(2Q t )

2 y 4 y
Q

In analogy to what has been done previously, we define

T = 1 — 1+ +—y g icos($)J~(z, —g)
A&2 4

2y' .
2

1 K 2 2 1 E
1 —f cos (P)— — [J +&(Z, —g)+J ~(z, — ]

1 E
1(cos(y}[J.„(Z,—g)+J. ,(Z, —g)]+ — [J.„(Z,—4)+J. ,(Z, —4)],

32 y.
Ty= — 1 + 4 2 2 2 ~

~=/sin(P) 1 — 1+ +—y f J (Z, —g)+ ——P sin(2$)[J +&(Z, —g)+J &(Z, —g))

2
1 E

/sin(oI))[J +z(Z, —g)+J z(Z, —g)], (2.21)

T' = —
halo

J (Z, —g)+ ——icos(p)[J +,(Z, —g)+J )(Z, —g)] .
y

The integral on time can be worked out straightforwardly, thus finding

, g~' IH (U }I'(IT"I'+IT'I'+IT'I'},
m

(2.22)
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FIG. 2. Seventh harmonic brightness, (a) k =2, y =5; (b) k = 1, y =5.
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where H (U ) is specified in (2.9).
To appreciate the difference with respect to the previously discussed case we consider the on-axis emission (/=0).

The only surviving term in Eqs. (2.21) is the radial polarization, which reads

1)(m —))/2
T = 1+

2 y 16 y

2
1 K

[~(m —))/2(k) ~(m +))/2(f)]+ 16 [~(m —3)/2(k) (m+3)/2(k)]16 y
(2.23)

and m takes odd values only. We find therefore that on-
axis odd harmonics only are emitted and in addition to
the nearest-neighbor index contributions [(m+1)/2] we
have also those deriving from indices [(m+3)/2]. The
physical reasons underlying the appearance of those
terms are due to the 3Q„modulation in x motion. The
possibility of observing new contributions is however lim-
ited to low-energy and high-K cases.

The effect of the low-energy corrections on the undula-
tor brightness is better clarified by Figs. 1, 2, and 3, we
compare the results of the present analysis with those not
including the (I('/y) corrections. As already stressed
the importance of the corrections is more evident at
lower energies, higher K, and higher harmonics. In the
case of K=3 and y=5, the correction is larger than
10 o.

III. UNDULATOR BRIGHTNESS
AND OFF-AXIS MOTION

The undulator field is correctly reproduced by Eq. (2.2)
only near the undulator axis, otherwise the dependence
on the transverse coordinates should be included, to satis-
fy the Maxwell's equations [6]. The modification induced
in the field and the appearance of nonzero contributions
from multipolar elements, both in vertical and radial

I

I

directions, produces distortion in the electron trajectory,
which consists of the reference term (2.3) and of a slow
motion due to the multipolar contributions (see Appendix
A).

In general we have

x =xR+x&, y =yz+y& . (3.1)

x)(0)
x, =x)(0)cos(Q)t)+ sin(Q)t),

1

y)(0)
y) =y, (0)cos(Q2t)+ sin(Q2t),

2

where

K
Q, 2= Q„+h) 2, h) 2=5, 2 —5

(3.2)

(3.3)

and 5 is the sextupolar term, assumed positive to ensure
focusing in both directions. The longitudinal component,
calculated from the total velocity conservation, writes

Since, in the present case, yz =0, the vertical motion
will be provided by the "slow" component y& only.
When the electron motion is focused in both directions,
the extra motion (x),y) ) is given by

2 '2

z =p"ct+ [x)(0)x, (0)+y((0)y, (0)]—— x, (0)— — sin(2Q„t )
4c Q

—
—,'X„sin(2Q, t ) — x, (0)x, (0)cos(2Q, t ) ——,(X sin(2Q2t ) — y, (0)y) (0)cos(2Q2t )

1 1

4c 1 2, y 2 4 1

K 1
[x,(0)sin[(Q„—Q, )t ]

—Q,x, (0)cos[(Q„—Q, )t ] }
Q 1

+ xI, (0)sin[( Q„+Q)t] +Q)x()0)c so[( Q„+Q))t]}
1

0„+Q)
(3.4)

where

& ( ~ )= [r) (0)—[q(0)Q ] }, g=x,y,1

4c0„
(3.5)

p**=p*— [H„(0)+H (0)], H„=—,'[j +(Q„rj) ] .
C

The quantity H„ is a constant of motion.
A few words to explain the physical meaning of the

above results are necessary. The initial conditions
(g(0),g(0)) are the off-axis initial position and velocity,
the existence of a transverse gradient in the off-axis field
induces the extramotion, which also modifies the average
velocity p . We can therefore expect a change in the res-
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FIG. 3. Seventh harmonic brightness k =2, y =10.
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onance condition, through the Hamiltonians H„(see Appendix A). This last effect provides the basis for the so-called
inhomogeneous broadening. We will limit the present analysis to the inclusion of (E/y ) contributions, thus obtaining
for the exponential term the Lienard-Wiechert integral (2.1)

n.r
exp ice t—

C

2

=exp [x,(0)x, (0)+y, (0)y, (0)]— —
2 z x, (0)

lM . . lCO E Ql

X g exp i co 1 —P"*1-
m, n, p, k, l 2

[—mn„+an, +pn, +k(Q„0—, )+l(Q„+&,)] r

XJ —g cos(p), ——6) E 1 K
Q„y '

8 y

2

. N xi(0) NX2)„i x—, (—0)1(cos(p), i 2x, (0)x, (0), icos(p), — X„(0)
C 2C

~ y)(0)
X2) i y—&(—0)/sin(p), i y, (0)y, (0), 1( sin(p), —

( )
C 4C Q2 c 2c

Q,x, (0) ~ g x, (0)
XXI, i— 0 —— ,0c2yQ„—Q& c2yQ„—Q

.~ rC &ixi(0)
X2)( i 0 —— ,0c 2y Q„+Qi' ' c 2y Q„+Qi' (3.6)

With a self-explaining simplified notation we have

nr
exp ice t—

C
p, , 1,, 1

—+8 J (" N„(x)& (&)$1,(d)2)(( ),
m, n, p, k, l

(3.7)

where

[~—m ~„&rd ~

—p co2
—k (—co„—co& )

—1(co„+cot ) ]
Vmnpk

2y Q;
2 2 2 2

l =Q, 1,21+K'/2+y'P +(y'/c')(~„+~y )

(3.&)

and

+ 00

2)„(x,y, z, u )= g I„,(x,y)JI(z, u ), (3.9)

where I„(x,y ) is a modified GBF of the first kind (see Appendix B).
Using the same notations as before we finally find
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T" „),) = icos($)J ( ~ ~ ~ )X)„(X)— [J +,( ~ ~ )+J,( ~ ~ ~ )]2)„(X)E

1

2c
Jm( ~ ~ ~ ){x,(0)[2)„+,(X)+2)„,(X)]+iQ,x, (0}[2)„+)(X}—2)„,(X)]] 2)p( Y)2)k(d)2)((s),

TP „p k (= /sin($)2)p( Y)— {y,(0)[2)p+)( Y)+2),( Y)]+iQ2y, (0)[2) +)( Y)—2),( Y)]]1

XJ (" )2)„(X)2)k(d)2)((s),

T' „p k &= 1( cos(p) [J +,( ~ ~ ~ )+J,( ~ ~ ~ )]2)„(X)2)p(Y)

+ {x)(0)[2)„+,(X)+$„,(X)]+iQ,x, (0)[2)„+)(X)—$„,(X)]]J ( ")Sp(Y)
2c

+ {y,(0)[2)p~, ( Y)+2),( Y)]+iQ2y, (0)[2)p+,( Y)—2),( Y)]]J (" }2)„(X)
2c

—g'J ( ~ ~ ~ )2)„(X)2)p(Y) 2)„(d)$,(s) . (3.10)

Introducing the function

2~~ sin(u „,„,i2}
m, n, p, k, l P( Um, n, p, k ) j2),

u m, n, p, k, l
(3.11)

we can write the brightness as

d I e g~'(IT(;) I'+ITP(;) I'+IT(;}I')~(;}, {i]=n, n, p, k, i .
a)dQ 4 c (}

(3.12)

The results we have obtained show the existence of a much richer phenomenology whose physical aspects are not
diScult to understand.

The inclusion of the betatron contributions gives a very clear idea of how the off-axis motion induces not only a shift
of the central emission frequency but also a variation in the intensity radiated at a fixed harmonic. The outlined pro-
cedure provides the basis for a more complete understanding of the inhomogeneous broadening effects, once the whole
structure of the electron beam is accounted for. One of the most significant results of the above analysis has been an
analytically quantitative determination of how the off-axis injection allows even harmonics to be emitted on axis.

Let us consider, for instance, the case

x, (0)=xo, x, (0)=y, (0)=y, (0)=0 . (3.13)

From the properties of the GBF (see Appendix B) it follows that
I

T" „p k ) I, for m even, writes as

IT",.p, k, )l'=Jk(y )J)'(y+)
'2

K
[J(m —))/2(k) —J(m+))/2(C)] Jn/2(kp)

2 2

2y

2
Q)xo

+1 (3.14a}
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where IV. CONCLUDING REMARKS

1 co

8 O„y
2

1 co

8 0„
2Hi
c2

COO)X p
2

8 2
(3.14b)

(3.15)

which is easily verified in the low-energy case. Further-
more if one includes one contribution of all the electrons
in the beam, inhomogeneous broadening effects may
arise, which broaden the linewidth and reduce the peaks
of the radiated betatron harmonics. To appreciate the
importance of this contribution we notice that the rela-
tive "inhomogeneous" bandwidth of the first betatron
harmonic Ap ~ pppis

1

21' E ' (3.16)

which is significantly larger than the homogeneous
linewidth for, e.g., the harmonics A,

& pppp. Within this
respect the effect of inhomogeneous broadening caused,
e.g., by the beam energy spread and emittances should be
less severe than that affecting the undulator harmonics.

This paper is by no means complete. We did not dis-
cuss, in fact, the problems relevant to, e.g., defocusing
cases or those associated with helical undulators. The de-
focusing (in one direction) undulator case can be easily
included in the present analysis; it is just a matter of be-
ing careful with the GBF's appearing in the spectrum.
The helical undulator problem is by far more complicated
owing to the existence in the (xi,yi ) motion equations of
solenoidal coupling terms.

E 1+p N

2y c 0+0)
The result of such an extra modulation is that the car-

rier harmonic m has a further substructure provided by
the harmonics indexed with n.

The above analysis is relevant to, a single electron and
makes sense if the electron executes many betatron oscil-
lations while traversing the undulator. If we consider
just the natural undulator focusing with h& =h2=1, the
following condition should be satisfied:

In this paper we have shown that analytical progress
can be done in the analysis of undulator radiation includ-
ing in the computation low-energy effects and the beta-
tron motion components. A crucial step in our work
consists of the use of the GBF's which are the natural
mathematical tool for this kind of analysis.

The results we have obtained do not show, however,
any dramatic impact on what is already known and the
magnitudes of the low-energy corrections show that the
usual approximations can be safely used even for electron
energy around 5 MeV and K =-2. We did not find devia-
tions, at least up to (K/y), from the usual resonance
conditions. However, in a forthcoming paper, it will be
shown that, including (K/y) terms, the central emission
wavelength reads

r

~u E1+ + (1+K + ,'K )—
2y 2 4y

which, for electron energies around 2 —3 MeV, can give
significant deviations (some percent, depending on K)
from those predicted with the usual formula.

We have also seen that, with the inclusion of (K/y)
terms, the on-axis emission pattern is slightly more com-
plicated since an entirely new contribution appears con-
taining Bessel functions of the order J( +3)/2 (m odd).
We have already noticed that the physical reasons under-

lying such new terms are due to the fact that the trans-
verse electron motion has an oscillatory component at
the frequency 30„. This oscillatory term is a further
contribution beyond the usual dipole approximation, and
the electron trajectory, in a frame moving at the speed

P, —= 1+1/2y (1+K ), has not the well-known eight-like

structure, but further lobes appear.
We have numerically checked some of the above re-

sults using the S-LUcE code [2], finding agreement with

the above predictions. In particular, at low energies, we

found a systematic shift of the central peak of each har-
monic resonance, consistent with Eq. (4.1).

Betatron harmonics have been the second topic of the
paper. The effects due to the off-axis structure of the un-

dulator have been included in the calculation of bright-
ness and, although the mathematics is quite complicated,
it has been possible to get general expressions and

perhaps a deeper understanding of the role played by the
inhomogeneous broadening effects. We have noticed that
inclusion of the betatron motion induces a richer har-
monic content in the spectrum.

One of the main conclusions of the present analysis is

that many harmonics can operate and that the resonance
condition is provided by

2y [m 0„+n 0,+p Q~+ k (0„—0, )+ l (0„—Q2) ]

1+K /2+(yf) +(y/c) (H„+H~)
(4.2)

We have therefore, in principle, an extraordinarily intri-
gued spectroscopic structure of the undulator spectrum
whose physical origin must be traced back to the various
harmonic contents of the electron motion and to their

l

mutual interference.
Let us, however, better explore the physical contents of

Eq. (4.2) and consider first the case
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2my Q„
1+K'/2+y'[f'+(H„+H )/c']

(4.3)

z= 27TZ
80Sin-.y '

(A 1)

The new term appearing at the denominator
(1/c )(H„+H~) is a kind of correction to the emission
angle g and is just due to the off-axis injection angle [or
velocity (x,y )] and to the transverse spring force [see Eq.
(3.5)].

The above term gives a shift from the usual resonance
condition, which is the source of the usual inhomogene-
ous broadening effects treated, within a different frame-
work, in Ref. [6]. The usual analytical treatment of such
effects is limited since it is essentially based on a convolu-
tion of the (sin X)/X part of the spectrum without
keeping into account the Bessel function content. The
analysis we have presented allows the possibility of mak-
ing a more general analytical treatment.

Equation (4.2) also predicts emission at lower frequen-
cies than that usually referred to as the fundamental fre-
quency, namely, co& p p p p. We have, e.g.,

~ ~X= ez . 2'
Bpsin-.y '

E 2m.zp„=—cos
y

(A2)

Furthermore we also have

P2 —
1 1+K2 2 2m.z

2
COS

y Q

(A3)

Expanding the square root of (A3) up to the third or-
der we find

Since the velocity is a constant of motion we can im-
mediately integrate the second of the above equations,
thus obtaining

2y Q2

1+K /2+ (y P) + (y /c ) (H +Hy )

whose associated wavelength is

A.„ 1+K /2+y [P+(H„+H )/c2]
0,0, 1,0,0 K V'2 5—

(4.3')

P, —= 1 — 1+K cos1 2 2 2m.z

2y'

The above expression can be written as

p, =
& p. )+~p. ,

where

(A4)

(A5)

(4.4)

which is 2y times larger than the usual fundamental
wavelength.
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z(t)=&p, )ct — J cos dt'K c i 4n.z(t')
4y2 0 A,„

=z,(t)+M(t) . (A6b)

the longitudinal coordinate can be evaluated integrating
the above expression, thus obtaining

APPENDIX A: THE EQUATION OF MOTION
FOR ELECTRONS MOVING IN A LINEARLY

POLARIZED UNDULATOR MAGNET

The oscillating term M(t) can be expanded in series of
K/y since the function appearing in the integral is limit-
ed for all z. Considering terms up to the third order we
have

1. Electron motion up to the third order in K /y

We consider electrons moving in an undulator field
with components given by Eq. (2.2) and assume that they
are injected on axis with zero transverse position. From
the Lorentz equation of motion we get

p, (t)=
& p, ) —

2 cos(2Q„t ),E
y'

z(t)=&p, )ct — sin(2Q„t) .cE
8y2

(A7)
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We can now calculate the relevant expression for P
and x just using Eqs. (A6a) and (A6b) inserted into Eq.
(A2), thus obtaining

p (t)= —cos(Q„t)+ [cos(Q„t)—cos(3Q„t)],K — K
3

(A8)E cx(t) =— sin(Q„t )
p 0„

+ [sin(Q„ t ) ——,
' sin(3Q„ t ) ] .

16y 0„

2. Betatron motion

We have already stressed that the field components
(2.1) are accurate only near the undulator axis, otherwise,

they do not satisfy Maxwell's equations. At lowest order
in the transverse coordinates, the field components read

[6]

According to what we have discussed in Sec. III, we as-

sume that the motion can be decomposed as follows:

X =X& +X &, y =yR +y&, (Al 1)

II
X 1

'2
mK

5X, ,
Q V

(A12)

where (xi', yi, ) specify the "reference" trajectory due to
the field (2.2) and (xi,yi ) describe the additional motion
around the reference trajectory due to the extra terms in
(A9) depending on the transverse coordinates. Assuming
the motion around the reference trajectory small once
compared with (xs,y„), keeping contributions only at
the first order in (x„y, ) in Eq. (A12) and averaging on
the undulator period, we get the following differential
equations specifying the additional motion (the prime
denotes derivation with respect to s =et):

B„(x,y, z ) —=2B05
27TZ

xy sin
Q

y&
=

2

(2—5)yi .
mI(

QX

B (x,y, z ) =Bo 1+— [x 5+y (2—5) ]

27rz
X sin

Q

(A9)

The above equations state that the undulator acts as an
optical element focusing in both radial and vertical direc-
tions when 5 & 0, otherwise it is vertically focusing and
radially defocusing.

The solutions of Eq. (A12) are straightforward and
read

2' 27TZ
B,(x,y, z) =Bo y co—s

Q Q

X= eBo . . 2mz
z sin

mope

The equations of motion can be now derived using the
field distribution (A9), which for the transverse motion
yields

x, (0)
x, =x, (0)cos(Qit)+ sin(Q, t) .

j.

yi(0)
yi =yi(0)cos(Q2t)+ sin(Q2t),

2

where

(A13)

eBO

moyc A,„

2m eBO+
~u mope

2

[5x +(2 5)y ]i si—n

27TZ
cos

Q

eBo 2~ . 2~z
xy cos

mope

Q, = —,'&5—Q„, Q2= —,'&2 —5—Q„,
—K, E (A14)

and (x i (0),y i (0);x,(0),y i (0) ) are the initial off-axis

transverse positions and velocities.
The variations, induced by the off-axis motion on the

longitudinal velocity, are obtained from the condition

12
7T 27TZ

25xyz sin
ll ll

(A 10)

x z+y 2+z =p c

therefore deriving

(A15)

z =pc 1 —— cos (Q„t)+ [—x, (0)Q,sin(Q, t )+x, (0)cos(co, t )]2

pc pc

+2 cos(Q„t )[—x, (0)Q,sin(Q, t )+x,(0)cos(Q, t )]K
p2yc

+ [—y, (0)Qzsin(Q2t )+y, (0)cos(Qzt ) ]
p2 2

(A16)
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and

z =Pet —
—,'Pc [Q„t+—,'sin(2Q„t )]+ x, (0)Q& t —sin(2Q, t )

+x, (0) t+ sin(2Q, t) +2x, (0)x, (0)sin (Q, t)20'

+ y f (0)Q2 t — sin(2Q2t ) +y, (0) t+ sin(2Qzt ) +2y, (0)y, (0)sin (Qzt )2c' 202

1 —cos(Q„—Q, )t 1 —cos(Q„+Q, )t

2(Q„—Qi) 2(Q„+Qi)

sin(Q„—Q, )t sin(Q„+Q&)t
2(Q„—Qi) 2(Q„+Qi)

(A17)

APPENDIX B: GENERALIZED BESSELFUNCTIONS Furthermore, setting t=1 or 8=0 in Eqs. (B3) and
(B4) one has the following closure relation:

The generalized Bessel function [4] of the first kind is
defined by the series expansion

J„(x,y ) =1 . (B6)

J (x y)= g J 2I(x)JI(y)— (Bl)

J„(x,y ) =—,
' [J„2(x,y ) —J„+2(x,y )],

By

2nJ„(x,y ) =x [J„~(x,y )+J„+~(x,y ) ]

+2y [J„,(x,y )J„+,(x,y }].

(B2)

and, as it is easily shown, it satisfies the following re-
currence relations:

J„(x,y ) = —,
' [J„,(x,y ) —J„+&(x,y )],B

J„(—x,y ) =( —1)"J„(x,y ),
J„(x,—y)=( —1)"J .(x y»

J „(x,y}=J„(—x, —y) .

(B7)

Before obtaining the limits of the GBF's for small ar-
guments, it is convenient to write the expansion (Bl) in
the form

The following relations are of particular importance
for computational purposes:

The generating function of J„(x,y), easily obtained,
reads J (x y}= X [J 21(x}JI(y—)+( 1)'J, +2I(x}JI(y)]

1=1
+- Ix 1 yt "J„(x,y ) =exp —t ——+—

2 t 2
+J„(x)Jc(y) . (BS)

and the relevant Jacobi-Anger expansion writes as

(B3} Using the series expansion of the J„(g) we get the fol-
lowing small argument expansion for J„(x,y ).

(a) n, x axed and y «1. Keeping contributions up to
the fourth order in y, we get

e'"eJ„(x,y)=exp[i(x sin8+y sin28)] .
oo

It is also easy to understand that

(B4)

J, (x y )ly((& —= J,(x)+[J„2(x)—J„+~(x)]—(1—
—,'y')

2

J„(x,0}=J„(x), J„(0,0)=5„0,
J„&2(y ) for n even

J 0, 0 for n odd.

(B5)

+ [J„4(x)+J„+4(x)] (B9)

(b) n, y)axed and x «1. Keeping contributions up to
the second order in x, we end up with
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J«z(y)+ — [J„~z,(y) —J„~z(y) ]J (x,y)=i 2

Ji(x)[J( —i)rz(y) J( +i)n(y)]+J3(x)[J(,+3)iz(y) ( +3)iz(y)]
(B10)

Together with J„(x,y ) the modified GBF of the first kind can be defined as

I„(x,y)= X I„zt(x )I, (y) (Bl 1)

and their recurrence relations are given by

I„(x,y ) = —,
' [I„,(x,y )+I„+,(x,y )],B

B I„(x,y ) = '[I„z(—x,y )+I„+z(x,y ) ],
By

(B12}

2nI„(x,y ) =x[I„,(x,y ) I„+,(x—,y )]+2y [I„z(x,y ) I„+,(x—,y ) ],
and the relevant generating function is

x 1 y 2 1t"I„(x,y)=exp —t+ —+—t +—
2 t 2

ltl & m (B13}

and

e'" I„(x,y ) =exp[x cos(8)+y cos(28)] .
n = —oo

In Sec. III we have defined functions of the type

(B14)

2)„(x,y;z, u ) = g I„,(x,y)JI(z, u ) .
I = —oo

It is also easy to state the relevant recurrence relations, namely,

(B15)

B
2)„(x,y;z, u ) = —,

' [2)„)(x,y;z, u )+2)„+)(x,y;z, u )], 2)„(x,y;z, u ) = —,
' [2)„z(x,y;z, u )+2)„+z(x,y;z, u )],

B B
2)„(x,y;z, u ) =—z'[2)„,(x,y;z, u ) —S„+,(x,y;z, u )], $„(x,y;z, u )=—,'[S„z(x,y;z, u )

—S„+z(x,y;z, u )],
(B16)

2n2)„(x,y;z, u ) =x [2)„,(x,y;z, u )
—2)„+&(x,y;z, u ) ]+2y [2)„z(x,y;z, u ) —2)„+z(x,y;z, u ) ]

+z [2)„,(x,y;z, u )+Q„+,(x,y;z, u ) ]+2u [2)„z(x,y;z, u )+2)„+z(x,y;z, u ) ];

and it is also easy, in spite of the apparent complexity, to
derive the Jacobi-Anger expansion in the form

e'" 2)„(x,y;z, u ) =exp [x cos(8}+y cos(28)
n= oo

+i [z sin(8)+u sin(28)]] .

(B17)

%'e must, however, quote the possibility of using a gen-
eralized Graf theorem to sum (B15) and express
Xl„(x,y;z, u) in terms of a single GBF of the J„(X,Y)
type. We will not report the explicit expression that will
be discussed elsewhere.

Before closing this appendix we want to underline the
possibility of defining a multivariable ()2), one-index
GBF that can be exploited in multipolar scattering prob-

lems. In particular we introduce the GBF
+ oo

J„(x,y, z) = g J„3I(x,y )JI(z),
I = —oo

whose recurrence properties are just provided by

B J„(x,y, z ) = —,
' [J„,(x,y, z )

—J„+&(x,y, z ) ],
B (x y z } [J —z(x,y, z } J.+z(x,y z}]-

By

B

Bz "J„(x,y, z ) = —,
' [J„3(x,y, z) —J„+3(x,y, z)],

2nJ„(x,y, z ) =x [J„,(x,y, z )+J„+&(x,y, z ) ]

+2y [J„z(x,y, z )+J„+z(x,y, z )]

+3z[J„3(x,y, z)+J„+3(x,y, z)] .

(B18)

(B19)
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The relevant Jacobi-Anger expansion reads

e'" J„(x,y, z) =exp[i[x sin(8)+y sin(28)

+z sin(30)]} (B20)

and therefore the relevance of such functions to the prob-
lem of the type discussed in this paper is self-evident.

We must emphasize that the GBF provided in the
analysis of the undulator brightness is a significant
analytical help. The use of double, triple, . . . , infinite
series, using conventional Bessel functions only, might
create noticeable computational troubles. On the other
hand, the properties of the GBF's have allowed the con-
struction of fast and reliable numerical codes, as dis-
cussed in Ref. [4], which have also significantly improved
the numerical analysis.
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