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Computer simulations of excess electron transport in neon
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The behavior of excess electrons in neon gas in a wide range of densities is investigated using
molecular-dynamics simulations with a parameter-free interparticle potential. A realistic pseudopo-
tential reproducing the measured electron-Ne low-energy scattering properties is used. A transition
from quasi-free behavior to a localized regime where the electron is trapped in a bubblelike cavity is
observed as the density is increased beyond a value that is close to the experimental one. The cal-
culated electron mobilities in a wide range of densities are also found to be in reasonable agreement
with the experimental data.

PACS number(s): 51.50.+v 71.55.Jv 34.80.—i

I. INTRODUCTION

It is well known that in most molecular liquids the
ground state of an excess electron has a localized charac-
ter, the electron being trapped in a bubblelike cavity in
the solvent [1]. The driving force for the localization is
the long-range anisotropic interaction between the elec-
tron and the solvent dipoles, which is suKcient to over-
come the increase in kinetic energy due to localization.
In nonpolar liquids a localized bubble state of an excess
electron is also expected to be stable provided that the
electron-atom repulsion is sufficiently strong [2]. In this
case the stabilization effect comes as a consequence of the
balance between the electron-atom short-range repulsion,
the increased electron kinetic energy due to localization,
and the free energy required to form the liquid-bubble
interface. The mobility of the electron under these condi-
tions is expected to be rather low because a large number
of atoms in the fluid must be displaced for the cavity to
move. In He, for instance, as the gas density increases be-
yond a certain value, the electron mobility is observed to
drop much faster than the classical rate, as the electron
becomes localized [3].

Evidence for localized excess electron states in noble-
gas liquids has been found long ago. However, only very
recently experimental evidence for localization of excess
electrons in Ne gas at moderately high densities has been
collected [4, 5]. In particular, measurements of the excess
electron mobility at low temperature (T 46 —48 K) and
in a wide range of gas densities show that a transition
from quasifree to localized electron states, signaled by a
dramatic drop in the zero-field electron mobility, takes
place at neon densities between 1.3 and 1.5 x 10 cm

The low-density mobility data, where quasifree behav-
ior of the electrons is assumed, can be explained [4, 5] on
the basis of multiple scattering theory, where the mobil-
ity is given by

4e
p, = —S(0) 'AA* exp( —vr '~ A/A*).

3h

Here A = h(27rmkiiT), S(0) = pk~TyT is the long-
wavelength part of the fluid structure factor, p and yT

being the number density and the isothermal compress-
ibility of the fluid, respectively, and

-r/kgyT
A* = (pa') ' = (klrT)

p po' sp+s (2)

is the energy-averaged electron mean free path. In Ref.
[6] one can find an analytic expression for the energy
dependence of the total scattering cross section 0(s) ap-
pearing in (2) which fits the experimental data to high
accuracy. Note that in (2) a has to be evaluated at the
shifted energy s+ sp [5]. The energy shift sp, which de-
pends on the density p of scatterers [5], can be easily
calculated explicitly if, for instance, an ordered array of
scatterers is assumed [7]. In this case s = k /2m' (m' be-
ing a suitable scalar effective mass) is the free particle en-

ergy term, while the zero-point energy sp = k&~/2m' can
be obtained by matching the electron wave function with
its asymptotic expression P(r) sin[kr+bp(k)]/kr on the
surface of a Wigner-Seitz sphere (of volume sxr, = p )
centered on each atom, i.e, , ko is determined by solving
the equation tan[kpr, + bp(kp)] = kpr, . Even such a sim-
ple estimate for sp(p), when inserted in (2), is found to
give a good fit to the mobility data in the low-density,
delocalized regime [5].

On the high-density side, however, where the drop in
the mobility is observed, a conclusive theoretical descrip-
tion of the behavior of the excess electron is still lack-
ing. Recent calculations [7], based on a model local-
density functional coupled with Wigner-Seitz boundary
conditions, show that spontaneous electron self-trapping
in a bubble occurs at densities larger than po 1.5 x
10 cm, in agreement with experiments [5]. How-
ever, the disagreement between theoretical and experi-
mental values for the mobility in the range of densities

p ) po, where localization occurs, is substantial, the cal-
culated mobilities being much lower than experimentally
observed.

In the attempt to characterize theoretically the behav-
ior of excess electrons in neon at diQ'erent densities and to
give a microscopic description of the localization process,
we have performed a series of computer simulations of
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such a system, both in the density range where quasifree
behavior is observed and at higher densities where local-
ization is expected.

The following section contains a brief description of the
method used, while in Sec. III we give a detailed deriva-
tion of an essential ingredients of our simulations, i.e. , the
electron-Ne interaction potential. In Sec. IV we summa-
rize the main results of our calculations. Few concluding
remarks form the subject of Sec. V.

II. METHOD

A number of numerical techniques can be used to sim-
ulate on a computer the behavior of electrons in a dis-
ordered atomic system [8). Among them, molecular dy-
namics (MD) is best suited to investigate time-dependent
phenomena like diffusion or transport. Here we use a
method introduced a few years ago by Car and Parrinello
[9] to study the physical properties of condensed-matter
systems (i.e. , a many-body system of electrons plus ion
cores), which allows us to perform molecular dynamics
with a parameter free in-teratomic potential.

This method combines the practical advantages of
standard MD techniques for the calculation of the sta-
tistical properties of a classical system of particles with
the first-principles treatment of interatomic forces due to
the quantum electronic system, as provided by density-
functional theory. A detailed description of the Car-
Parrinello method can be found in Ref. [10], together
with a number of applications to complex condensed-
matter systems. We only recall here the basic equations
of this method, as applied to the simpler system that
we are facing, i.e., a single electron interacting with N
classical atoms contained in a volume Q.

A fictitious dynamical system described by two sets
of classicaL degrees of freedom, the atomic spatial co-
ordinates {Rr} (I = 1, . . . , N) and the electron wave
function 4'(r), is introduced and the following coupled
equations of motion are derived:

bE
piIt(r, t) = — + A4'(r, t),

MrRi = —Va, E

The total energy functional E is given by

%*V'4 dr

+ ).V(Ir —R~ I) I~(r) I'dr

Here V(Ir—R~ I) is the potential acting on the electron
due to an atom at B.y and V, , is the atom-atom pair po-
tential. The constant p in Eq. (3a) represents a fictitious
mass associated with the electronic "degree of freedom"
4, while A is a Lagrange multiplier that imposes the nor-
malization constraint on the electron wave function. If 4'

is the ground-state wave function, @o, for a given atomic
configuration {R&},and if the fictitious mass p is chosen
so that p « M~, thus preventing transfer of energy from
the atoms to the electron over long periods of simulation,
then the trajectories {Ri(t)}obtained froni the above
equations of motion follow very closely the true atomic
trajectories for the physical system [10]. These "quasi-
adiabatic" atomic trajectories can be used to extract sta-
tistical averages as temporal averages over the observa-
tion time. A temperature T can be defined in terms of
the mean classical kinetic energy of the atoms and can
be varied by simply rescaling the atomic velocities {Rt}.
As long as the "false" kinetic energy associated with the
electronic degree of freedom Ic, —:(p/2) f I@(r)I dr re-
mains negligible with respect to E and to the total atomic
kinetic energy Iiy =

2 P& MrR&, then the sum Ii.r + E
is almost constant during the temporal evolution of the
system. This provides a useful check that during the run
no transfer of energy takes place from the atoms to the
electron.

As described in detail in the following section, we de-
rived a realistic electron-atom interaction V to be used in

(4) in the form of a smooth pseudopotential, constructed
in such a way as to reproduce the scattering properties
of Ne in the range of energies of interest here.

The other basic ingredient appearing in the equations
of motion (3) is the atom-atom pair potential V, , For
the purpose of representing both the short-range repul-
sion and the long-range van der Waals attraction between
pairs of rare-gas atoms the following model potential has
been proposed [11]:

V, ,(R) = A exp( —bR) —) f2„(b)
n)2

(5)

Five essential parameters are required to completely
specify the potential (5) for a given rare-gas atomic pair,
and they are listed in Ref. [12]. The A, b parameters
of the repulsive Born-Mayer term are derived from a fit
to experimental results, while the dispersion coef5cients
CQ, Cs, CiQ can be obtained from perturbation theory
[11]. The remaining C2„'s are derived by a recursion
relation. The f2„are given universal functions [11].

The potential function (5) has been tested successfully
against the best experimental and theoretical ab initio
results for the He2 and Ar2 dimers as well as for a num-

ber of heteronuclear dimers [12]. We have tested the
above potential for Ne-Ne pairs in a fluid environment

by performing a standard MD simulation for a system of
classical particles interacting through (5). To simulate an
infinite system we used periodic boundary conditions on
the surface of a cubic box of side L containing N atoms.
In our test we took N = 219 and L = 36 a.u. , correspond-
ing to a density p = X/I = 3.17 x 10 cm . Starting
from a randomly chosen initial configuration {Ry}of the
N particles, we let the system equilibrate for about 2

ps while its temperature was kept, around T 35 K by
periodically rescaling the atomic velocities. After this
equilibration run, we made a "production" run of about

7 ps. From the atomic trajectories generated during
this run, we computed the radial pair correlation function
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FIG. 1. Radial distribution function g(R) of liquid neon
at T = 35 E4 and p = 3.17 x 10 cm . Solid line, calculated
from classical MD simulations using the model pair potential
of Ref. [11][see Eq. (5) in the text]. Dotted line, experimental
results of de Graaf and Mozer [13], as analyzed by Raveche
aud Mountain [14].

III. MODELING THE ELECTRON-NEON
INTERACTION

Pseudopotentials greatly simplify electronic-structure
calculations by eliminating the need to include deep
atomic core states and the strong potential responsible
for binding them; i.e. , the electron-ion interaction po-
tential is replaced by a weaker effective potential acting
only on the valence electrons. In particular, the widely
used norm-conserving pseudopotentials (NCPP) calcu-
lated from ab initio self-consistent potentials in the local-
density approximation (LDA) produce pseudoatomic va-
lence wave functions which converge identically to the

g(R): (47l R pN) ply' ( b(R iRI Rg i) ).
Our calculated g(R) is compared in Fig. 1 with the

experimental results from neutron scattering experi-
ments in liquid Ne at the same temperature and density
[13,14]. It appears from Fig. 1 that a good overall agree-
ment with the experimental pair-correlation function is
attained, the main difference being in the height of the
first peak of g(R), which in our calculations is slightly
higher than in the experimental curve. This is a mani-
festation of quantum effects which are displayed by Ne
at liquid-state temperatures [15]: the mild suppression
in the height of the experimental peak refIects the occur-
rence of tunneling of Ne atoms through the (classically
forbidden) shell of first neighbors. These effects are ob-
viously not accounted for in our purely classical simula-
tions. They are however quite small [15] and are expected
to be negligible at the lower densities and at the higher
temperature of our excess electron calculations described
in the following sections.

real wave functions beyond a chosen core radius. This
property guarantees optimum transferability of NCPP
among different chemical environments [16]. Recently,
a class of "generalized" NCPP [17] have been computed
from LDA all-electron atom potentials at arbitrary en-
ergies, rather than at bound-state energies only, as in
previous methods [16]. This results in more flexible
NCPP which may be used to treat certain "problem"
atoms where previous NCPP proved to be inadequate
[17]. These pseudopotentials were also claimed to be
able to reproduce the scattering properties of closed-shell
atoms.

However, as we tried to apply the generalized NCPP
scheme of Ref. [17] to neon, we found that the result-
ing pseudopotential failed completely to reproduce the
scattering properties of the atom at energies in the con-
tinuum. The calculated scattering phase shifts bi (I =
0, 1, 2, . . .) turned out to be completely wrong when com-
pared to the experimental results [6]. In particular, the
predicted scattering length a, = —limt. o tg(bo)/k was
found to be exceedingly large with respect to the exper-
irnental value a', "i" = 0.213 a.u. [6].

The reason for this failure is that LDA is unable to
reproduce the long-range polarization effects which de-
scribe the electron —closed-shell-atom interaction at large
electron-atom distances, and which are essential in de-
termining the atom scattering properties. We thus pro-
ceeded to construct a realistic potential in which these
polarization effects were included from the start.

An accurate description of electron scattering from
closed-shell atoms requires an accurate treatment of both
exchange and correlation effects. At large electron-atom
distances, t;he correlation potential takes the form of a
dipole polarization term V, (i') nd/2r'—, o.q being the
electric polarizability of the atom. The above form ap-
plies only in the asymptotic limit r ~ oo, whereas its
proper form at small r is not known.

Among rare-gas atoms, the importance of dynamical
polarization of inner-shell electrons is greater for Ne, due
to its exceedingly small scattering length [6]. For this rea-
son accurate calculations of its properties from first prin-
ciples are extremely difFicult. Recently, very accurate ab

initio calculations of the low-energy scattering properties
of Ne have been performed, based on a multiconfigura-
tion Hartree-Fock method [18]. The resulting scattering
length and phase shifts agree almost perfectly with the
experiments [6]. The method of Ref. [18],however, is not
suited to be implemented in a molecular-dynamics com-
puter simulation, where an explicit representation of the
electron-atom interaction potential is desirable.

In order to construct a realistic electron-Ne interaction
potential, we partially followed the prescription of Ref.
[19], where a procedure to construct a model potential
containing the essential physics of electron-closed shell
atom interaction is given. Although not completely ab
initio, this model potential does not contain any semiem-
pirical adjustable parameter, the only input being the
electron charge density of the unperturbed atom (cal-
culated, e.g. , using the Hartree-Fock method) and the
polarizability o.p of the atom.

The full electron-atom interaction potential can be
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written as V(r) = V, (r) + V (r) + U, (r) The static po-
tential V, , due to the Coulomb interaction of the electron
with an ¹ lectron closed-shell atom, can be written as
[19] U, = —[Z —yo(r )]/r, where Z is the atomic number
and

10

P,2(r')
dr' i. (6)

(FEG) 2 . (1 1 —rl 1+@)
I~F ———+ ln

i2 4' 1 —ri ) (7)

For the bound electronic orbitals P; appearing in (6)
we took the analytic Hartree-Fock functions of Clementi
and Roetti [20]. The electron density is given in terms of
these orbitals by n, (r) = (1/47rrz) P,. i PP (r)

An explicit form for the exchange potential V can be
derived from the free-electron-gas (FEG) exchange po-
tential
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with il = I&(r)/KF(r) defined in terms of a local mo-
mentum Ii r) and the local Fermi momentum IiF(r) =
[3z.2n, (r)]i s. A modification of the above expression
is required for the case of unbound electron scattering
[21], i.e. , a shift in the zero of the energy and hence
of the local momentum Ix(r) of the incident electron:
Itz(r) = I&Fz(r) + 2I + k~, where I is the ionization po-
tential of the target atom and k~/2 is the kinetic energy
of the incident electron.

At short distances the correlation potential V,
VSR is adequately described by using the standard
parametrization [22] of the Green-function Monte Carlo
results of Ceperley and Alder [23]. At large distances
V, V,

" n~/2r ( o.d
—' ——2.66ao). The correlation

potential V, is obtained everywhere in the simplest way

[19] by continuously joining the short- and long-range
terms V, , V at the point p, where the two cross:

VSR (r(r )
V, (r) =

VLR (r+r )
(8)

With the full potential V(r) constructed in the way
described above, we numerically integrate the radial
partial-wave Schrodinger equation in the range of ener-
gies 0 & E & 2 eV (which is the energy range of interest
in the present calculations), and we compute the scatter-
ing phase shifts bi (I = 0, 1, 2) for the Ith partial wave

by matching the numerical wave function with its proper
asymptotic form. The agreement with the experimental
values for bi [6] turns out to be rather qualitative, the dis-
crepancy between theory and experiment increasing with
the energy and being as large as 15% at E = 2 eV.
Moreover, the calculated scattering length a, is found to
be twice as large as the experimental value a', "~' = 0.213
a.u. [6]. A much better agreement with experiments
can be achieved, however, by considering the energy shift
ko = 2I + 0 appearing in the modified exchange poten-
tial (7) as an (energy-independent) adjustable parame-
ter, tuned in order to give the best fit to the observed
phase shifts. By using the value ko ——0.82 a.u. an ex-
cellent overall fit with the measured phase shifts is ob-

FIG. 2. Neutral-Ne pseudopotential. The l = 0, 1, 2 an-

gular momentum components, labeled with s, p, d, respec-
tively, are shown. The inset shows the scattering phase shifts
bp, by, b2 in the energy range 0 —2 eV. Squares, experimental
values [6]. Lines, calculated phase shifts using the pseudopo-
tential shown in the figure.

tained and the corresponding calculated scattering length
is a, = 0.205 a.u. , very close to the experimental value.

Having found a potential for the e-Ne interaction
which accurately reproduce the scattering properties of
Ne atoms, we then applied the procedure of Ref. [17] to
derive from it a (norm-conserving) pseudopotential to be
used in our computer simulations. The t = 0, 1, 2 an-
gular momentum components of the resulting (nonlocal)
pseudopotential V', are shown in Fig. 2. In the inset
we compare the scattering phase shifts calculated with
this pseudopotential with the corresponding experimen-
tal values. Since in the energy range of interest here, up
to a few hundred meV, the s-wave scattering dominates,
we decided to keep only the t = 0 component, V'„of the
pseudopotential shown in Fig. 2. The final electron-atom
total potential to be used in the MD calculations is thus
a local function of r, given by V(r) = Pl V&, (~r —Rl~).

IV. RESULTS AND DlSCUSSION

Our MD calculations are performed on a periodically
repeated system of one electron and N neon atoms, con-
tained in a cubic cell of side L = 36 a.u. The electron
wave function '4 is expanded in plane waves on a mesh of
(30)s points. Owing to the smoothness of the electron-Ne
pseudopotential, a kinetic energy cutoff of 2.5 Ry (cor-
responding to —1700 plane waves) was found sufficient
to ensure a good convergence of the total energy of the
system. %e investigated a number of atomic densities,
ranging from p = 0.4 x 10zz to 2.0 x 10zz cm (corre-
sponding to N = 28—138 atoms in our unit cell). In all

our simulations the temperature of the system was kept
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close to 48 K. Both temperature and densities were
chosen to reproduce closely the experimental conditions
[4, 5]. The equations of motion (3) were integrated by
using the standard Verlet's algorithm, with a time step
At = 15 a.u. and a fictitious mass p = 300 a.u. With
these values the total energy of the system E+ I&1 (see
Sec. II) was conserved within 1 x 10 during an entire
MD run.

A typical run was as follows. For a chosen value of the
gas density p, we obtained a starting atomic configuration
via a preliminary (classical) MD simulation in the ab-
sence of the extra electron. Once a well-equilibrated neu-
tral structure was obtained, we added the excess electron
and computed the ground state for that initial atomic
configuration. The system was then let to evolve freely
under the action of the interatomic forces. We allowed
the system to equilibrate for at least 2 ps prior to col-
lect data for subsequent analysis. The lengths of the pro-
duction runs following the equilibration runs were never
less than 5 ps for any value of the Ne density investi-
gated.

A number of quantities were monitored during the tem-
poral evolution of the system, including the electron ki-
netic energy Ek;„= —

z & @~V's~@ ), the pseudopoten-
tial energy E&, —& 4~ Pi V&, (~r —Ri~)~4' ), the total
potential energy of the Ne atoms and the degree of local-
ization of the electron in the unit cell.

In Fig. 3 we show the calculated values of the electronic
energy terms Ek;„and Ep, as a function of the Ne den-
sity. The values shown in the figure are actually temporal
averages over the whole MD "production" run. Relative
fluctuations in Ez, of 15% about its average value are
found during the temporal evolution of the system after
equilibration, while smaller fluctuations ( 5% ) in Ek;„
are observed.

From Fig. 3 it appears that as the density increases

the total energy of the excess electron is dominated by
the kinetic-energy term. However, a small but signif-
icant contribution comes from the pseudopotential en-
ergy term, especially at higher densities. Note that Ep,
becomes more negative as the density increases. This is
in contrast with the behavior of an excess electron in He
[24], where the repulsive part of the potential dominates
over the attractive polarization part, thus causing Ep to
increase with increasing He density.

Different behaviors of the excess electron are observed
in our MD runs, depending on the density of neon. The
analysis of the charge density shows that, while at low
densities (p & 1.0 x 102~ cm s) the electron is always
fairly delocalized all over the unit cell during the entire
MD run, at higher densities it tends to localize.

In a finite system the concept of localization is not
rigorously defined, but various practical indicators have
been suggested. For instance, the participatioi ratio [25)

P =
/
0 dr/@(r)/

n ) (9)

gives a measure of the localization of the particle wave
function in a finite volume 0 (0 & P & 1, where P =
0 and 1 for a perfectly localized and delocalized state,
respectively).

In Fig. 4 we show the average participation ratio, cal-
culated according to (9), at different densities. Note that
although at low densities the participation ratio is close
to 1, indicating a delocalized character of the electron
state, at higher densities a sudden decrease is observed.
We take this as an indication that a "localization tran-
sition" is likely to occur at p 1.5 x 10 cm . This
value should be compared with the experimental value

p 1.4 x 10 cm where the transition from quasifree
to localized behavior of the excess electrons is observed
[5I

The nature of the electronic states in the high den-
sity region (p ) 1.5 x 10~2 cm s) is clarified by looking
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FIG. 4. Average participation ratio at different gas den-
sities. The kink at p ~ 1.6 x 10 suggests the onset of "lo-
calization. " The dashed line is only meant to guide the eye.
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at the electron charge density. A typical charge density
plot is shown in the top panel of Fig. 5 (the figure refers
to p = 2.0 x 10 cm ) where the localized character
of the electron state is evident. Moreover, a depletion
of Ne atoms around the maximum in the electron den-
sity is clearly visible, indicating that self-trapping in a
bubblelike cavity occurs.

To characterize the local Quid structure around this
cavity, we computed the following correlation function:

g N (r) = (4rr'p) ' ) b(iRI —r, i
—r)), (10)

I
where the symbol & ) indicates a time average over
the MD run. In the above formula r, is the expectation
value of the electron position r, (t) =& 4(t)~r~4(t) &.
Since periodic boundary conditions are used in our cal-
culations, we computed r, by using the following expres-
sion, which was proposed in Ref. [26] and found appro-
priate for a localized state in a periodic system:

& (r, ) (t) &= Im ln e' " ~ )III(r, t)) dr

(n = z, y, z). (11)

From the behavior of the calculated ge-Ne(r), which is
shown in the bottom panel of Fig. 5 with a solid line,
one can see that Ne atoms are excluded from a region
surrounding the electron and a weH-defined cavity with
a radius of 10—12 a.u. develops. Note that our esti-
mate of the bubble radius is much smaller than the value

30 a.u. predicted at the same density by the model
calculation of Ref. [7]. The time required to develop
the bubble starting from the initial delocalized electronic
state is roughly estimated from our simulations to be of
the order of 3 ps at p = 2.0 x 10 cm . The en-
ergy gained by the electron in the localization process
is rather small, being of the order of 0.06 eV. Very
small fluctuations ( 5'%%up) in the kinetic energy of the
electron are observed during the temporal evolution of
the system after localization has occurred, thus showing
that the variations in the size of the confining cavity are
quite small.

For these localized states a low zero-field mobility is
expected. The simplest way to calculate the excess elec-
tron mobility p, is to monitor the electron average posi-
tion & r, (t) &, as given by (ll), and to compute from it
the correlation function [27]

T
& r,'(t) &= lim (1/T) [ & r, (t + t') &

T~oo 0

~ ~

~ ~

~ ~ ' ~

~ ~ e ~~ ~ 0
~ ~ ~

~ ~ ~

The long-time part of & r~2(f) &, which is shown in
Fi . 6 with a solid line for the case p = 2.0 x 10 cm
is approximately linear, indicating a diffusive motion.
Moreover, the nearly absence of Huctuations in & rz(f) &
seems to indicate that the transport occurs in a smooth,
dro letlike way. A diffusion coeKcient D, can be ex-
tracted from the asymptotic relation ( r, ~tj )
while the mobility p, can be estimated from D, by means
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FIG. 5. Top panel: contour plot of the electron cha.rge
density (integrated along the sight line) for a typical atomic
configuration at p = 2.0x10 cm . The dots indicate the Ne

atom positions. Note the depletion of atoms around the center
of the electron charge distribution. Bottom panel: Radial

s dashed linepair-correlation functions between Ne-Ne atom
and between the electron and the surrounding Ne atoms (soli

22 —3line), at a density p = 2.0 x 10 cm

0
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FIG. 6. Time dependence of (a) the electron mean-square
displacement (solid line) as obtained from Eq. (12) in the
text, and (b) the atomic rms displacement (dashed line), for

22 -3the case p = 2.0 x 10 cm
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FIG. 7. Excess electron mobility in neon gas as a func-
tion of the gas density. Small open dots, experimental values

[5]. Squares and diamonds, results of our MD calculations.
The full diamonds shows the values of the mobility at low Ne
densities as computed using Eq. (1), with Gp calculated from
our MD runs (see text). The full square shows the mobility as
computed from the time behavior of the electron mean-square
displacement. For comparison, the value of the mobility ob-
tained at the same density by using Eq. (1) is also shown
with the open diamond. The open triangles correspond to
calculated Ne mobilities due to self-diffusion.

of the Einstein relation p, = eD, /k~T. We remark
that formula (11) applies in the case where the elec-
tron is localized to a certain extent in the unit cell. For
the extended states which are found at lower densities

(p & 1.0 x 1022 cm s), the above method does not ap-
ply, since the electron position (11) is in this case an ill-
defined quantity. However, in the low-density quasifree
regime the expression (1) from multiple-scattering theory
is expected to be valid, once the zero-point energy zp is
calculated. In the present context the obvious choice for
zp is to take zp Ek' +Ep where E&, and Ek;„are the
time-averaged values shown in Fig. 3. In the whole range
of Ne densities investigated we are thus able to estimate
the electron mobility from the analysis of our MD data.

We summarize our results in Fig. 7, where the cal-
culated mobilities (full squares and diamonds) are com-
pared with the available experimental data (open circles).
The two values of the electron mobility at p = 0.4 and
0.8 x 10~2 cm s are obtained using Eq. (1), while the
point at p = 2.0 x 10 cm is obtained from the calcu-
lated diffusion coefBcient of the localized electron. With
the open diamonds we also show the value of the mobil-
ity at p = 2.0 x 10~~ cm s as predicted using Eq. (1),
i.e. , assuming a quasifree behavior of the electron. The
comparison between the full square and the diamond at
p = 2.0 x 10 cm shows the dramatic decrease in the
mobility caused by the electron localization.

At p = 1.7 x 10 lcm we found difficult to extract
a value for the diffusion coefficient D, from the time de-

pendence of & r, (t) ).This could be due to the fact that
at this density, which is close to the calculated transition
density for localization, there is a coexistence of quasifree
states with localized states, which makes problematic the
use of (11) to calculate the electron position.

It appears from Fig. 7, however, that the calculated
mobility at the higher density is probably overestimated
with respect to the experiments. Roughly speaking, a
higher mobility means a smaller bubble radius R (p, oc

R ', from Stokes's law). Thus this discrepancy could
be due to a finite size effect since our unit cell is not
able to accommodate very large bubbles, or it could also
be due to spurious Ne-mediated interactions between the
electron and its periodically repeated images.

In order to check for the effects of the finite size of our
MD unit cell on the results presented so far, we performed
additional calculations, at density p = 1.7 x 10 cm
using a cell with side a = 45 a.u. , i.e. , with a volume
twice as large as that of the cell used previously. Due
to the consequent increase in the computational burden,
only MD runs of limited duration were performed, i.e. ,

we followed the evolution of the system from the starting
delocalized configuration until a well-defined bubblelike
cavity is formed but we did not try to calculate the bubble
diffusion coefficient. The time required for the bubble to
form is found to be 6 ps. As for the equilibrium prop-
erties of the localized electron, we find that the average
electron energy E&, + Ek;„ is within 5% of the value ob-
tained by using the smaller unit cell (see Fig. 3), while
a bubble radius R 12—15 a.u. is estimated from the
electron-Ne correlation function. The latter value should
be compared with R 10—13 a.u. as obtained at the
same Ne density using the smaller unit cell.

An a posteriori justification for our use of an adiabatic
dynamics scheme is provided by the calculation of the
electronic excitation spectrum. We have calculated the
electronic excited states for a number of selected atomic
configurations taken from our MD trajectories, in order
to extract an average excitation spectrum. For instance,
in the case p = 2.0 x 10 cm we found a substantial
energy gap E& 0.35eV 75k~T between the ground
state and the first excited state, all the higher excited
states being more closely spaced in energy. We are thus
in the conditions where the adiabatic separation between
the electronic and atomic motion is expected to be valid.

We note finally that during our MD simulations we
never observed any attempt of the system to make (adi-
abatic) hopping transitions, where the electron, initially
localized in a cavity of the fluid, is able to tunnel into an
empty cavity created by spontaneous fluctuations in the
gas density. Moreover, due to the large energy gap, other
nonadiabatic processes which could contribute to the dif-
fusion of the electron through excitation into higher en-
ergy delocalized states are expected to contribute negli-
gibly to transport.

V. CONCLUSIONS

In surrunary, we have calculated a number of proper-
ties of an excess electron in Ne gas in a wide range of
densities, using molecular dynamics with parameter-free
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interparticle potentials. As the Ne density increases, we

find evidence of a transition from quasifree to localized
electronic states where the electron is self-trapped in a
bubblelike cavity in the fiuid. We have been able to eluci-
date the nature and the diffusion process of the localized
states that occur at higher densities. The comparison
with recent experimental measurements of excess elec-
tron mobilities in Ne is satisfactory in the whole range of
densities investigated. The effect of the finite size of the

MD supercell on the energy of the localized electron and
on the bubble radius is also investigated.
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