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Interaction potential, transport properties, and velocity distributions of Na ions in Ne
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Comparisons of experimentally measured transport properties with values determined from calcula-
tions based on three-temperature-kinetic theory, on bi-Maxwellian kinetic theory, and on Monte Carlo
simulations have established that the Na+-Ne interaction potential of Koutselos, Mason, and Viehland

[J.Chem. Phys. 93, 7125 (1990)] is a close approximation to the true potential. (In the bi-Maxwellian ap-

proach, the ions are modeled in first-approximation as a large fraction that behaves according to a low-

temperature Maxwell distribution and a small fraction that follows one of higher temperature; the true
distribution is computed from these by a weighted-residual method. ) This potential was then used to
compute velocity distribution functions of Na+ ions in room-temperature Ne at widely different average
ion energies. The skewness of the distributions in the direction of the electric field initially increased
rapidly with increasing energy, and then slowly decreased, as did the excess kurtosis both parallel and

perpendicular to the electric-field direction. It was clearly established that there is correlation between
the perpendicular and parallel velocity-component distribution functions and that the correlation in-

creases with increasing average ion energy.

PACS number(s): 51.50.+v, 34.20.Cf, 52.25.Fi

INTRODUCTION

AR+ =A+R+hv,

in which the alkali-metal-ion ( A +)—rare-gas-neutral (R)
pair provides the final, deenergized, molecular-transition
states from the initial, energetic, excimerlike states. In-
formation about VDF's is particularly important for the
analysis of flow-drift and drift-tube measurements of rate
coefficients for ion-molecule reactions where there is an
energy threshold [8]. Additionally, a well-represented
VDF would also provide insightful guidance on the
choice of a basis function needed in solving the
Boltzmann equation such as by the velocity moments

In previous work [1—4] with potassium-ion —rare-gas
systems, it was found that measured transport data were
well represented by the interaction potentials of
Koutselos, Mason, and Viehland (KMV) [5]. The pur-
pose of this paper is to show that the KMV potential for
Na+-Ne accurately reproduces the available transport
data, and then to compute from this potential the veloci-
ty distribution functions (VDF's) for a Na+ swarm in Ne
gas at widely different average ion energies.

Knowledge about VDF's is of fundamental importance
in many areas [6(a)]. An application of potential
significance which was recently highlighted [7] is in the
development of a vacuum uv ion excimer laser based on
the reaction

method. Unfortunately, both our theoretical and experi-
mental knowledge of these distributions is still quite lirn-
ited.

Theoretically derived functional forms [9,10] for ion-
velocity distributions are not supported by experimental
measurements [11] and sometimes give unacceptable
imaginary results when solved with experimentally deter-
mined parameters. Qn the other hand, experimental
measurements using retarding-potential-difference
methods can, under certain conditions, be subject to im-
portant errors caused by distortions of the boundary lay-
ers of both the electric potential [12] and the pressure at
the end of the drift tube. The recent technique [13,14] of
deducing the velocity distribution in a chosen direction
from laser-induced fiuorescence (LIF) measurements of
the Doppler shift due to ionic motion appears promising.
However, it has yet to be applied to closed-shell ion-atom
systems, where its accuracy can be verified, because of
the limited wavelength ranges of available single-mode
cw tunable lasers.

The procedure followed here for the determination of
ion-velocity distributions starts with an interaction po-
tential. Whether this potential has been obtained from ab
initio or approximate quantum calculations, from direct
inversion of equilibrium, spectroscopic, scattering, or
transport data, or from semiempirical (as in the case of
the KMV potential) or corresponding-states arguments,
the first task is to establish its accuracy. This is done by
comparing properties calculated from the potential to ex-
perimental values of transport properties. These calcula-
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tions are based on three-temperature (3T) kinetic theory
[15], on bi-Maxwellian (BM) kinetic theory [16], and on
Monte Carlo simulations (MCS) [1,2]. Once the potential
is known to be accurate, it is possible to extend the MCS
calculations to include the VDF's. No VDF calculations
have yet been done using the 3T or BM method although
such techniques have already been used to calculate speed
distribution functions [16]. Here the velocity distribu-
tions are computed by intensive MCS calculations on a
supercomputer.

COMPUTATION OF TRANSPORT PROPERTIES

The starting point for any theoretical calculation of the
transport coefficients is the assumption of a realistic in-
teraction potential between the colliding particles. The
range of internuclear separations probed by gaseous-ion-
transport data extends from the long-range, inverse-
fourth-power, induced dipole-polarization-potential re-
gion to the short-range-repulsive region at a few atomic
units.

The interaction potential of the Na+-Ne system is rela-
tively well known, and the interaction potentials derived
from both ion-beam and swarm methods have yielded
transport coefficients in excellent to good agreement with
experimental data [17]. Both colliding species are
closed-shell atomic structures with spherical symmetry
and no fine-structure splitting. They have the same elec-
tronic configurations (ls 2s 2p 'So), but because of the
additional nuclear charge on the Na+ ion, their electron-
ic wave functions are not identical, so that quantum-
mechanical exchange forces need not be considered ex-
cept in the very-low-energy range below that probed by
gaseous-ion-transport data measured at room tempera-
ture. Because of these naturally occurring simplifications,
this interaction is conducive for both ab initio as well as

with

F[—C4 /r + ( C6;„d +C 6d» ) Ir

+(Cs;„d+Csd, , )Ir ]

1 for r ) 1.28r;„
exp[ —(1.28r;„Ir —1) ] otherwise .

(2)

(3)

In atomic units, the parameters in Eqs. (2) and (3) are
Vp =0.5646 3

&

= 146.98 a
&

= 1 ~ 5024 B
&

=70. 198
b

&

= 1.4041
& P =0.7607& C4 = 1 ~ 33 157 C61&d

=3' 747

The KMV potential was used as input to our MCS, 3T,
and BM calculation procedures to compute the mobility
and diffusion coefficients for Na+ in Ne at room tempera-
ture. The calculational methods have been previously de-
scribed [1,2, 16]. As in the case for the K+-Ar interaction
[2], a classical treatment for the present ion —neutral-
atom pair is adequate except in the limit of very-small-
angle scattering. Small-angle scattering is handled by
finding a correction to the total scattering cross section
which gives for a fixed cutoff angle g;„=0.15 rad the
same contribution to the momentum-transfer cross sec-
tion as that obtained from all collisions with ~y~ ( ~y;„~
[1]. Several important enhancements in the present MCS
procedure compared to more traditional simulation
methods are worth noting.

semiempirical calculations.
Of the more refined interaction potentials proposed for

Na+-Ne in the last few years, among the most accurate
appears to be the KMV potential given in the functional
form [5]

V ( r )
= Vo [ 3, exp( —a, r /p ) B—, exp( —b, r Ip ) ]

TABLE I. MCS calculated values of Kp DT /K and DT"'.

E/N
(Td)

eff

(K)
Ko

(cm /V s)
DT /K
(mV)

Standard Deviation of DT/K
(mV) (%) D(r)

T

5

10
15
20
25
25
30
35
40
45
50
55
60
70
80

100
120
140
170
200

304.7
335.3
391.4
479.3
602.9
603.2
763.5
946.2

1 152.6
1 373.3
1 612.1

1 866.2
2 147
2 700
3 287
4 534
5 888
7 332
9 600

12 094

8.17
8.31
8.57
8.88
9.18
9.19
9.44
9.54
9.58
9.55
9.50
9.43
9.39
9.17
8.95
8.52
8.16
7.84
7.43
7.11

26.0
28.3
32.3
38.6
47.9
47.6
58.2
71.6
85.6

100.0
115.6
131.6
149.2
184.9
223
299
386
477
619
775

0.2
0.1

0.1

0.1

0.2
0.3
0.3
0.2
0.5
0.6
0.9
1.3
1.2
1.6
2.0
4.6
6.1

10.7
14.9
22.2

0.8
0.4
0.4
0.3
0.4
0.7
0.4
0.3
0.6
0.6
0.8
1.0
0.8
0.9
0.9
1.5
1.6
2.2
2.4
2.9

0.999
1.021
1.058
1.118
1.207
1.202
1.268
1.342
1.383
1.398
1.404
1.395
1.389
1.350
1.302
1.179
1.093
1.011
0.904
0.828
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(i) The present calculations account for the variation
of collision frequency with the relative velocity of the col-
liding particles, and are therefore not dependent on the
validity of either a constant-mean-free-path or a
constant-mean-free-time model (compare, e.g., [18]).

(ii) The calculations also allow for the fact that the
ion-atom scattering is not isotropic in the center-of-mass
frame (compare, e.g., [19]). We compute the scattering
angle with an elaborate Gauss-Mehler 32-point quadra-
ture, which was chosen because of its suitability even

TABLE II. 3T calculated values of Kp, NDT, DT"', NDL, and DI"'.

E/N
(Td)

10.07
10.65
11.25
11.89
12.55
13.25
13.99
14.75
15.55
16.39
17.26
18.17
19.10
20.10
21.15
22.26
23.41
24.61
25.85
27.15
28.50
29.91
31.41
33.00
34.69
36.52
38.50
40.66
43.03
45.63
48.49
51.65
55.14
59.03
63.29
67.96
73.10
78.73
84.94
91.77
99.28

107.52
116.56
126.47
137.30
149.13
162.04
176.10
191.40
208.03
226.06
245.60
266.74

339.0
344.1

349.9
356.3
363.6
371.7
380.8
391.1
402.7
415.6
430.1

446.6
464.7
484.5
506.8
531.6
559.2
589.9
624.2
662.5
705.5
753.5
807.4
867.9
935.9

1 012.5
1 099.0
1 196.9
1 307.8
1 433.6
1 576.0
1 737.3
1 919.5
2 124
2 356
2 621
2 921
3 261
3 644
4075
4561
5 106
5 719
6411
7 183
8 052
9023

10 118
11 347
12 729
14 280
16024
17984

Ep
(cm /V s)

8.321
8.347
8.375
8.406
8.441
8.476
8.517
8.561
8.608
8.659
8.712
8.780
8.845
8.891
8.940
8.987
9.034
9.086
9.142
9.204
9.269
9.337
9.404
9.468
9.526
9.577
9.619
9.648
9.665
9.665
9.648
9.612
9.556
9.473
9.380
9.280
9.169
9.047
8.911
8.764
8.606
8.439
8.266
8.090
7.908
7.726
7.543
7.363
7.187
7.013
6.845
6.682
6.524

NDT
(10' /m s)

6.394
6.497
6.614
6.74?
6.898
7.062
7.249
7.463
7.703
7.972
8.273
8.653
9.048
9.440
9.890

10.378
10.909
11.494
12.143
12.872
13.692
14.615
15.652
16.810
18.100
19.530
21.11
22.86
24.78
26.89
29.20
31.73
34.50
37.47
40.76
44.41
48.45
52.89
57.77
63.11
68.95
75.34
82.33
89.76
98.12

107.51
117.63
128.73
140.95
154.43
169.30
185.75
203.96

D(r)
T

1.022
1.025
1.029
1.034
1.039
1.045
1.051
1.059
1.068
1.078
1.089
1 ~ 105
1.120
1.133
1.148
1 ~ 163
1.178
1.193
1.209
1.226
1.245
1.265
1.287
1.309
1.332
1.354
1.374
1.392
1.407
1.417
1.422
1.422
1.415
1.402
1.383
1.361
1.335
1.304
1.270
1.233
1.192
1.150
1.106
1.059
1.015
0.973
0.931
0.889
0.849
0.810
0.774
0.739
0.707

NDL
(10 /ms)

7.306
7.537
7.800
8.101
8.443
8.795
9.208
9.686

10.222
10.823
11.499
12.536
13.425
13.897
14.722
15.580
16.517
17.609
18.926
20.51
22.35
24.39
26.54
28.71
30.85
32.92
34.90
36.84
38.76
40.72
42.77
44.94
47.29
50.00
52.79
55.65
58.67
61.95
65.58
69.63
74.18
79.31
85.07
91.07
98.66

107.83
116.22
126.54
138.12
151.14
165.77
182.19
200.67

D(r)
L

1.167
1.189
1.214
1.241
1.272
1.301
1.335
1.375
1.417
1.463
1.513
1.601
1.662
1.668
1.709
1.746
1.783
1.828
1.884
1.953
2.031
2.111
2.182
2.237
2.271
2.282
2.272
2.244
2.201
2.146
2.083
2.013
1.940
1.870
1.792
1.705
1.616
1.528
1.442
1.360
1.283
1.211
1 ~ 143
1.075
1.021
0.976
0.920
0.874
0.832
0.793
0.758
0.725
0.696
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when the integrand becomes unbounded at one end of the
integration limit. We have utilized the high-capacity
random-access memory of the supercomputer to main-
tain a large, rapidly accessible, table of scattering angles,
y(e, b), as a function of impact parameter b and collision
energy e. Typically, this table contains 240 e values and
400 b values.

(iii) Full provision is allowed for the random thermal
motion of the buffer-gas particles, as opposed to a cold-
gas model where the buffer particles have fixed positions
in space (compare, e.g. , [20]). Mason and McDaniel
[6(b)] have emphasized that the cold-gas limit of trans-
port properties is not equivalent to the high E/N limit, as
a third energy scale, namely, the interaction potential en-

ergy V(r), is also involved in the theoretical considera-
tions.

(iv) To reduce the propagation of errors, double-
precision arithmetic with a precision of 1 in 10' was em-
ployed in calculating the y(e, b) table. Error propagation
was discernibly detectable in the near-classical-orbiting
region, where y(e, b) changes rapidly.

The detailed results of our transport calculations are
given in Tables I and II. Figure 1 shows a comparison of
the calculated mobilities with experimenta1 values of Ellis
et al. [21] and Iinuma et al. [22], which have a claimed
accuracy of +2% and +2.5%, respectively. Generally, a
standard deviation of less than l%%uo is attained in the MCS
mobilities and the 3T calculations have converged within
0.1%. In the region from 20 to 50 Td, the 3T mobilities
had not completely stabilized by the eighth approxima-
tion, which is the highest level of approximation the com-
puter program had been designed to permit. We there-
fore supplemented these calculations with BM calcula-
tions that could be carried to higher levels of approxima-
tion. As can be seen in Fig. 1, the 3T and BM results
agree within the estimated combined error of 0.5%, thus
demonstrating that the 3T calculations had, in fact, been
adequate. Closer examination of the seventh and eighth
approximations of the 3T mobilities revealed that they

1.$ a a a a I a a a a I a i a a I i s a a

1.4-
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O II
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E/N(Td)

FIG. 2. Comparison of theoretical (3T,
BM . ; GER derived values using mobil-

ity data of linuma et al. [22], asterisks), MCS ( ), and ex-

perimental (Hogan and Ong [25], squares) transverse-diffusion
data in the form of reduced transverse-diffusion coefficient to
mobility ratios on the same E/N (the ratio of electric field to
neutral particle number density) scale.

tend to oscillate around the BM values (presumably
correct) without deviating by more than l%%uo.

It, should be noted that the horizontal axis in Fig. 1 is
the effective temperature defined by

T,tt(T, E/N)=T+ MNo[1(:o(T,E/N)] (E/N) (4)
1

B

where M is the neutral-atom mass, lVO is Loschmidt's
number, Ko( T,E/N) is the reduced mobility measured at
absolute temperature T and at a specified E/N value, and

kB is Boltzmann's constant. This way of presenting the
data was chosen in order to adjust for slight differences in

the temperatures of the various data sets. The MCS data
were calculated at the gas temperature 295 K, and the 3T
and BM data at 298 K. Since the experimental data were
collected over a small range of temperatures, the average
temperature of 300 K for the data of Ellis et al. and 313
K for the data of Iinuma et al. were assumed. The
effective temperature scaling rule [6(c)] combining the
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FIG. 1. Comparison of theoretical (3T,
BM, - ), MCS ( ), and experimen-
tal (linuma et al. [22], asterisks; Ellis et al. [21],squares) mobil-

ity data in the form of reduced mobilities.

FIG. 3. Comparison of theoretical (3T,
BM - ~ - ) and experimental (Iinuma et al.
[22], asterisks; Ellis et al. [26], squares) longitudinal-diffusion

data in the form of reduced longitudinal-diffusion coefficient to
mobility ratios on the same E/N (as defined in Fig. 2) scale.
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DT"I =(e/k& T„~)(DT I /K),
where

(5)

effects of T and E/N into a single parameter has recently
been reaffirmed by experiment [23].

For all of the results plotted in Fig. 1, the mobility
reaches a maximum value at about 45 Td (1 Td=10
Vm ), corresponding to T,&=1300 K. This peaking of
the mobility curve occurs when there is a partial cancella-
tion of the deflections produced by the attractive and
repulsive parts of V(r). The maximum thus corresponds
to the region of near-glory scattering, where the ions are
only slightly scattered by the neutral atoms, their
momentum-transfer cross section is small, and they ex-
perience reduced resistance to their motion. At the peak
mobility, the average center-of-mass collision energy is
0.0067 hartree, and the impact parameter for glory
scattering corresponding to this energy is about 6.7 Bohr
radii. (Glory scattering is a quantum-mechanical effect at
small scattering angles that occurs when scattering by the
attractive and repulsive parts of the potential approxi-
mately cancel [24].)

Diffusion data shown in Figs. 2 and 3 are presented in
a reduced form, given by

T,i=T+M(NoK „E/N) /3k' . (6)

Here DT' and DL"' are dimensionless ratios, e is the elec-
tronic charge, DT/K and DL /K are the ratios, respec-
tively, of the transverse- and longitudinal-diffusion
coefficients to mobility, and T,&

is the ion temperature in

the polarization limit. This definition of DT"L treats the
ratio DTL /K as a single entity, rather than as two

separate quantities, and should properly be referred to as
the reduced (transverse, longitudinal) diffusion coefficient
to mobility ratio. Equations (5) and (6) are similar to
ones proposed earlier [6(d)] but have the important ad-
vantage that they can be obtained directly from known
constants and the value of DT L /K, without requiring in-

dependent knowledge of E. These reduced ratios remove
the first-order dependence on temperature of DT I /K and

amplify the details of the variation of the diffusion
coefficients with E/N. Their use also gives approximate-
ly linear effects from experimental errors throughout the
range of E/N, instead of rapidly growing effects at low
E/N as with a previously used reduction scheme [1,4].
For plotting values of NDTI, the corresponding DT"I
values have been calculated using literature values of mo-
bility.

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

(a)

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
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FIG. 4. Velocity distribution functions (in arbitrary units) along different axes, without restriction on the other components of ion
velocity for (a) E/N=5 Td, (b) E/N=37. 5 Td, (c) E/N=100 Td, and (d) E/N =200 Td. [f(v„), ; f(v ), asterisks; f(v„),

; f(v4„), triangles; f(v, ), ].
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Our transverse-diffusion results are compared against
the experimental Dr/K values of Hogan and Ong [25) in
Fig. 2. To our knowledge, these are the only experimen-
tal data available. Also shown are the diffusion
coefficients obtained from the generalized Einstein rela-
tionships (GER) [6(e)] calculated using the experimental
mobility values of Iinuma et al. [22]. The data sets all
show a maximum, for the same physical reasons as there
is a mobility maximum. The MCS values for the
transverse-diffusion coefficients have a standard deviation
of less than 2%, while the 3T values have generally con-
verged within 0.25%. BM calculations have again been
used to supplement the 3T values between 20 and 50 Td.
The errors for the experimental values of DT/E are
+3%. Keeping these errors in mind, in addition to the
smaller errors of the mobilities used to determine the
GER and calculated values of DT"', we see again that the
calculated results agree quite well with experiment and
with each other.

The calculated values of the longitudinal-diffusion
coefficients are compared with the experimentally deter-
mined values of Iinuma et al. [22] and Ellis et al. [26] in
Fig. 3. Since NDL values were measured directly rather
than as values of DI /E, we used the mobilities measured

by the same groups [22,21] to compute the values of Dz'"'

shown in Fig. 3. This introduces very little additional er-
ror considering the estimated errors of +5% for the data
of Ellis et al. [26], and of up to +18% at low and high
E/N and +7% at intermediate E/N for the data of Iinu-
ma et al. [22].

MCS results are not shown in Fig. 3 because it was
found that the standard deviation of the longitudinal-
diffusion coefficients was unacceptably large. In general,
the 3T and BM calculations of NDL converged within the
requested 0.25% accuracy. The differences at E /N
values between 35 and 90 Td are due to a lack of conver-
gence in the 3T calculations. The poor convergence of
the 3T results near the maximum compared with the
much better convergence of the BM values, which was
also present in the E and DT' values to a somewhat lesser
extent, is perhaps an indication of the occurrence of par-
tial ion runaway [16]. The converged BM results can be
seen to agree with the experimental values throughout
the range of E/N, keeping in mind the somewhat large
experimental errors.

The general agreement between the calculated and ex-
perimental values of the transport properties confirms
that the KMV potential represents fairly closely the true
Na+-Ne interaction potential. This conclusion provides
us the necessary confidence for the use of the KMV po-
tential in the more intensive second stage of the present
calculations in which the velocity distribution functions
are determined. The fact that the mobility and
transverse-diff'usion data at high E/N are systematically
slightly higher than the calculated values may indicate
that the repulsive region of the KMV potential is some-
what too soft. More accurate longitudinal-diffusion data
at high E/N are needed to clarify this point.

A second conclusion we draw from the generally good
agreements shown in Figs. 1 —3 is that the different sets

TABLE III. Shape parameters of velocity distribution functions along various axes.

VDF

(u„)
( )

(v, )

f(U4s)
(u45 )

Peak (m/s)

0
0

110
100
100

E/N=5 Td

Skewness

0.001
0.000
0.039
0.022
0.024

Excess

—0.003
—0.022
—0.003
—0.011
—0.008

0
0

720
SOO

600

E/N=37. 5 Td
—0.003

0.008
0.690
O.S79
0.308

0.767
0.769
0.687
0.707
0.345

(v )

(uy )

(u, )

(u45 )

f (U4s, )

0
0

1750
1120
1400

E/N =100 Td
—0.004
—0.006

0.635
0.538
0.300

0.800
0.842
0.362
0.500
0.256

(v )

(u~)
(u, )

(v4s)
(u45 )

0
0

2950
2000
2300

E/N =200 Td
0.007

—0.001
0.566
0.512
0.275

0.795
0.784
0.103
0.432
0.201
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of experimental mobility and diffusion values are con-
sistent within their claimed accuracies, with the partial
exception of longitudinal diffusion. Finally, the excellent
agreement between the calculated values, found whenever
the calculations have converged, validates the computer
programs used for the MCS, 3T, and BM procedures.

VELOCITY DISTRIBUTION FUNCTIONS

There is as yet no general, analytical solution to the
Boltzmann equation. However, with adequate computer
power and realistic input parameters, the MCS method is
a phenomenologically straightforward and practical al-
ternative approach to determining the velocity distribu-
tion function. We determined this distribution by run-
ning the MCS computer program and, at the end of each
ion free flight, incrementing the appropriate velocity
bin(s) by the duration(s) the ion spent in each bin's range.
As in most previous simulations (e.g. , [9,14,20]), Carte-
sian coordinates are used to describe the three-
dimensional velocity space. Although this forsakes the
cylindrical symmetry of the problem, the Cartesian sys-
tem continues to be used because of its computational
simplicity and ease of visualization.

VDF's have been calculated for several sampling con-
ditions. Figures 4(a) —4(d) show the various VDF's of
Na+ in room temperature (295 K) neon along different
directions at E/N =5, 37.5, 100 and 200 Td, respective-
ly. Here U, is the velocity component along the electric-
6eld direction, while U„and v are orthogonal to v, and
to each other. f (v„), f ( v ), and f (v, ) are the distribu-
tion functions of the three components of the velocity
along the respective Cartesian axes, as logged by the
MCS program. They represent the sum of the contribu-
tions from all ions to the given velocity component, re-
gardless of the other velocity components. By virtue of
the cylindrical symmetry, f (v„) and f (v ) are identical
within the statistical uncertainties (about 1%) of the
calculation.

In a similar manner, the f (v45) and f (v45, ) functions
both represent the total ionic contribution to the VDF
along the oblique line in the U„—U, plane but inclined at
45' to the v, and v, axes. They differ in that f (v~~ ) was
calculated directly from MCS data logging, ~hereas
f (v45, ) was obtained by eliciting it from a cross product
of f (v„) and f (v, ). Once an ion is placed in a particular
velocity bin, the only information available is the range of
the bin, so it is understandable that f(v4~, ) is more
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FIG. 5. Velocity contours in the plane containing the v„and u, axes for (a) E/N =5 Td, (b) E/N =37.5 Td, (c) E/N =100 Td,
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shown.
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jagged than f (v45), since it is deduced from reduced in-
formation. Nevertheless, a substantial difference still ex-
ists between f (u4&) and f (v45, ) at each value of E/N
other than 5 Td. The significance of this discrepancy is
that a non-negligible correlation exists between the axial
and transverse motions of the ions. Had there been no
such correlation, f(v4&) and f(u45, ) should have agreed
within statistical uncertainties. Qualitatively, as E/N in-
creases, the f (u45, ) curve becomes progressively more
displaced to the direction of higher velocity than f (v 45 ),
indicating the increasing correlation of v and v, . Physi-
cally it may be interpreted that ions moving rapidly in
the v, direction will have the high velocity regions of the
f(u„) and f(u~) distributions enhanced. A correlation
like this has long been suspected [9] but never rigorously
proven. However, the results of our MCS calculations
should be sufficiently convincing.

An immediate consequence of the correlation is that it
would not be correct to express the combined velocity
distribution function of the ions as the product of three
separable functions, such as

F(v, v, v, )=f (v )f/(v~)f (U, ),
as has often been assumed [20]. For simplicity,
throughout this paper we have dropped the suffixes after
the f's with the implicit understanding that in general

f.=f,&f.
In principle, all of the distributions presented here can

be directly obtained from experimental measurements,
except f (u4~, ). With a sulliciently accurate LIF experi-
ment, it should even be possible to confirm the distinction
between f (u4& ) and f (u45, ) directly. The VDF measured
with the laser pointed at 45 to the z axis would measure
f(v4~), while the f(v4~, ) can be deduced analytically
from two separate measurements with the laser along and
perpendicular to the z axis.

To facilitate comparison with future experimental re-
sults, the velocity of the peak, skewness (5), and excess
kurtosis (II) of the various curves are presented in Table
III. The last two quantities are defined by
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TABLE IV. Peaks off(v„=const, v~ =0,v, ) and their deviations from the respective fitted hyperbol-
ic (hyp. fit) equation.

v„(m/s)

—775
—725
—675
—625
—575
—525
—475
—425
—375
—325
—275
—225
—175
—125
—75
—25

25
75

125
175
225
275
325
375
425
475
525
575
625
675
725
775

MCS

E/N= 5

100
100
100
100
75
75
75
75
75
70
65
65
65
65
65
65
65
65
65
65
70
70
75
75
75
75
75
75

100
1OO

100
100

v, (m/s)

Td, a=60 m/s, b=

hyp. fit

540 m/s, a/b=0. 11
104.95
100.44
96.05
91.77
87.65
83.68
79.91
76.35
73.05
70.03
67.33
65.00
63.07
61.59
60.58
60.06
60.06
60.58
61.59
63.07
65.00
67.33
70.03
73.05
76.35
79.91
83.68
87.65
91.77
96.05

100.44
104.95

Absolute
% difference

4.72
0.44
4.12
8.96

14.43
10.38
6.14
1.77
2.67
0.04
3.46
0.00
3.06
5.54
7.30
8.22
8.22
7.30
5.54
3.06
7.69
3.96
7.10
2.67
1.77
6.14

10.38
14.43
8.96
4.12
0.44
4.72

Average absolute % difference of v, 5.28

—1290
—1230
—1170
—1110
—1050
—990
—930
—870
—810
—750
—690
—630
—570
—510
—450
—390
—330
—270
—210
—150
—90

E/N =37.5

1110
1110
1110
1050
990
990
990
930
870
870
810
750
690
690
630
630
570
570
570
570
570

Td, a =550 m/s, b =700 m/s, a/b =0.79
1153
1112
1071
1031
992
953
915
877
841
806
772
740
709
680
654
630
608
589
574
562
555

3.74
0.18
3.62
1.83
0.15
3.92
8.25
6.00
3.43
7.93
4.88
1.36
2.72
1.40
3.65
0.06
6.26
3.31
0.73
1.34
2.79
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v (m/s)

—30
30
90

150
210
270
330
390
450
510
570
630
690
750
810
870
930
990

1050
1110
1170
1230
1290
1350

MCS

E/N =37.5
570
570
570
570
570
630
630
630
690
690
690
750
750
810
810
810
870
870
870
930
930
990

1050
1110

TABLE IV. (Continued).

v, (m/s)
hyp. fit

Td, a =550 m/s, b =700 m/s, a/b =0.79
551
551
555
562
574
589
608
630
654
680
709
740
772
806
841
877
915
953
992

1031
1071
1112
1153
1195

Absolute
% difference

3.54
3.54
2.79
1.34
0.73
6.87
3.61
0.06
5.53
1.40
2.72
1.36
2.89
0.49
3.70
7.68
4.87
8.68

12.26
9.80

13.19
10.97
8.95
7.10

Average absolute % difference of v, 4.26

E/N=100 Td, a =1050 m/s, b =1120 m/s, a/b =0.94
—2625
—2475
—2320
—2175
—2025
—1875
—1725
—1575
—1425
—1275
—1125
—975
—825
—675
—525
—375
—225
—75

75
225
375
525
675
825
975

1125
1275
1425
1575
1725
1875

2475
2475
2325
2175
2325
2025
1875
1875
1875
1725
1600
1575
1425
1275
1125
1125
1100
1075
1075
1125
1125
1125
1275
1275
1575
1575
1725
1725
1875
1875
2025

2676
2547
2415
2294
2169
2048
1928
1812
1699
1591
1488
1392
1304
1226
1160
1107
1071
1052
1052
1071
1107
1160
1226
1304
1392
1488
1591
1699
1812
1928
2048

7.50
2.82
3.73
5.17
7.17
1.10
2.76
3.49

10.35
8.42
7.51

13.14
9.27
4.00
2.99
1.60
2.71
2.15
2.15
5.04
1.60
2.99
4.00
2.23

13.14
5.83
8.42
1.52
3.49
2.76
1.10
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v„(m/s)

2025
2175
2325
2475
2625

TABLE IV. (Continued).

v, (m/s)
MCS hyp. fit

E/N=100 Td, a =1050 m/s, b =1120 m/s, a/b =0.94
2175 2169
2325 2294
2325 2419
2475 2547
2475 2676

Absolute
% difference

0.26
1.37
3.90
2.82
7.50

Average absolute % difference of v 4.61

—4125
—3875
—3625
—3375
—3125
—2875
—2625
—2375
—2125
—1875
—1625
—1375
—1125
—875
—625
—375
—125

125
375
625
875

1125
1375
1625
1875
2125
2375
2625
2875
3125
3375
3625
3875
4125

E!N=200
4375
4125
3875
3875
3875
3625
3375
3125
2875
2625
2625
2375
2125
1875
1625
1625
1625
1625
1625
1875
1875
2125
2375
2625
2625
2875
3125
3125
3375
3625
3875
3875
4125
4125

Td, a =1600 m/s, b =1420 m/s, a/b =1.13
4916
4650
4387
4126
3868
3613
3363
3118
2880
2650
2432
2227
2041
1879
1748
1655
1606
1606
1655
1748
1879
2041
2227
2432
2650
2880
3118
3363
3613
3868
4126
4387
4650
4916

11.00
11.29
11.66
6.08
0.19
0.33
0.36
0.23
0.17
0.95
7.96
6.64
4.10
0.23
7.04
1.80
1.17
1.17
1.80
7.26
0.23
4.10
6.64
7.96
0.95
0.17
0.23
7.07
6.59
6.27
6.08

11.66
11.29
16.08

Average absolute % difference of v, 4.18

and

g=((U, —(U, )) )/((U, —(U, )) ) —3,
and they indicate the deviations of the respective distri-
butions from the normal distributions.

From the trend shown in Table III it is noted that at
very small E/N both the skewness and excess kurtosis
are nearly zero; the ion-velocity distribution is nearly iso-
tropic and normal. As E/N increases, both the VDF's in
the transverse directions remain symmetric, but the

skewness of the longitudinal VDF first rises rapidly and
then decays slowly towards large E/N. The same trend
is also exhibited by the excess kurtosis in both the longi-
tudinal and transverse directions. Since all the VDF's
have positive excess kurtosis, it follows that for the same
full width at half maximum (FWHM) they are generally
taller and narrower (more leptokurtic) than the corre-
sponding Gaussian distribution. In fact, the transverse
VDF's are even more leptokurtic than the longitudinal
VDF, signifying that as the ions are driven by the electric
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field in one direction their velocity distributions in the
perpendicular directions tend to get compressed.

Stronger evidence of the correlation of different veloci-
ty components can be seen from the various VDF con-
tour plots in Figs. 5(a) —5(d), which show for difFerent
E/N values the equal VDF contour lines (set at 4, 10, 25,
50, 75, and 100% of the peak contour value) in the v„-v,
plane of the velocity space. To restrict the statistics to
this velocity plane, only ions whose U„values are less than
about 2% of their peak U value are logged. This selec-
tion ensures that any U correlation, even if it exists, will
be negligible. The data points clustering around each
contour band represent all those bins whose VDF values
lie in the +10% range of the nominal VDF band value.
The scatter of the data points in each band is thus an in-
dication of the resolution of the MCS calculations.

In order to describe the correlation more quantitatively
we include in the velocity contour plots a locus of all the
peaks of the f (U, =const, u —=O, U, ) at different values of
U„, and attempt to fit this locus with an analytical equa-
tion empirically. Since a linear equation is obviously not
suitable, the next-higher-order equation, namely, a quad-
ratic equation (or conic section) is chosen. Of all the pos-
sible conic sections, the hyperbolic (positive branch)
equation, represented by U, /a U„/b =—1, yields the
best fit. Of the two parameters required, the transverse
axis a can easily be read from the summit of the velocity
contour. The other parameter, the conjugate axis b, is
then determined to be the value that yields the least sum
of the squares of the deviations of the MCS-computed
peaks from the corresponding values calculated directly
from the hyperbolic equation so derived.

Table IV gives the detailed positions of the MCS-
calculated peaks and their deviations from the fitting hy-
perbola. The average deviation for each E/N hovers
around S%%uo. Considering the simplicity of the method
employed, the agreement between the hyperbolic equa-
tion and the MCS-obtained locus of the peaks is gratify-
ing. It may thus be concluded that the hyperbola is at
least a good first approximation for the given locus. The
best fitting hyperbola for each E/N together with its
asymptotes are also included in the contour figures.
Since the strength of the U, U„correlation varies monoton-

ically with the displacement of the peaks, it may be sur-
mised that this correlation strength may be given by the
dimensionless ratio a/b which is the slope the asymptotes
of the hyperbolas make with the v, axis. On this basis,
the correlation rises from 0.11 at E/N =5 Td to 1.11 at
E/X =200 Td.

Figures 6(a) —6(d) show, for each E/N value studied,
sample plots of f (v„=const, v —=O, U, ) for four different

pairs of positive and negative values of U„. Each of these
plots is equivalent to the profile along the horizontal hne
of the velocity contours of Fig. 5 corresponding to the
fixed value of U . As expected from cylindrical symme-

try, there is virtually no distinction between positive and
negative values of U„. However, the peaks of the curves
shift gradually towards higher v, values as

~
v

~
increases.

Further understanding of the correlation can be de-
rived from a comparison of the different f (U, ) shown in

Figs. 4 and 6. The first is the result of logging the contri-
butions to the v, velocity component of all ions irrespec-
tive of their v velocities, while the second specifically in-
cludes only those ions with near-zero U . For small E/N
the two curves have essentially the same distribution
showing negligible correlation of the respective velocity
components. However, as E /N increases, the f ( v, )

curves of Fig. 4 may be regarded as a weighted average of
the f (U, ) curves of Figs. 6 over all U„and U . From the
positions of the respective peaks it may be seen that the
weighting becomes progressively more biased towards the
larger transverse velocities as E/N rises. The physical
meaning of the general trend is that an ion with a large u

component has a tendency to deplete its slow U, com-
ponents but does not deplete its fast U, components quite
as well. Had there been no U, v correlation no such
discriminative depletion should be expected. For exam-
ple, equal v„profiles of the VDF contours illustrated in
Fig. 4 of the paper by Penn et al. [14], calculated from
the oversimplifying assumption of noncorrelation, would
display peaks at the same U, value.

CONCLUSION

The present study, based on a comparison of calculated
and measured gaseous-ion-transport properties, has
shown that the KMV potential for the Na+-Ne interac-
tion is a close approximation to the true potential, except
perhaps at short separations. What is perhaps most
needed now is additional, accurate experimental data
probing the repulsive wall more carefully, so that a fur-
ther refinement of the KMV potential would be appropri-
ate.

The velocity distribution functions calculated from the
KMV potential have conclusively established a sizable
correlation between the respective velocity components
of the ions. This correlation should not be neglected
merely for the sake of mathematical expediency. It is
hoped that the successful fitting of a hyperbolic curve to
the VDF along the z axis for U =-0 and constant U„can
lead the way for a more quantitative description of the
correlation effects. The existence of this correlation
should in itself provide the stimulus for greater use of cy-
lindrical coordinate system to describe ion-velocity space.
Since the VDF strongly depends not only on the energy
of collision, but also to a large extent on the
ion —neutral-atom mass ratio, it may further be concluded
that the correlation trends observed in this study would,
at least, also be present in other ion —neutral-atom pairs
with similar mass ratios.

In view of the mutual correlation of the velocity com-
ponents established, it should be noted that experimental
measurements of only f (v„) and f (U, ) provide
insufficient information for determining the overall VDF.
However, it might be possible to deconvolute this VDF if
additional f (vo) are measured, where Uo is the velocity
component at an angle 0 to the z axis. Alternatively, if
this is not possible, then the application of a selection
technique to sample data contributed from ions with a
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specified transverse velocity component may be possible.
Finally, it is hoped that the velocity distribution func-

tions computed here will provide the impetus for making
an accurate measurement of them for the same
ion —neutral-atom pair, if and when the necessary laser is
developed.
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