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Testing mode-coupling predictions for n and P relaxation in Cao 4K0 s(NOs)z 4

near the liquid-glass transition by light scattering
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Light-scattering studies of the liquid-glass transition of Cao, 4Ko.e(NOs)&. 4 have been carried out
from 305 to 23'C. Composite spectra covering over four decades in frequency were obtained by
combining data obtained with a Sandercock tandem Fabry-Perot interferometer and Raman spectra.
Two-step relaxation processes were observed in the supercooled liquid near the glass transition. The
e relaxation exhibits a temperature-independent stretching for T ~ T, with T, 105'C, which
is about 45 'C above the glass transition temperature. The P-relaxation frequency scale indicates
critical slowing down when the temperature approaches T, from either above or below. Scaling
analyses for both o and P relaxations provide good agreement with the predictions of mode-coupling
theory.

PACS number(s): 64.70.Pf, 78.35.+c, 46.30.Jv

I. INTRODUCTION

The liquid-glass transition has been the subject of
extensive experimental and theoretical study for many
years, but the fundamental nature of the transition is
still not fully understood. During the past several years
a theoretical approach was formulated based on a self-
consistent treatment of nonlinear interactions between
density fluctuation modes in the mode-coupling approx-
imation within the framework of the Mori-Zwanzig for-
malism. This mode-coupling theory (MCT) predicts an
ideal kinetic glass transition and leads to various non-
trivial qualitative and quantitative predictions that are
experimentally accessible [1,2]; for a review, see Ref. [3].
These predictions have stimulated a number of experi-
mental studies, including the work being reported here.

Taking the normalized density correlation function
C'(t) as the dynamical variable, MCT models the density
fluctuation relaxation kernel of generalized hydrodynam-
ics using first-, second-, or higher-order nonlinear inter-
actions. The self-consistent solutions of the MCT pre-
dict that even for a simple hard-sphere or Lennard-Jones
system [2, 4] when the temperature is lowered toward
a crossover temperature T„which is somewhat above
the calorimetric glass transition temperature T~, struc-
tural relaxation experiences rapid slowing down. The
fluctuations then exhibit two-step relaxation with scal-
ing properties which can be characterized by sets of power
laws with nontrivial exponents for the diA'erent frequency
ranges [5—10].

The ideal kinetic glass transition at T, predicted by the
simple versions of the MCT does not occur because er-
godicity is restored by activated hopping processes which
were not included in the original formulation. The tran-
sition is smeared out by these processes and the pri-
mary 0; relaxation continues until T&, where the system

falls out of equilibrium. As we shall show below, how-
ever, although the low-frequency dynamics near Tz are
dominated by the topology of the energy surface, high-
frequency dynamics appear to be primarily controlled by
the anharmonic processes contained in the MCT, even
in the glass phase below T&. Indeed, for dynamics above

3 x 10 Hz, the ideal glass transition predicted by the
MCT turns out to be of greater importance than the
calorimetric glass transition at T&.

It is well known that near the liquid-glass transition,
the dynamics of the density fluctuations extend for sev-
eral orders of magnitude in time or frequency due to the
slowing down of the relaxation processes. Therefore, in
order to observe the whole dynamic process, one has to
measure the relaxation spectra over a large frequency
(or time) window which covers the whole dynamic range.
Such large-spectral-range experimental observations have
usually been limited by insuKcient instrumental resolu-
tion or response. An important exception is a recent
neutron-scattering study of Can 4Ko s(NOs)q q (CKN),
which showed a complete picture of both the low- and
high-frequency dynamics near the liquid-glass transition
by combining neutron spin-echo (NSE) and time-of-flight
(TOF) data [11]. Covering a frequency range of more
than four decades, the data exhibit two relaxation pro-
cesses and the scaling properties predicted by the MCT.
But the data processing involved in joining the NSE and
TOF data and the existence of a gap between the NSE
and TOF measurements may complicate the analysis.

By exploiting a Sandercock tandem Fabry-Perot inter-
ferometer (TFPI) Brillouin scattering apparatus, which
has the advantages of suppressing neighboring orders and
permitting rapid adjustment of the free spectral range,
and combining several Brillouin spectra of diA'erent free
spectral ranges for each temperature with a Raman spec-
trum, we were able to obtain low-frequency dynamic
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light-scattering spectra which cover a frequency range of
more than four decades. With this wide-frequency-range
data, we are able to observe the overall evolution of both
the n and P relaxations in CKN and to quantitatively
test some important predictions of the MCT.

Several central predictions of the MCT are of inter-
est: the prediction of two relaxation processes (n and

P relaxations) in the supercooled liquid near the glass
transition; the stretching of the o. relaxation, and the
scaling properties of the n relaxation above T, and P
relaxation both above and below T, . Some of the MCT
predictions have been tested previously by various exper-
imental and computer-simulation studies [12—14]. The
neutron-scattering results of Mezei, Knaak, and Farago
[15] and Knaak, Mezei, and Farago [ll] explored the scal-
ing property of the a relaxation, the existence of the two-
step relaxation process, and the scaling behavior of the
P relaxation above T, . The scaling property of the cr re-
laxation of glass-forming systems has also been studied
by other groups [16—19]. Recently Doster, Cusack, and
Petry [20] reported a neutron-scattering study and MCT
analysis of the P relaxation in a globular protein near T,
The P relaxation scaling has also been tested by experi-
mental studies of dielectric measurements for polymers
[21, 22] and dynamic light-scattering studies of hard
spherical colloids [23]. These results are generally in good
agreement with the MCT.

In spite of the intensive experimental studies of glass
transitions, no experimental results have yet been re-
ported concerning the dynamics of the P relaxation in
the temperature range between Tz and T„which may
provide a crucial test for the MCT below T, .

It has been predicted by a recently developed percola-
tion theory [24—28] that the stretching of the o. relaxation
is a temperature-dependent phenomenon that can be de-
scribed by a temperature-dependent P(T), where P is the
exponent of the stretched exponential (or Kohlrausch)
function exp[ —(t/7)i ]. This theory predicted that P is s
at the glass transition temperature T& and continuously
increases toward 1 with increasing temperature. This
prediction of temperature-dependent stretching of n re-
laxation is in contradiction with the MCT, which predicts
a temperature-independent n-relaxation stretching above
T, . Experimental determination of the temperature de-
pendence of the a-relaxation stretching, or equivalently
of the exponent P(T), can provide a direct test for these
competing theoretical predictions.

To explore the dynamics of the liquid-glass tran-
sition and to test the particular predictions men-
tioned above, we carried out wide-frequency-range light-
scattering studies of the much studied ionic glass former
Cao 4KO s (NOs) i 4 near the glass transition temperature.
The experimental results were analyzed and compared
with the predictions of the MCT. The results are pre-
sented in the following sections.

II. EXPERIMENT

High-purity KNOs (99.999%) and Ca(NO3) 9 4H20
(99.9995%) were obtained from Alfa Products.

Ca(NOs) 2 4H20 was dried in a ceramic crucible by slowly
heating it to 300'C for a few hours and was then
mixed with the appropriate amount of KNO3 to obtain
C~.4KO..(No. )i.4.

To clean the sample, we first transferred the molten
mixture to another crucible using a glass pipette. Most
of the visible dust sticks on the inner wall of the first con-
tainer. To prepare the highest-quality samples, we dis-
solved the solidified mixture by adding purified water af-
ter it was cooled to room temperature. The solution was
filtered with a 0.1-pm MSI (Micron Separations, Inc. ) fil-
ter and transferred into a glass tube of 1.5-cm diam.
The sample was then slowly heated in vacuum to evapo-
rate the water. After most of the water was evaporated,
the sample was thermally cycled by cooling to room tem-
perature and then heating up to 400'C several times.
In each cycle the sample was kept at 400'C for 24
h. The samples obtained with this procedure were very
clean and no crystallization occurred even when a sample
was cooled down to the glass state very slowly.

The glass tube filled with purified CKN was then sealed
with teAon tape and mounted in a custom-made Oxford
high-temperature furnace with optical windows. A ther-
mocouple was installed inside the furnace close to the
sample. The temperature was controlled by an Oxford
ITC4 temperature controller. The temperature of the
sample was calibrated against the reading of a thermo-
couple placed inside a dummy sample cell. The accuracy
of the temperature measurement was about +2'C.

The light-scattering measurements were performed in
VH scattering geometry. To avoid the inQuence of Bril-
louin scattering from the transverse acoustic mode in the
low-temperature measurements, a large-scattering angle
(8 = 173') was used since the Brillouin scattering inten-
sity of the transverse acoustic mode goes to zero when
8 approaches 180'. The Brillouin scattering apparatus,
which is based on a six-pass Sandercock-tandem Fabry-
Perot interferometer, has been described in a previous
publication [29]. The Spectra Physics argon ion laser was
operated at 4880 A. , and the typical laser power used was

50 mW. To obtain spectra of different spectral ranges,
four difFerent mirror separations (d = 0.5, 3.5, 10, and '25

mm) were used and the frequency bandpass width of the
Amici prism bandpass filter was matched for each sepa-
ration. Spectra were collected in the temperature range
of 305 to 23'C. The typical collection time for each spec-
trum was about 20 min.

The high-frequency parts of the spectra were obtained
by Raman-scattering spectroscopy of the same sample in

the same scattering geometry, and at the same temper-
atures as for the Brillouin scattering experiments. The
conventional Raman-scattering apparatus has also been
described previously [30]. The laser power used was

300 mVV.

III. EXPERIMENTAL RESULTS

To obtain spectra spanning a wide frequency range,
we combined spectra obtained with different free spec-
tral ranges. To do this, each Brillouin spectrum was first
averaged over the Stokes and anti-Stakes sides to obtain
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a half spectrum with only positive frequencies. Then the
Brillouin spect. a with different spectral ranges and the
Stokes Raman spectrum collected at the same tempera-
ture were combined by matching their overlap regions. In
doing this, we used the set of Brillouin spectra obtained
with d = 3.5 mm as a standard for intensities; special
attention was paid to the consistency and continuity of
this set during the data collection. The composite spec-
tra are shown in Fig. 1, in which the number of data
points on each spectrum has been reduced according to
a logarithmic scale. The small bumps near 20 GHz are
due to leakage of the longitudinal acoustic Brillouin com-
ponents through the imperfect polarizer.

The spectra cover a frequency range of more than four
decades (0.3 GHz —6 THz). The overall shape of the spec-
tra is similar to the neutron-scattering results [11].They
exhibit an evolution of the low-frequency relaxation from
the liquid state to the glass state. The spectra near and
above 100 OC clearly display two adjacent power-law re-
gions, which is an indication of a two-step relaxation pro-
cess. The two-step relaxation process is more clearly seen
in the plot of the imaginary part of the effective suscep-
tibility g(~) as displayed in Fig. 2, which was obtained
by dividing the intensity spectra shown in Fig. 1 by the
Bose factor:

~"( )=I( )/[( )+11
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[Equation (3.1) is essentially equivalent to P'(u)
(ur/k~T)I(~) for u ( 700 GHz in the temperature range
of interest. ] The low-frequency peaks visible in the high-
temperature effective susceptibility curves indicate the
primary relaxation process (which is actually the convo-
luted result of the a relaxation for the density fluctu-
ations, as we will discuss in later sections). The high-
frequency peak visible at all temperatures is the micro-
scopic excitation band. The crossover frequency of the
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FIG. 2. Effective susceptibility spectra corresponding to
Fig. 1 obtained with Eq. (3.1): (a) T = 305, 195, 180, 170,
160, 150, 140, 130, 120, and 110'C (top to bottom). (b)
T = 100, 90, 80, 70, 60, 45, and 23 'C (top to bottom).
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FIG. 1. Composite depolarized 8 = 173' Brillouin and
Raman-scattering spectra of CKN. The temperatures are (top
to bottom) 305, 195, 180, 170, 160, 150, 140, 130, 120, 110,
100, 90, 80, 70, 60, 45, and 23 'C. The small peaks appearing
at ~ 20 GHz are due to leakage of the LA Brillouin compo-
nents.
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FIG. 3. Depolarized light-scattering spectra (a) and ef-
fective susceptibility spectra (b) of 55 mo1%znCI&
+45 mo1%KCl. The temperatures are (top to bottom) 310,
247, 205, and 180'C.
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IV. THEORY

A. Mode-coupling-theory predictions

The fundamental dynamical quantity of the mode-
coupling theory for the liquid-glass transition is the nor-
malized density correlation function

Cq(t) =& Spq(0)bpq(f) ) /S, , (4 1)

where bp& is the qth Fourier component of the micro-
scopic density fluctuation, and Sq =& ~bpq~ ) is the
static structure factor. @q(f) obeys a generalized oscilla-
tor equation of motion:

two power-law regions can be identified as the minimum
of the susceptibility curves between the low-frequency
peak and the microscopic high-frequency peak. These
curves are very similar to the MCT calculated results
shown in Fig. 2 of Ref. [6].

Measurements with 0 = 90' scattering geometry were
also performed at a few temperatures with results es-
sentially the same as the 0 = 173' results, except that
strong TA modes were superimposed on the continuous
spectra. Therefore the results shown in Figs. 1 and 2 are
essentially wave-vector-independent in the small-q limit.

To examine the possibility that the spectral shapes
of Figs. 1 and 2 are due to the rotational contribu-
tion of the NOs group, we performed similar (8
90') measurements on a monatomic viscous liquid,
55 mo1%ZnClz+ 45mol %KC1, which presumably pro-
duces no rotational contribution [31, 32]. The spectra
and the susceptibility obtained from 310 to 180'C are
shown in Fig. 3. The spectral shapes are seen to be
similar to those of Figs. 1 and 2 for temperatures well
above T, . This similarity implies that the results shown
in Figs. 1 and 2 represent the general structural dynamics
of viscous liquids.

where the vertex V~'~ is expressed in terms of the struc-
ture factor Sq [2]. If the system is cooled in the liquid
phase, the vertices increase and there appears a critical
temperature T, where a dynamical phase transition from
ergodic liquid dynamics for T ) T, to nonergodic glass
dynamics for T ( T, occurs. The analytic results of the
MCT deal primarily with the solution of Eqs. (4.2) and
(4.4) for small separation parameter c oc (T, —T)/T,
Actually, the theory is more complicated because of the
ergodicity restoring activated processes [6, 7], but this
aspect will not be discussed here.

From the MCT, the slowing down of the dynamics of
the density fluctuation near the critical temperature T,
is governed by two scaling frequencies,

oc Q(c(i~2'

~', oc Qfe/'i,

(4.5a)

(4.5b)

where 7 = I/2a+ 1/2b Th.e quantities a and b are two
nontrivial exponents determined by

A = I' (1 —a)/I (1 —2a) = I (1 + b)/I'(1 + 2b),
(4 6)

(0 & a & —,', 0 & b & 1),
where I' denotes the I' function and A is called the ex-
ponent parameter which can be evaluated from the ver-
tices V&'l. In the present paper, A will be considered
as a fitting parameter since we do not know the struc-
ture of CKN well enough to calculate it from first prin-
ciples. The scaling frequency ~', describes the primary
relaxation (cr relaxation) in the liquid state, while ~, de-
scribes the secondary relaxation (P relaxation) in both
the liquid and glass states. In the simplest MCT model,
the Fz model [1,2] in which mq(t) = V@z(t), one finds

A = 2, a = 0.395, and b = 1, and there is consequently
no stretching predicted for the o relaxation.

with initial conditions 4q(t, = 0) = 1, C&q(t = 0) = 0.
This equation of motion is equivalent to

4q(z) = —1/(z —0 /(z+ 0 [iso+ mq(z)])), (4.3)

where 4q(z) is the Laplace transform of 4'q(/) with com-
plex frequency z [@q(z) = if& 4q(t)e"'dt], Qq is the
microscopic frequency (0 = n q /Sq), po is a regular
damping constant, and mq(z) is the current relaxation
kernel.

The equations of motion are closed by expressing the
kernel in terms of products of one, two, or more correla-
tars,

(~) = ) .V"'(~ ~ )~, (t)

4' (/)+poQ C' (f)+0 4 (4)+0 dq m ($—q)C? (q) = 0,
0

(4.2)

1. Eirst scaling-la~ regime

In the P-relaxation regime, which exists in the meso-
scopic frequency domain between the microscopic fre-
quency 0 and the n-relaxation frequency ~~, the MCT
makes detailed predictions for the scaling law for the den-
sity relaxation. Explicitly, the MCT predicts for the dy-
namical structure factor S(q, ur) that [3, 33]

S(~ ~)/S'q = (bqlcl"'/~. )g+(~/~. ), (4.7)

which is valid for the frequency range ~~ && u && O. In
the lowest-order approximation, h& is a constant which
only depends on the wave vector q. The scaling functions

gy, where 6 refers to e ) 0 or e & 0, respectively, depend
neither on the separation parameter e nor the wave vector
q.

For (u/~, )&&l and (~/~, )))l, the scaling function gy
has the explicit asymptotic forms

+ ) .V'"(~, ~»~ )2@ q( )r~' q(~)+ (4 4) ~~(~/~ ) ~ (~/~ ) " ' [1 «(~/~ ) «(fl/~ )]

(4 8)
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u+(~/~. ) - ~(0) [«(~/~. ) «1], (4.9a) 8. Second scaling-law regime

~"(~) = t ql~l"'~+(~/~. ) (4.10)

Combining Eqs. (4.8), (4.9b), and (4.10) yields a simple
interpolation expression for y"(~) in the region around
the minima of the g" curves in the liquid state [6],

x"(~) = I~I'"[&(~/~.)'+ ~(~./~)'] (« o),
(4.11)

AV

where A and B are constants, independent of the sepa-
ration parameter and frequency.

The scaling law of Eq. (4.11) imphes that the positions
of the minima of the g"(u) curves, u;„, and the value
of g" at the minimum, g";„=y"(~~;„), are described

by the control parameters

(4.12)

~mi. ~~~ ~ l~l
1l2~

Equation (4.11) can be rewritten as

(4.13)

y"(~) = y";„[b(~/ur;„)' + a(ur;„/u))']/(a+ 6) .

(4.14)

In the ideal glass state below T„ the explicit form of
the susceptibility can be obtained by using Eq. (4.10)
with Eqs. (4.8) and (4.9a), which gives

X"(~) = hql~l"'~(0)(~/~. ) [0 & (~/~. ) «I], (4»)

X"(~) = ~lcl"'(~/~. )' [I «(~/~. ) «(~/~. )]

(4.16)

These results indicate that in the ideal glass state the
spectral strength of the susceptibility curves scaled in
frequency to u/~, is also proportional to ~e) ~, which
suggests that y"(u, ) should again increase below T, .

Equations (4.15) and (4.16) imply that there exists a
crossover for y"(u) from linear u dependence to power-
law ~ dependence. If the crossover point is denoted as
~, and we designate y", = g"(~,), one can then show
from Eqs. (4.15) and (4.16) that

(4.17)

CaPg OC Caig OC

These are the scaling quantities for T (T, .

(4.18)

&-(~/~ ) oc (4'/~ ) [(~,/~ ) && (~/~, ) && 1] .

(4.9b)

Equations (4.8) and (4.9b) indicate the two adjacent
power-law regimes in the liquid state, while Eq. (4.8)
shows the continuity of the scaled P relaxation in the
liquid and glass states. From Eq. (4.7), one obtains
the scaling function for the susceptibility g"(~)
~S(q, ~)/Sq]:

For an ideal kinetic glass transition, ignoring activated
hopping processes, a relaxation only exists above T, . In
the n-relaxation region, the scaling is governed by the

scaling frequency ~, . The scaling law for this region is

given by [3]

@q(t) = Fq(t~', ), (4.19)

x"(~) = i"(~/~l) (4.21)

where y"(u) = uRe(P[Fq(t)]) with F denoting Fourier
transformation. From Eqs. (4.20) and (4.21), one can

show that the positions of the a-relaxation maxima on
the susceptibility curves are controlled by the scaling fre-

quency ~', :

OC 4)& OC (4.22)

Equation (4.19) implies one of the most important pre-

dictions of the MCT: the stretching of the cr relaxation is

temperature independent for T ) T, . A comprehensive
discussion of these and other predictions of the MCT can

be found in the review of Gotze [3]. Most of the above

MCT predictions will be compared with our experimen-

tal results in the following sections.

B. Light-scattering mechanism

Until now there has been no well-established the-
ory that could successfully explain the light-scattering
mechanism in both liquids and amorphous solids. The
disorder-induced scattering model for amorphous solids
in the formulation of Martin and Brenig [34], though
widely cited in the literature, has been found inadequate
to explain the low-frequency Raman-scattering results of
several amorphous solids [35,36], producing especially se-
rious disagreement for the depolarization ratio. Further-
more, this theory cannot be applied to the liquid state.

In view of the experimentally observed continuous evo-
lution of the low-frequency Raman spectra from a liq-
uid to a glass state, we have recently proposed [35]
that the low-frequency light-scattering spectra of liquids
and glasses near the glass transition may have a com-
mon origin. Specifically, we have suggested that these
spectra can be described by the dipole —induced-dipole
(DID) interaction-induced scattering theory developed
by Stephen [37] for light scattering from liquids. In the
DID-only approximation, this theory always leads to a
depolarization ratio of 4, which is in good agreement
with many of the experimental results on liquids and
amorphous solids. (For materials with strong Coulomb

where, again, Fq(t~', ) is a master function which does not
depend on the separation parameter c It h. as been shown

by Gotze and Sjogren [8] that the MCT solution of Fq in

the a-relaxation regime can be reasonably approximated

by the Kohlrausch or stretched-exponential law

Fq(t/r ) oc exP[—(t/r )~] . (4.20)

From Eq. (4.19), one obtains the scaling function for the

susceptibility
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(4.24)

A schematic illustration of this second-order scattering
process is shown in Fig. 4(b). In the liquid and glass
states, the static structure factor S& usually shows a
sharp peak at q = qo, which corresponds approximately
to the average interatomic distance. Therefore it is a
reasonable approximation to assume that the integral in
Eq. (4.24) is dominated by modes with q —qp. Then
the second-order scattering contribution can be approxi-
mated as

I(2)(I&,~) = BS(qp, ~) 8 S(qp, u)), (4.25)

where denotes convolution over the frequency. It is our
interpretation that the experimental depolarized light-
scattering spectra shown in Sec. II are due to the second-
order scattering described by Eq. (4.25). A similar theo-
retical result for the light-scattering mechanism was ob-

p (q')!=p(q-q )

interactions such as the alkali halides, additional interac-
tion terms must be included too, as discussed by Madden
[38] )

In Stephen's DID theory, the optical spectrum is given
by

I(It, fd) = I ' (E, Eo) S(I&,Ld)+I& )(I~,Cd),

(4.23)
Pa

where Eo and E, are unit vectors of the incident and
scattered electric field, Ii is the magnitude of the scat-
tering wave vector (K = kp —kz), aiid S(It, ui) is the
dynamic structure factor. The first term in Eq. (4.23)
is the ordinary first-order scattering equation, which de-
scribes Brillouin scattering from the acoustic modes in
the low-frequency range. The second term I&~)(Ix, u) is
the contribution from second-order scattering, which can
be expressed as

I"'(I& ~) = Ip"[I+ s(E Eo)']

x d q du)' q, u' K —q, a —u'

tained recently from a dielectric model combined with
the MCT [39].

To examine the effects of the convolution in Eq. (4.25)
and compare with the nonconvoluted S(qp, a), we have
performed some numerical analyses by convoluting the
numerical S(qp, u) obtained from a MCT calculation with
Eq. (4.2) [or equivalently Eq. (4.3)], and also by con-
voluting the neutron-scattering results of Ref. [11]. A
comparison of the curves of the susceptibility y"(&u) =
(u/k~T)S(qp, u) and the efFective susceptibility y"(u) =
(w/k~T)S(qp, w) S(qp, u) indicated that the resulting
y"(u) and y"(u) curves are essentially identical around
the minimum region. This result implies that if we treat
y"(~) as if it were y"(ur), ignoring the effects of convo-
lution, the scaling results in the first scaling-law regime

(P relaxation) are still valid.
In the second scaling-law regime (cr relaxation), the

above numerical convolution analyses showed that the o.

peak on the g"(~) curve is shifted to a higher frequency
but with the same spectral shape as that of the y"(~)
curve. This result can be understood by the following
simple interpretation: If we take the approximation of
Eq. (4.20), then the convolution effect can be evaluated
explicitly by invoking the Faltung theorem:

S(qp, ur) g S(qp, ~) oc Re{X[4 (t)]}
oc Re(%{exp[—2(t/7 )P]}).

If we define

/2i/P

(4.26)

(4.27)

then

u' = 1/r' = 2 Ip/r = 2 I~a (4.29)

If we denote the positions of the n-relaxation maximum
on the y" (u) curve by u' „, then according to Eq. (4.29)
and the scaling formula Eq. (4.22) we have

m (4.30)

Thus, if we treat g"(~) as g"(u), the scaling law in the cr-

relaxation region still applies. Equation (4.29) provides
a connection between the light-scattering results and the
neutron-scattering (with q = qp) results in the primary
relaxation region.

S(qp, ~) S(qp, ~) Re(%{exp[—(t/r')P]}) . (4.28)

Equation (4.28) indicates that for the cr relaxation the
convolution just shifts the peak to a higher-frequency po-
sition:

(b

k

p (qI)

p (q-~q)

FIG. 4. Schematic illustration of first-order (a) and
second-order (b) light-scattering processes. In (b), light scat-
ters directly from two modes with q qo.

V- DATA ANALYSIS AND DISCUSSION

The experimental results shown in Figs. 1 and 2 exhibit
clearly two consecutive relaxation processes at tempera-
tures near and above 100'C. The crossover frequencies
from the low-frequency o. relaxation to the mesoscopic
frequency P relaxation can be identified as the minima
of the y" (u) susceptibility curves shown in Fig. 2(a).
This kind of two-step relaxation process was first ob-
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served in dielectric measurements [40—42] and was sub-
sequently found in many other experiments [11,20—23,
43, 44]. This experimental evidence demonstrates that
the two-step relaxation process is a crucial aspect of the
dynamics of glass-forming systems. In contrast to other
theories of the glass transition, MCT provides a natural
explanation for this special character of the structural
relaxation process.

A quantitative test of the MCT (for some models) can
be carried out by directly comparing the experimental
results shown in Figs. 1 and 2 with theoretical spectra
(convoluted) obtained numerically by solving Eqs. (4.2)
or (4.3) with the MCT kernel of Eq. (4.4). This kind of
numerical calculation is currently in progress and will be
reported in a future publication. As a more general ap-
proach, we have carried out some quantitative tests of the
MCT by comparing the scaling-law predictions reviewed
in the preceding section with the experimental results in
which we treated the y"(~) results as y"(~), ignoring the
convolution effects so that the MCT predictions can be
applied directly, as discussed in the preceding section.

A. The P-relaxation region

X. EorT&T

Since the shape of the susceptibility curves in the p-
relaxation region is essentially not affected by the convo-
lution as indicated in the preceding section, the experi-
mental results around the minima of the g"(~) effective
susceptibility curves shown in Fig. 2(a) were analyzed
directly using the interpolation function of Eq. (4.14),
which, in first approximation, describes the P relaxation
for e ( 0. In the analysis, y";„and ~~ m wr etereated
as adjustable parameters for each curve. The exponent
a was an adjustable parameter for all curves and b was

10'

10 2 I I I I I IIII i I I I I Itll I I I I I I III I l I I I Itl I I I I IIII

10 ' 10 10' 10 10~ 10

Frequency ( GHz )

FIG. 5. Best fit of x"(u) data for T ) T, in the region
of the minimum using Eq. (4.14) (thick solid lines) with A =
0.81, u = 0.27, and b = 0.46. The resulting ym;„and ~mI&

values are listed in Table I. The temperatures are (from top
to bottom) 195, 180, 170, 160, 150, 140, 130, 120, aud 110 'C.

then determined by the constraint of Eq. (4.6). The best
fit for all the curves from 110 to 195'C led to

a = 0.273, b = 0.458, A = 0.811.

The corresponding y~j„and ~;„values obtained from
the best-fit for each temperature are listed in Table I. In
Fig. 5, we display the best-fit curves together with the
experimental data. The scaling concept is strongly sup-
ported by the fact that all the g"(&u) data from different
temperatures can be fitted well by a single expression,

TABLE I. Scaling quantities for the a and P relaxatious obtained from the data analysis (see
the text)

T+Tc
T ('C)

195
180
170
160
150
140
130
120
110

T&Tc
100
90
80
70
60
45
23

0.049
0.047
0.044
0.041
0.037
0.032
0.026
0.020
0.011

X,
" (arb. units)

0.0021
0.0032
0.0042
0.0049
0.0056
0.0062
0.0072

83
67
58
43
30
21
12
6.6
1.1

ur, /2x (GHz)

0.32
2.2
7.6
17
32
58
100

P relaxation
X";„{arb.units) ~;„/2x {GHz) r' (ns)

0.018
0.031
0.043
0.074
0.14
0.35
1.1
3.1

e relaxation
~'.„/2x (GHz)

7.1
4.0
2.8
1.6
0.85
0.33
0.12
0.039

0.57
0.58
0.54
0.53
0.53
0.49
0.55
0.55
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(y";„)'oc (T —T,),

cu ';„oc (T —T,) .

(5.2)

(5.3)

A test of these predictions is shown in Figs. 7 and 8
in which we plot (g";„) and ~2;.„(a= 0.273) versus T
(square points in both figures). In both cases the data
points indicate excellent linear dependence on T, as pre-
dicted. For (y";„)~ the best linear fit extrapolates to
T, = 105'C, while for ~~';„, T, = 98'C; the two values
for T, are in reasonable agreement (ignoring the measure-
ment for T = 195'C produces T, values 1'C higher for
both cases). These two plots support the scaling-law pre-
dictions of the MCT with a statistical significance which
is better than that of previous tests for other systems.

As a cross test of the scaling properties, we show
in Fig. 9 a double logarithmic plot of logyp +~I„ver-
sus logiou;„(square points). According to the pre-
dictions of Eqs. (5.2) and (5.3), the experimental re-
sults should fall on a straight line with a slope of a
(log» ym;„= Ci + a logio ~m;„, where Ci is a constant).
The data points clearly exhibit linear variation and are
approximately compatible with the expected slope of

Eq. (4.14). This gives the first signature of the scaling
property. As a further test, in Fig. 6 we present a rescaled
plot of y"(w)/y";„versus u/a;„. As predicted, all the
experimental data around the minima of g"(~) for dif-
ferent temperatures fall onto a single master curve of the
theoretical function of Eq. (4.14) with A = 0.81. To
demonstrate the sensitivity of the above fitting to the
choice of the exponent parameter A, we have plotted two
other theoretical curves for A = 0.74 and 0.86 in Fig. 6.
The curves of these two A values are clearly incompatible
with the experimental results. Therefore from this fitting
we can estimate A 0.81 6 0.05.

As a test of consistency, we also tried a fit to the
y"(~) data with both exponents a and b as adjustable
parameters. The best fit led to the values a = 0.269
and b = 0.466, which are essentially the same as those
obtained above with the constraints of Eq. (4.6).

For c & 0, the scaling predictions of Eqs. (4.12) and
(4.13) imply that

6

x10 x10

OJ

E

0 0
20 40 60 80 100 120 140 160 180 200

7('C)

FIG. 7. Temperature dependence of (X~;„) above T,
(square points) and (X,") below T, (triangular points). The
solid lines are linear fits to the data points with T, = 105 'C
for (X";„) and T, = 108'C for (X,") .

a = 0.273 (dashed line), although there is a discrepancy

( 20%) between the best linear-fit slope (0.34) and the
expected a value. We notice that this type of discrep-
ancy also exists in other reported experimental studies
[21—23].

9. Eor T & T

I
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I
'

I
'

I
'

I
'

I
'

I
'

I

For c ) 0, the scaling of the P-relaxation spectra
is characterized by the crossover frequency ~, and the
corresponding g", described in the preceding section.
However, from the experimental y"(~) data shown in
Fig. 2(b), the crossover frequencies ~, for T ( T, do not
appear as clearly as the ~;„appear for T & T, . Fur-
thermore, the MCT in the form discussed in Sec. IV does
not correctly describe the cr-relaxation dynamics below
T, since activated hopping processes are not included.
Therefore it is somewhat more involved to determine the

10 & s ere
l

3 10

o 10

z 8
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3
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O
1

3

I II»II I I I Il»ll i I I II»II I i I Il»II i i i iii»l
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~ ~~ml.

FIG. 6. Rescaled plot of the curves of Fig. 5. The three
solid curves are the theoretical results of Eq. (4.14) for (top
to bottom) A = 0.74, 0.81, and 0.86.

0 0
20 40 60 80 100 120 140 160 180 200

7('C)

FIG. 8. Temperature dependence of u;„(sq aures), u,
(triangles), and (sr~~„) ~ (circles) with u = 0.273 and 6 =
0.458. The solid lines are linear fits from which T, = 98, 101,
and 107 'C, respectively.
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10
' 10 Similar to the T & T, case, for T ( T, the scales are

given by Eqs. (4.17) and (4.18), which can be written as

(g", )2 oc (T, —T), (5.4)

~,' oc (T, —T) . (5.5)

10
i i&il I I I I I IIII I I I I I I Ill

10 ' 10 10' 10
10

FIG. 9. Double logarithmic plot of g";„vsu;„(sq nares),
X", vs cg, (triangles), and X";„vsu', „(circles). The solid
lines are linear fits with slopes of 0.34 (predicted 0.27), 0.21
(predicted 0.27), and 0.173 (predicted 0.171), respectively.
The dotted line with a slope of 0.273 is for comparison.

scaling quantities in this case. As a preliminary attempt,
we first rescaled all the y" (u) curves to fall onto a com-
mon master curve. The rescaled curves are shown in
Fig. 10. Although this rescaling procedure is less accu-
rate than that for T ) T„ the resulting master curve
indicates the possibility of describing the P relaxation
at different temperatures below T, by a master function.
As demonstrated in the figure, the high-frequency part of
the master curve asymptotically joins the power law u'
with a = 0.273 (the solid straight line in Fig. 10). This
behavior confirms the continuity of the scaling function
for the P relaxation above and below T, [Eq. (4.8)]. The
crossover frequency u, and the corresponding suscepti-
bility y", were then estimated from the rescaling. The
values obtained are listed in Table I.

Tests of these predictions were carried out in the same
way as for T & T, . The experimental results for (gl,')2
and ~~' (a = 0.273) versus T are plotted in Figs. 7 and 8,
respectively (triangular points in both figures), together
with the high-temperature data. The data again exhibit
excellent linear T dependence in both plots. In the first
plot, the best linear fit gave T, = 108'C while in the
second plot T, = 101'C. Both T, values are in good
agreement with the values found from the data above T, .

It is intriguing to see that the MCT predictions for
the temperature dependence of the P-relaxation scaling
are well satisfied and the ideal glass transition tempera-
ture T, can be identified from both above and below T, .

These results strongly support the MCT prediction of the
existence of a dynamic phase transition at T, & T&.

A cross test for Eqs. (5.4) and (5.5) is also shown in
Fig. 9. The data points of logio y", versus login ~, (trian-
gular points) exhibit linear dependence in agreement with
the predicted relation of logio g", = C2 + a login u„but
again there exists a small deviation ( 20%) between the
best-fit slope (0.21) and the expected value of a = 0.273
(dashed line in Fig. 9). This discrepancy as well as that
found for T )T, may be, in part, a result of ignoring the
temperature dependence of the microscopic frequency O.

B. The o.-relaxation region

Many experimental investigations have shown that the
low-frequency o, relaxation can be well described by a
Kohlrausch law, Eq. (4.20). Theoretical studies also
found that the Kohlrausch law is a good approximate so-
lution for the scaling equation in the a-relaxation region.

I I I lllq I I I I lllll I I I I lllll 1 I I I lllq I I I llllll I I I I I

0.06—

10
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0.04—
3

3x
0.02—

10'=

0.00
10 ' 10 10'

I I I I I I I I

10

10 10 ' 10 10' 10 10 10

cu / cue

FIG. 10. Rescaled plot of the X"(u) curves for
shown in Fig. 2(b). The resulting scale values for
cu are listed in Table I. The straight line with a
a = 0.273 is shown for comparison.

T & Tc
Xe and
slope of

Frequency ( GHz j

FIG. 11. Best fits of X"(w) in the n-relaxation region by a
Kohlrausch law, Eq. (5.6) (thick solid lines). The resulting 7 ',

„,and P values for each temperature are listed in Table I.
The temperatures are (right to left) 195, 180, 170, 160, 150,
140, 130, and 120 'C.
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Under the second-order scattering process assumption
for the light-scattering mechanism, which leads to the
expression of Eq. (4.28), the low-frequency n-relaxation
processes shown on the y"(~) curves [Fig. 2(a)] are de-
scribed by

where A is a constant.
To obtain the temperature dependence of P and 7',

we analyzed the low-frequency data of the y"(u) curves
from 195 to 120'C by using Eq. (5.6). The best-fitted
results (thick solid curves) to the experimental data for
each temperature are shown in Fig. 11. In the fitting, A,
P, and 7' were treated as adjustable parameters for each
temperature. The resulting P and r' values are listed in
Table I.

From the comparison of the fitted results with the ex-
perimental data shown in Fig. 11, one notes the impor-
tance of restricting the dynamic range for analyzing the
n-relaxation processes so that the influence of the P re-
laxation can be eliminated.

As emphasized in the Introduction, information on the
temperature dependence of the P exponent is a crucial
test of the MCT and the percolation theory initially sug-
gested by Campbell [24]. In Fig. 12 we display the tem-
perature dependence of the P values obtained from the
above analysis. The results are essentially temperature
independent, with p 0.55 for T ) T„which provides
strong support for the MCT prediction of constant n-
relaxation stretching above T, .

From the above analysis and results, one also finds
that in order to obtain reliable information for the low-
frequency relaxation processes, observations spanning a
wide frequency range and proper handling of the experi-
mental results are extremely important. To demonstrate
this point, we show in Fig. 13(a) a conventional analysis
for a standard depolarized Brillouin spectrum, which is
just a portion of the wide-frequency-range spectrum at
195 C shown in Fig. 1. The solid curve indicates the
best fit to a simple Lorentzian convoluted with the in-
strumental response function, plus a background. This
kind of analysis only involves a small portion of the whole
dynamic range and does not distinguish between the two

0.8—

6000

~ 4000

2000

Q
i I i I i I s I i I i I

-40 -30 -20 -10 0 10 20

Frequency Shift ( CHz )

30 40

~ 120'C

o Q8

3 OC

3
0.4

relaxation contributions. Furthermore, the center of the
line is blocked by elastic scattering and instrumental res-
olution. From this conventional analysis, one would be
led to the incorrect result of P 1.

To illustrate the actual stretching of the o. relaxation,
in Fig. 13(b) we plot the rescaled results of g"(u)/g"
versus ~/u' „.Clearly, all the low-frequency experimen-
tal data for different temperatures (195—120'C) fall ap-
proximately on a master curve of Eq. (5.6) with P = 0.55
(solid line). A curve of Eq. (5.6) with P = 1 is also plotted
in the same figure for comparison. Obviously, the simple
Debye relaxation implied by P = 1 is incompatible with
the experimental results.

A comparison of the analyses shown in Figs. 13(a) and
13(b) indicates that g"(u) provides a far more sensitive
test for the o,-relaxation stretching than the intensity
spectra, since the y"(u) spectra better display the details
of the relaxation structure, provided that the frequency
window is wide enough to show the whole dynamic pro-
cess.

0.6—

0.4—
0..0 I I I I I I I I I I 1 I I t I

10 10 10 10 10

0.2—

0.0
100 120 140 160 180 200

Temperature (
'C )

FIG. 12. Temperature dependence of the P values above

T, from the fits shown in Fig. 11.

FIG. 13. (a) Depolarized Brillouin spectrum of CKN at
195'C. The thick solid line is the fit obtained by convolut-
ing the instrumental response with a simple Lorentzian and
adding a background. (b) Rescaled plot of X"(cg)/X" „vs
u/u' „(195—120 C). The two solid curves are the theoreti-
cal results of Eq. (5.6) with P = 0.55 and 1. Note the obvious
disagreement with the Debye P = 1 prediction of the inner
curve.
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According to the MCT scaling prediction, the low-

frequency o.-relaxation scale is given by Eq. (4.30), which
can be written as

10

(u)',„)'/" oc (T —T,) . (5.7)
10'

A test of this prediction is shown in Fig. 8, in which we

plot the data of (u' )~~r versus T (circular points) with

7 = 2.92 [using the values of a and b given in Eq. (5.1)]. It
is quite striking to see that the data points again exhibit
almost perfect linear temperature dependence with T, =
107'C. Again this value is in close agreement with the
T, values found from the analysis of the P relaxation.

A crossover test of the scaling properties for the n
and P relaxations can be achieved by plotting log&o gm;„
versus logyp4lmx ~ According to the scaling formulas
of Eqs. (4.12) and (4.30), this double logarithmic plot
should fall on a straight line with a slope of I/27
(log&op~;„= Cs + [ab/(a + It)] log&&mrna„). This pre-
diction is verified by the plot of Fig. 9 (circular points)
in which the slope of the straight line fitted to the data
points is 0.173, which is essentially equal to the predicted
value of I/27 = 0.171.

Another crossover test is shown in Fig. 14, in which we
plot log~o~m;„versus logm~' m (square points). From
the predictions of Eqs. (4.30) and (4.13), a linear varia-
tion with a slope of b/(a+ b) is expected (logrp(d~» ——

+4+ [b/(a+ b)]log~a~' „), which is approximately cor-
rect. A linear 6t to the data points gives a slope of 0.49
while the expected value of b/(a+ b) = 0.63 (dashed line)
with a and b is given in Eq. (5.1).

It is particularly interesting to compare the values of
obtained from this light-scattering study with the 7

values of the qp mode obtained from neutron scattering.
In Fig. 15 the upper two full curves indicate the r val-
ues obtained from the NSE measurements of Mezei et al.
[15,45] (the top one was obtained from our fitting of the
extended data of Ref. [45]). The lower two dashed curves
are the corresponding results of ro/21/& with P = 0.58
from Ref. [15]. The circular points are our experimental
results for 7' from the present light-scattering studies.
The r~ data points are indeed coincident with the values

10
c 0

10'

10
120 140 160 180 200

Temperature ( 'C
)

of ro/2~/&, as predicted by Eq. (4.27). This result pro-
vides additional evidence for the second-order scattering
assumption discussed in Sec. IV.

Finally, we plot in Fig. 16 the temperature depen-
dence of the scaling times of the n and P relaxations

(r& ——1/u~;„, r&+ = I/u, ). When the temperature ap-
proaches T, from above in the liquid state, the relax-
ation time r (circular points) of the n process increases
much faster than the scaling time of the P process (r& )
(square points). When the temperature is below T„ the
P-relaxation scale r& (triangular points) indicates a rapid
slowing down upon heating toward T„which is one of the
most interesting and counterintuitive predictions of the
MCT.
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FIG. 15. Comparison of r' with r . The upper two solid
curves are r~ of the qo mode found from NSE measurements.
The lower two dotted curves are the corresponding values of
r /2 ~~ with P = 0.58. The circular points are the experi-
mental results for r' from the present light-scattering exper-
iments.
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FIG. 14. Double logarithmic plot of cu;„vs ~',„. The
solid line is a linear fit with a slope of 0.49. The dotted line
shows the expected slope of 5/(a + b) = 0.63 with a and 5
given by Eq. (5.1).

FIG. 16. Temperature dependence of the scaling times of
a and P relaxations. r&

——1/ur; (squares); r&+ = 1/~,
(triangles); r' (circles)
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VI. CONCLUSIONS

Extended light-scattering studies of the glass for-
mer CKN have explored the two-step structural relax-
ation process in the liquid state near T, . The second-
order interaction-induced spectra obtained are similar to
the results obtained by neutron-scattering measurements
[»]

The 0, relaxation exhibits rapid slowing down with a
temperature-independent stretching parameter P 0.55
for T ) 120'C. With increasing temperature, the n re-
laxation merges with the P relaxation and eventually
both relaxations merge with the microscopic excitations.
This result supports the MCT prediction for n relaxation
above T„but it is in contradiction with the percolation
theory proposed by Campbell [24, 25], which predicts a
continuous increase of P from P = s at Ts to P = 1 at
high temperatures. (However, P may decrease for tem-
perature below 120'C, the lowest temperature at which
it could be determined in our experiments. ) We note
that the MCT in the form employed here does not in-
clude activated hopping processes and therefore makes
no predictions about n relaxation below T, .

The P-relaxation scale was found to exhibit critical
slowing down when the temperature approaches T, from
both the liquid and glass states. This phenomenon, which
has not been reported previously, to our knowledge, has

been observed in the present study and is in agreement
with the predictions of the MCT.

Scaling analyses for both the a and P relaxations indi-
cate that the experimental results are generally in good
agreement with the scaling-law predictions of the MCT.
From these analyses, we obtained a transition temper-
ature of T, = 105 + 5'C, and an exponent parameter
for CKN of A = 0.81 + 0.05. Our observation that the
predictions of the MCT for the P relaxation are fulfilled
below T, as well as above T, implies that the dynamics
of P relaxation are not significantly affected by activated
hopping processes.

A comparison of the relaxation time for the o. pro-
cess obtained from this light-scattering study with that
obtained from neutron-scattering measurements [15,45]
provided strong evidence for the second-order scattering
assumption for the dominant light-scattering mechanism
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