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The role of the Percus-Yevick hard-sphere bridge function in the modified hypernetted-chain integral

equation is examined within the context of Lado's criterion [F. Lado, S. M. Foiles, and N. W. Ashcroft,
Phys. Rev. A 28, 2374 (1983)]. It is found that the commonly used Lado's criterion, which takes advan-

tage of the analytical simplicity of the Percus-Yevick hard-sphere bridge function, is inadequate for
determining an accurate static pair-correlation function. Following Rosenfeld [Y. Rosenfeld, Phys. Rev.
A 29, 2877 (1984)], we reconsider Lado s criterion in the so-called variational modified hypernetted-

chain theory. The main idea is to construct a free-energy functional satisfying the virial-energy thermo-

dynamic self-consistency. It turns out that the widely used Gibbs-Bogoliubov inequality is equivalent to
this integral approach of Lado s criterion. Detailed comparison between the presently obtained structur-
al and thermodynamic quantities for liquid alkali metals and those calculated also in the modified

hypernetted-chain theory but with the one-component-plasma reference system leads us to a better un-

derstanding of the universality property of the bridge function.

PACS number(s): 61.25.Mv, 65.50.+m, 61.20.Gy

I. INTRODUCTION

In a recent paper [1],we reviewed the present status of
the theoretical approach to liquid-structure calculations.
Among many methods available in the literature, such as
computer simulations, integral equation theories, thermo-
dynamic variational, or perturbative approaches which
include the Henderson-Barker or Weeks-Chandler-
Andersen type, the Gibbs-Bogoliubov inequality, the op-
timized random-phase approximation, etc. , we critically
made a detailed comparison and came to the conclusion
that the integral-equation approach based on the
modified hypernetted-chain (MHNC) theory appears to
be the most promising. This latter technique has been
applied successfully to investigate the anomalous behav-
ior of the liquid-structure factor of cadmium and zinc
metals [1]. Similar calculations have been carried out by
Pastore and Kahl [2,3] for liquid alkali metals, by Hoshi-
no, Matsuda, and Watabe [4,5] for the expanded liquid
cesium, and by Perrot and Chabrier [6] for liquid alkali
and polyvalent metals. The same technique has been uti-
lized also in a di6'erent context by Dharma-wardana and
Aers [7], Aers et al. [8], Dharma-wardana et al. [9],
Reatto, Levesque, and Weis [10], and Dzugutov [11]for
"inverting" pair potentials for liquid metals Ge, Na, Al,
and Pb. Very recently, MHNC theory has been general-
ized to the study of partial structure factors or liquid
binary alkali-metal alloys [12].

Central to the success of the above-mentioned MHNC
calculations is an appropriate choice of the bridge func-
tion B(r) consisting of the sum of elementary diagrams
with h (r ) [being the total correlation function defined by
h (r ) =g(r ) —1, g(r ) being the static pair-correlation
function] bonds that have at least triply connected field
points [13]. Depending on the liquid system of interest,
various forms of B(r) have been proposed. The hard-

sphere (HS) bridge function BHs(r;rl), rl being the pack-
ing ratio, in particular, is one of the earliest and simplest
bridge functions to be investigated. This bridge function
has an attractive feature in that within the Percus- Yevick
(PY) aPProximation BHs(r;rl)=BpvHs(r;rl} can be ex-
pressed in an analytical form. Rosenfeld and Ashcroft
[14] in their quantitative studies of the short-range
universality property of B(r ) have in fact examined such
a BpvHs(r'rl } for a wide variety of interacting Potentials.
They showed that excellent agreement with computer-
simulation data can be obtained if the rl in Bt,„Hs(r;rl) is
chosen appropriately. The usefulness of Bt,YHs(r;sl) has
been exploited further by Rogers et al. [15]. These au-
thors carried out extensive Monte Carlo simulations for
the one-component-plasma system and noted that the
simulated pair-correlation function can be reproduced
very accurately by using Bt vHs(r;rl). References [1—6]
are several recent attemPts that use also BpvHs(r'rl } for
liquid-metallic systems. A key factor for the success of
these latter works is the method they employed for deter-
mining the bridge parameter g. In this method one ap-
plies the thermodynamic-self-consistency (TSC) condition
in which g is fixed by imposing the equality of the
compressibilities calculated separately by the compressi-
bility and virial-pressure equations. From the diverse po-
tentials that have been experimented with and the success
that has been achieved in each case, this TSC method can
be taken as a reliable criterion.

An alternative to the TSC condition is to apply the so-
called Lado's criterion [16]. In this method 7) is deter-
mined by minimizing an approximate free-energy func-
tional which can be shown [16] to be equivalent to seek-
ing an g that satisfies

MHNC ~BPYHS( I
P [gg, PYHS( 9) gPYHS( 7}]

an
dr=0,
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where p is the number density, g y p~y~g (r 'g ) and

gpvtts(r;q) being the static pair-correlation functions in
MHNC theory for an arbitrary P and a "PY" hard-
sphere-like potential, respectively. Although both ave-
nues to obtain ri have been tested [1—4] and achieved
varying degrees of success, Lado*s criterion has received
comparatively much less attention. In this paper we de-
vote some effort to the investigation of B(r) via Lado's
criterion. Our motivation, besides the reason mentioned
just above, stems from our observation that Lado's cri-
terion emerges quite naturally when applied in conjunc-
tion with the widely used Gibbs-Bogoliubov inequality.
It will be shown here that the latter inequality can be
generalized to incorporate MHNC theory, giving rise to a
powerful variational MHNC [17,18] (VMHNC) tech-
nique and permitting the simultaneous study of structural
and thermodynamic properties. Compared with the
above usual Lado s criterion, we draw attention in this
work to a more general criterion. Specifically, we shall
show [19,20) below that the usual Lado's criterion has to
be augmented by an extra correction term for fixing the g
bridge parameter if the analytic property of Bp vns(r; ri)

is to be made use of. It is also the purpose of this paper
to examine this apparent difference of Lado's criterion in
somewhat detail. Specifically, we demonstrate in the fol-
lowing that (a) the VMHNC, as advanced previously by
Rosenfeld [17,18], provides a clear justification to the
needed correction and thus a reliable determination of
the bridge parameter g and, hence, the liquid structure is
now feasible, and (b) the universal property of B(r ) shows

up in the calculated structure and thermodynamic func-
tions.

The format of the paper is as follows. In the next sec-
tion, we review VMHNC theory and rederive alI relevant
formulas in the context of VMHNC theory. We discuss
in this same section the use of BpYps(r g) in Lado s cri-
terion with the correction term and B„s(r;g) without to
outweigh their difference. Our analysis would lead us to
an assessment of the reliability of the method and to the
calculation of various thermodynamic functions. In Sec.
III, as applications, we apply VMHNC theory to calcu-
late the static pair-correlation function and several ther-
modynamic quantities for liquid alkali metals at or near
freezing. We compare the theoretically Fourier-
transformed g(r), i.e., the liquid-structure factor S(q),
the calculated results for the excess entropy, and
Helmholtz and internal energies, with experiments. Fi-
na11y, in Sec. IV we give our conclusion.

II. VARIATIONAL
MODIFIED H YPERNETTED-CHAIN THEORY

In this section we first review briefly MHNC theory
and turn immediately to discuss the Gibbs-Bogoliubov in-
equality drawing attention to the use of a hard-sphere
reference fluid. By considering the main spirit of the
Gibbs-Bogoliubov inequality, we focus attention on the
Percus- Yevick approximation to the hard-sphere system.
This discussion will lead us naturally to the PY hard-
sphere bridge function. In the spirit of VMHNC theory,
we then proceed to analyze how the thermodynamic self-

consistent Bpv~s(r;g), which satisfies the energy-virial
condition, is to be used for deriving a more general
Lado's criterion.

A. Modified hypernetted-chain theory

g(r ) =exp[y(r ) PP(r ) —B(r )]—, (2)

where rtr(r) is the pair potential, )33=(k~T) is the in-

verse temperature, and y(r)=h(r) c(r—). Given a rtr(r),
the pair-correlation function can be obtained by solving
Eqs. (1) and (2) iteratively for a prescribed bridge func-
tion B(r ) [the usual HNC approximation corresponds to
setting B(r)=0].

B. Gibbs- Bogoliubov inequality

This widely used variational technique can be stated as
follows. Let the liquid system of interest (being denoted
by a subscript "true"), at given temperature and density,
be described by the Hamiltonian H, „„„which determines
the Helmholtz free energy F,„„,:

exp( PFr„„,) =T—r[exp( —PH„„,)] .

If one chooses a reference system in the same thermo-
dynamic conditions, with Hamiltonian H„f and
Helmholtz free energy F„f, the inequality then puts an

upper bound on F,„„,as

Frrue Fref + ( Hrrue Hrer &ref ' (4)

The brackets ( &„,f in Eq. (4) denote a thermal average
over all possible configurations of the reference system.
It is clear from Eq. (4) that the inequality can be used to
advantage if a judicious choice is made of the reference
system. At a primitive level, one must select a reference
system so that it adequately mimics basic features of the
real system. A detailed discussion of the various possible
reference systems can be found in our recent paper [21].
Here we wish to focus our attention on the use of a hard-
sphere system. For this reference system, Eq. (4) becomes

F ~ ~ —F~s+ &H ~ ~ &vs &H~s &Hs

T~HS + & H &HS

where the subscript HS stands for the hard sphere and

Szs is the HS entropy. It is customary in the literature
to evaluate the ensemble average in Eq. (5) by approxi-
mating gz (r) sby that derived from the PY approxima-
tion, i.e., g~s(r;q)=gpvzs(r;ri). This, of course, is an

approximation, and the immediate consequence is that
the calculated thermodynamic quantities depend on the

The study of g(r) as a function of temperature and
density begins with the Ornstein-Zernike relation

h (r )=c(r )+p J dr h ( ~r —r'~ )c(r ), (1)

where c(r) is the direct correlation function. Equation
(1) is supplemented by the following closure between h (r )

and c(r):
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routes to the equation of state pursued (see, for example,
Table I of Hafner [22]). Now, instead of inserting

gpvHs( r 7/} we may adoPt gpvHs (r;r}) for the reference
distribution function and, for consistency, carry out a
corresponding substitution for the Helmholtz free energy.
In this manner the accuracy of the variational calculation
has been shifted to finding MHNC structural and ther-
modynamic functions. If, by some means, gpvHs (r;r})
were made "exact" by imposing thermodynamic-self-
consistency conditions, then the subsequent calculated
thermodynamic quantities will be expected to be closer to
the real system. The importance of this last point in vari-
ational thermodynamic studies has in fact been stressed
previously by us [21].

C. Structure and thermodynamic functions in MHNC

As pointed out in the Introduction, the PYHS bridge
function determined by imposing the virial-
compressibility TSC condition has been examined to pre-
dict accurately the structural and thermodynamic prop-
erties for a wide variety of disparate simple liquids. In
this subsection, by appealing to the universality feature of
B(r), we construct a family of free-energy functionals
that satisfy the virial-energy-consistency criterion and
then, making use of the hard-sphere B(r), variationally
pick out the "best" free energy functional.

Let us start by defining a local MHNC free energy per
particle for an arbitrary potential P(r ) as [23]

f& (a)= —,'p f drg& (r;a)[PP(r)+B&(r;a}]

,'pf—d—rP[h& (r;a)] +h&" (r;a) —
g& (r;a)lug&" (r;a}j

3 f dk[ln[1+ph& (k;a)] ph&
—(k;a)I,

2p (2m )
(6)

where the tildes refer to the Fourier transform, a is a pa-
rameter associated with the bridge function B&(r;a), and
the subscript P designates the quantity obtained iterative-
ly from Eqs. (1) and (2) with the exact bridge function
B&(r;a) and P(r). For convenience in the following dis-
cussion we also define a function

Ba

pv — MHNc(
) / d aa(p p )

agMHNc(p
X

a=a{P,p')

c aB,(r;a')
(a)= —,'p f da' f drg& (r;a')

P fd MHNC(

while the virial-pressure equation of state reads

virial
p f d r rg MHNc

( r a~(r)
(9)

To proceed, we note first of all that the energy equation
of state can be written

where the superscripts E and V mean, respectively, quan-
tities derived from energy and virial equations of state.
Since an evaluation of the exact functional expression for
B&(r;a) is practical]y impossible, we consider two alter-
natives. We can either take advantage of the universality
property of bridge function and proceed with an analytic
B&(r;a)=BpvHs(r;ri), but this would need an aPProPri-
ate "correction" which accounts for the possible
difference between the HS and PYHS, or one may adopt
the HS theory [24,25] B&(r;a)=BHs(r;rI), which is
known to reproduce well the computer simulation. We
discuss separately the essence of these methods.

In the first approach, one begins by introducing a vari-
ational free-energy functional 7&

" (i) ), defined by

cyVMHNC( ) fMHNC( ) g(0)( ) (12)

At given temperature and density [i.e., for a nonvanish-
ing B&{r;a(P,p) }],the excess free energy per particle, 9;
can be obtained directly from Eqs. (8) and (9) and ex-
pressed in terms of Eqs. (6) and (7) as [18]

cd fMHNC( ) ~dp aa(P P)
o ap'

ay M
HNC( pc

x
a =a(P', p)

(10)

where, for the moment, f& (r}) is given by Eq. (6)
with B&(r;a)=BHs(r;g) [making use of the universality
characteristic of B(r)] and b, I& '(i}) is a "fitting" function
having the fo11owing two features. In the first place, it
must satisfy the physical condition b, ~& '(i}=0)=0 so that
the correct description of the structure and thermo-
dynamics using MHNC theory for low-density behaviors
is ensured. Second, in accordance with the spirit of per-
turbation, 6& '(i}) must be separable into a "main" func-
tion that is independent of the details of potential [for
which the universality feature of B(r) can be fully made
use of] plus the remaining terms which depend on the po-
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tential and account for the difference stated above. Since
Eq. (6) for a =r) can be easily shown to satisfy [23]

gf MHNC(q)
MHNCfdr MHNc( .

)
p, p an

gMHNC( )
= a

n
an

(13)

it is natural to write

g(0)( ) gMHNC( )

aBHs(»;q')=
~p dn dr gy 7jn

(14)

BPYHS(»~ I)
gPYHs(» )I ) I lngPYHs(» rl)

P') g

(16)

cr=(6g/mp))~3 being the hard-sphere diameter. To this
end we follow Rosenfeld [18]and approximate

which we assume to be a criterion for determining n.
Note that in Eqs. (13) and (14) we have replaced B&(»;a)
by BHS(»;g) in view of the universal property of the
bridge function. It can be shown [18,23] that Eqs. (12)
and (14) obey Hiroike's test [26] (Bu /8 V) T=T((3P!(3T)P Pand —thus ensure the energy and virial
equations, given by Eqs. (10) and (11) respectively, to be
thermodynamically self-consistent. Furthermore, Eqs.
(13) and (14) also imply

a cyVMHNC( ) 0 (15)
an '

Our next task is to find a 6(& (q) which takes full benefit
of the analytic simplicity of B„YHs(»; rl ) given by [14]

c

cPYHS(
' 7) —1 —»[ —cPYHS(» I)l

so that Eq. (12) should accordingly be written

cyVMHNC(
) f 'MHNC

( ) g(0) ( ) (18)

Here gy pYHs(»; rl) is the iterative solution of Eqs. (1) and
(2) for the potential p(» ) and bridge function BPYHS(»; rj),
and fI) pYHs(rl), except for the substitution of B&(»;a)
by BPYHs(»;rl) thus resulting in gMHNc(» g)
~gy PYHs(»;')I), has the same form as Eq. (6). FollowingMHNC

the recipe mentioned above Eq. (13), we write

~b, PYHS 9) ~PYHS( I) 5&( )) (19)

In Eq. (19), hp YHs( g ) is the above-mentioned "main"
(potential-independent) function having the same
mathematical form as b, & (g) [see Eq. (14)], but with

g& (»;rl) and BHs(»;rI) occurring there replaced by
gpYHs(»;g) and BPYHs(»;rj), respectively. In this way

5&(q) is the necessary correction term emphasized below
Eq. (12) that characterizes the deviation of PYHS (corre-
sponding to some "PY" potential) from HS [correspond-
ing to the use of an exact HS BHs(»;q) and potential
(t (» )].

To make further progress, we note that APYHs(g) can
be written in analogy to Eq. (12) as

cyVMHNC( ) fMHNC(
) g ( ) (20)

where fpYHs (rI) differs from f& PYHs(rl) introduced in

Eq. (18) by having the "PY" potential and associated
gpYHS(»;rl) instead of p(») and g& PYHS(»;rl). The "viri-
al" part of the free energy, VPY P(rI), can be written
[27,28]

cyVMHNC( ) cy ( )

6n +21n(1 —rl) . (21)
1 —

n

By virtue of Eqs. (18)—(21), the VMHNC free energy
reads

( 9) ~c), PYHS( 9)

BPYHS I )=
I p f ""rl'f «gppYHs(» ,9 )

0 a Jl'

(17)

——~p YHS( U)+5(((rl )+fy", AVs (rl »
(22)

which, from Eqs. (13) and (15), leads to an equation for
determining n:

PYHS

n

At this point there are two important observations that
merit emphasis. First, it can now be seen that we recover
the usual Lado's criterion if we set 5&(g) =0. Second, the
minimization of the Helrnholtz free energy given by Eq.
(5) turns out to be equivalent to the presently obtained
Lado's criterion, as is proved in the Appendix. It is also
interesting to note that when 5&(g) =0, the VMHNC re-

suits for hard spheres will reduce to that for a PY ap-
proximation for hard spheres [as implied by Eqs.
(18)—(20)]. We finally turn to 5&(rI ).

Strictly speaking, 6&(n) is a function depending on de-
tails of the P(») potential via g& (»;rl) in the iterative
solution of Eqs. (1) and (2). A close examination of Eqs.
(14) and (17) for the sequence of approximations from HS
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(24)

where

BBHS(r; rl')
I

( )=—'p drl' J drgHs "~rl (25)CS

and BHs(r;q) are, respective y, htheHS " HS air-corre ation
11 St 1 f

t 1c tll V 1 t-W igy
tll i 1Henderson-Grundke [ j25 theory or

Writing

cyVMHNC( ) p (cs

oints to the fact that 5&(rl is essen-
'lf b htiall a functio h racterizing t edi eren

S-

df llhh) can be obtained i one
s ver

computer-simulation a
b bin mind the a ove ep 'g'

approxi mate ~I( 9) ~HS-PYHS 9

&ccs (rl = cs) =f " (i))—&,(g),

3 I I

0 I

5

I I I I I I I

I I I I
I

I I I I14

10 15 20

I I I II I I I I I

I
I I I I

I
I I I

15—

we obtain

4g —3g
(1—g)

(26)
10 15
r ( a.u. )

20

c'MHNC
( ) cycs (27) -(b) I I I I I I I I I I I

I I I
I

I I II I
I

I I

n E s. (20) and (24), it isthe difference between qs.Taking t e i
thatstraightforward to show t a

(rl)f " '(n —~ PYHS
NC ~MHNC(~) p

+~ ( l) ~PYHS( I) (28)
22

(r; ) for the( ) by substituting B„s r, gApproximating b,cs q
analytical BPYHs(P'

~cs(n) = ~cs(rl )

o y

CS ( ) ) ~cs( l ) ~PYHS 9~CS( )) PYHS ) CS

=~y PYHS(rl) ~PYHs(U)I

PYHS
I
)

.p J d ) J drgHs("~'I)
g I

0

bethe Acs( 1 ) hP YHs 9( ) on the rig
'

ht-hand side should
E s. (17) and (19) asreas na apbl proximated from Eqs.

0 I

10 15 20 25
I I I I I I I I

I I I I I I I I I
i4 -' ' ' '

I
' ' '

I

30

20

~HS-PYHS( 9) (30)

( 9) ~cs( l ) ~PY,V 9HS-PYHS 9 CS (31)

shall use in the following( )thatwes a uS- HS 9

derived by Rosenfeld [17,18 in

on the universality of B(r ), we have
. Oh ohhd, h

E 'h ll he
NC free energies co

d ob „11.the " an"PY" nd HS potentials, is expecte o
Accordingly, we arrive at

2510 15 '20
r (a.u. )

ir-corre ' '
n (r) calculated inir-correlation function g r
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xt. Notations used are t e o
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li uid Rb metal. Notatio

'
nsd the bottom figure to liqui

of the curves are the same as in a .
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more "pictorial" way.
We come next to discuss the second method. In this

method one notes first of all that the variation MHNC
free energy can be written

cyVMHNC(
) fMHNC( ) g ( ) (32)

which one can easily see from Eq. (15) and the definitions
of b, Hs and b, & (r;g) that

a pvMHNC(7/ )
I

p f dr[gMHNC(77/ )g(r7])]
aBHs(. ;~)

X =0
an

(34)

This is another criterion which Lado, Foiles, and Ashcro-
ft [16] obtained previously and that can also serve as an
alternative means for fixing g. We stress, in particular,
two important points. First, gHs(r;g) in b, Hs(g) of Eq.
(32) corresponds to the exact hard-sphere pair-correlation
function such as those given in Refs. [24] and [25].
Second, we have explicitly made use of the universality of
B(r) in making the assumption expressed by Eq. (33).
This, or more explicitly Eq. (34), should yield the same
result for the static pair-correlation function as that given
by Eq. (23), although the bridge parameter g determined
may not be the same. It is imperative to note also that
the solutions for g calculated with and without

5Hs pvHs(g) constitute different versions but similar aP-
proximations to the final g & ( r; rj ) obtained. We

where b, Hs(g) is the same as Eq. (7), but with the

g& (r;a=rI) and B&(r;a=r)) [for a physical potential
p(r)] replaced by gHs(r;g) and BHs(r;q) (for a HS po-
tential), respectively. Guided by Eqs. (13) and (14), we
now assume

( ) gMHNC( ~ )

aBHs(r;~')f d i fd MHNc( i) (33)

present liquid-structure results calculated separately in
the next section.

Having discussed the criterion for determining the
bridge parameter, the thermodynamic functions can be
written down readily. First, as mentioned below Eq. (23)
and proved in Appendix, the metallic Helmholtz free en-
ergy is given by

pF =pF„., +pu(n, )+ VvMHNc(Z), (35)

where F „, is the ideal-gas free energy per particle and

1 —Gv (q)
u(no) =EEG+Ed 2npZ—,slim

0 q

Z2——f dq pd ~M(q)~ — ' f dq G~ (q),

U= ,'k&T+u(no—)+2'f dr r P(r }gz (r;rI)

and Eq. (Al) in the Appendix, respectively.

(37)

(36)

being the structure-independent energy. Here EEG is the
electronic ground-state energy; Ed is the nonlocal contri-
bution arising from the deviation of electron-ion pseudo-
potential from purely Coulombic form; Gz (q) is the
usual normalized energy wave-number characteristic,
which, in the modified model potential theory of Li, Li,
and Wang [30], now includes a high-order-perturbation
correction Z,&=Z —pd, Z and pd being, respectively,
the nominal valence and depletion charge density; and,
finally, M(q) is the Fourier transform of the depletion-
hole-charge distribution [31]. The detailed expressions
for each can be found in the works of Lai, Matsuura, and
Wang [32] and Wang and Lai [33), and given an electron-
ic density all these terms can be calculated straightfor-
wardly. The internal energy per particle, U, and the ex-
cess entropy per particle, s MHNC, can be derived similarly
from F, given by

TABLE I. Temperature T (K), atomic volume Qo, packing fraction g, plasma parameter I, Helmholtz free energy F, internal ener-

gy U, and excess entropy s MHNc
= —

SMHN& /Xk& for liquid alkali metals near freezing. The data in the last row for each liquid metal
refer to results obtained using the MHNC OCP as reference system (see text for details).

Metal

Na

Rb

Cs

0.4643'
0 4957

141

0.4621'
0 4950

140

0.4578'
0.4923

138

0.4638'
0.4998

140

373

336

312

302

Qo

277.9

528.5

654.6

810.8

—0.235 19
—0.235 16
—0.235 8

—0.200 72
—0.200 70
—0.201 2

—0.192 40
—0.192 39
—0.192 9

—0.180 68
—0.18066
—0.181 1

Fexpt

—0.2360

—0.2010

—0.1930

—0.1820

—0.227 21
—0.227 19
—0.227 0
—0.19198
—0.19197
—0. 191 8

—0.183 10
—0.183 11
—0.1830
—0.170 85
—0.170 87
—0.170 7

Uexpt

—0.2320

—0.1956

—0.1870

—0.1757

exS MHNC

—4.47
—4.47
—3.75

—4.30
—4.31
—3.74

—4.39
—4.41
—3.71

—4.34
—4.37
—3.74

C
sexpt

—3.45

—3.45

—3.63

—3.56

'Bridge parameters determined from Eq. (23).
Bridge parameters determined from Eq. (34).

'Consult Ref. [41] for sources.
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III. APPLICATION: LIQUID ALKALI NIETALS
— (a)

I I I I l I

Equations (23) and (34) have been applied to determine
the bridge parameters g for liquid alkali metals. To solve
the MHNC g(r) we require the metallic pair potential
P(r) and an algorithm for solving Eqs. (1) and (2). For
the former we use the generalized nonlocal model pseu-
dopotential of Li, Li, and Wang [30] as this has been
checked to be quite accurate and reliable. For the latter
we have adopted, as in our recent work [1], the efficient
algorithm proposed previously by Gillan [34]. Figures
1(a) and 1(b) display g& (r;rl) for four liquid alkali
metals Na, K, Rb, and Cs at or near freezing, calculated
using the two versions of Lado's criterion, namely, Eqs.
(23) and (34). The corresponding thermodynamic func-
tions along with the input data are, however, documented
in Table I. There are two interesting features that can be
learned from these figures and data.

(1) Apart from noticeable "kinks" at the second maxi-
ma [see the inset in Figs. 1(a) and 1(b)], the difference be-
tween g& P+z(r;rt) [from Eq. (23)] and g& Hs (r;rl)
[from Eq. (34)] is insignificantly small, overall amounting
to less than l%%uo.

(2) The Helmholtz and internal energies all agree very
well with measured values, but the excess entropies com-
pare less favorably with observed data.

The first point is of no surprise if one recalls the well-
known defect of the Verlet-Weis-Henderson-Grundke HS
theory for g(r). Note that despite the fact that we use
different Lado's criteria for fixing the bridge parameter g,
the final MHNC results do not differ very much. To fur-
ther support our presently obtained g& (r;ri) quanti-
tatively, we Fourier-transform the latter and compare the
S& (q;ri) in Figs. 2(a) and 2(b) with x-ray-diffraction
data. We find excellent agreement with experiments for
all four S& (q;g). Nevertheless, the liquid-structure
factor calculated without 5HspYHs(g) in Eq. (23), for
which the bridge parameters gN, =0.5078, gz =0.5058,
g„b=0.5008, and pcs 0.5064, as were widely employed
by other researchers [4], show larger discrepancies [cf.
Figs. 3(a}and 3(b)]. From this comparison it is thus clear
that the usual Lado's criterion [without 5HspvHs(g}] is
inadequate if one were to employ the analytical
BpYHs(r;ri) in MHNC theory. On the other hand, the
success of the present version of Lado s criterion indi-
cates once more the high quality of the MHNC approach
to S(q).

Coming to the second point, these F and U results are
due to a much improved g& (r;i)) occurring explicitly
in the structure-dependent terms. Although VMHNC
theory presented here attempts to resolve part of the am-
biguities associated with an approximate g(r) that leads
to different routes to the equation of state [22] and hence
reference thermodynamic functions, the calculated excess
entropy s MHNc has not been improved concurrently with

S& (q;q). In other words, by inerely preserving the
thermodynamic energy-virial self-consistency condition
in MHNC theory, the full reliability of the reference sys-
tem adopted is not guaranteed. This opposition in trends
between s'" and S(q ), however, reminds us of the widely
used Gibbs-Bogoliubov variational calculation using the

0
0 2 4

I I I I I I I I I

0
0

I I I I I I

2 4

I I I

)
I I I I I

0
0

I I I

I I I

3—
I I I I I I

0
0 2 4

FIG. 2. Static liquid-structure factor S(q) calculated by
Fourier-transforming g(r) given in Fig. 1(a). The top and bot-
tom figures refer, respectively, to liquid K and Na metals at or
near freezing. Experimental data (denoted by solid circles) from
Ref. [44] are included for comparison. Notations used are the
following: MHNC theory using Eq. (23), solid curve; MHNC
theory using Eq. (34), dashed curve. (h) Same as (a) except that
the top figure refers to liquid Cs and the bottom figure to liquid
Rb metal. Notations of the curves are the same as in (a).
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I I I I I I I I I

one-component plasma (OCP) as a reference system. In
some of the early published works [35—37], the
S ( I ) I being the plasma parameter, which is need-ocp 9~
ed to evaluate the second term on the right-hand of q.
(4), is normally obtained from extensive sitnulation data

j e

,

'I

,
']

0
0

I I I I I I I I I

I

I I I I I I

2 4

I » I I I I I i I I I ( I I I »» I

5

q(A)
FIG. 4. Static liquid-structure factor S(q) (solid curve) for

liquid sodium at freezing calculated by Fourier-transforming
the MHNC g(r) [from Eq. (23)] compared with the "best"

MHNC'S "'
(

' I = 175) (solid circles). The S„&-, (q; I = 141)&)C I' q ~

(dashed curve) given in Table I is included also for comparison.

tf

~/

~0~:~ /

L ae.-' f

' oo ~op
~&+~~a

V
'r

w+ ~ ~I ~

2 4
q(A )

— (b)
I I I I I I

0
0

~ t

2 4

I I I I I I

0
0 2 4

q (A')

FIG. 3. (a) Static liquid-structure factor S(q) for liquid K
(top) and Na (bottom) metals at or near freezing calculate ydb
Fourier-transforming the MHNC g(r ) [from q.E . (23) with
6 ~ s( )] and compared with observed data from Ref. [ ]„44,HS-I''t'HS 9
(denoted by solid circles). (b) Same as (a) but for liquid Cs (top)
and Rb (bottom) metals. Notations of the curves are the same
as in (a).

[38,39]. In recent years, for practical reasons, there have
been attempts [40—42] to employ a substitution for
S ( 'I ). Rogers et al. [15] first furnished such an ac-OCP q~
curate liquid-structure factor by applying MHNC theory
along with the virial-compressibility TSC condition. Ex-
cep ort f the criterion in determining g, t is

'
allliquid-structure calculation of Rogers et al. is technica y

similar to the VMHNC theory presented in this work,
where we solve for the g& (r;71) with a realistic P(r)
instead of the (r;1 ) determined iteratively with an
OCP potential. The implication of this fact is that, if the
bridge function is indeed universal and independent of
the interacting potential, the quality of the predicted
thermodynamic functions in either case should not differ
very much. In order to demonstrate our viewpoint, we
1ncu e in al d

'
Table I the related structural and thermo-

MHNC(d namic quantities [41] calculated using Socp q;yna
[15] and the reference free energy which is integrated
f the Monte Carlo internal energy [39]. It can berom e

F' 4)seen immediately that a deteriorated S(q) (see also tg.
leads to an improvement of s" and vice versa. To ela-
borate our argument further, we also arbitrarily [43] vary
I until Socp™c(q;I) mimics closely S&MHNc(q;rt) (see, for
example, Fig. 4 for the case of liquid sodium). It is in-
teresting to note that the corresponding —soc,, is found
to be —4.13, which is deteriorated but comparable to the

given in Table I. In view of the above compar-MHNC

ison, it would be interesting if the present VMHNC
theory can be reformulated to impose the additional ther-
modynamic self-consistency for the compressibility equa-
tion of state. Such a calculation, if feasible, will surely
enrich our understanding of the structure and therrno-
dynamics of liquid metals.

IV. CONCLUSION

The possibility of using the MHNC approach to struc-
ture and thermodynamic studies has been examined. Fol-
lowing the work of Rosenfeld [17,18], we reconsider
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Lado's criterion to obtain the bridge parameter within
the context of the Percus- Yevick hard-sphere approxima-
tion in some detail. We showed explicitly that the usual
Lado's criterion [devoid of 5Hs pvHs(g) in Eq. (23)],
which takes advantage of the analytical simplicity of
B pvHs(r; q), is inadequate for yielding an accurate

g& p vHs(r;g). A correction to the usual Lado's criterion
is demonstrated here to be necessary, and when this is
done, a very accurate gypvHs(r;g) is Predicted. Calcu-
lated thermodynamic functions which emerge naturally
in the theoretical framework provide insight to further
calculations. The latter results reinforce our belief once
more for the need of considering thermodynamic self-
consistency for the reference system before it is imple-
mented to the Gibbs-Bogoliubov inequality as stressed by
us in a recent paper [1].
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APPENDIX: GIBBS-BOGOLIUBOV
INEQUALITY IN MHNC THEORY

Starting from Eq. (5), the excess entropy per particle,
sMHNc

—SMHNc/Nkz 0, can be written in MHNC
theory for a HS bridge function as [17]

sMHNc 2p f«gy" (r ri»'Hs(r 21)

p fdr[ 1 [PMHNc(r. ri )]2+Jt MHNc(r. 21)gMHNc(rq)lngMHNc(r21)

1 1 -MHNC . -MHNC
3 fdkjln[1+ph& (k;ri)] ph&

—(k;rl)I ,'p —f—dpi'f drg& (r;ri')

(Al)

The first three terms on the right-hand side of s M„NC can be combined with the second term on the right-hand side of
Eq. (5):

P(~„„,&MHNc= ,pP f «—gi,
" (r;q)P(r ),

leading to f&" (21). The remaining term, upon consulting Eqs. (12) and (14) and then adding up, gives

~ I

sMHNC+p( Ht„„)MHNC f$ (21 ) ,'p f dr—i' f—drg& (r;21')
0 all'

cyVMHNC( )d

(A2)

(A3)

Apart from the structure-independent energy terms, Eq (A3) is the same as the present Lado s criterion upon minimiza-
tion of 7&

" (g) with respect to g.
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