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Using molecular-dynamics computer simulation, we study the dynamical behavior of the isotropic and
nematic phases of highly anisotropic molecular fluids. The interactions are modeled by means of the
Gay-Berne potential with anisotropy parameters k=3 and «'=5. The linear-velocity autocorrelation
function shows no evidence of a negative region in the isotropic phase, even at the higher densities con-
sidered. The self-diffusion coefficient parallel to the molecular axis shows an anomalous increase with
density as the system enters the nematic region. This enhancement in parallel diffusion is also observed
in the isotropic side of the transition as a precursor effect. The molecular reorientation is discussed in
the light of different theoretical models. The Debye diffusion model appears to explain the reorientation-
al mechanism in the nematic phase. None of the models gives a satisfactory account of the reorientation

process in the isotropic phase.

PACS number(s): 61.20.Ja, 61.30.By, 64.70.Md

I. INTRODUCTION

The formalism of time-dependent correlation functions
is a powerful tool in understanding the dynamical pro-
cesses involved in molecular fluids [1, 2]. It provides a
suitable framework in which a wide variety of experi-
ments can be interpreted. However, this is a far from
trivial task. Many observations tend to be influenced by
more than one dynamical process (collision-induced
effects, vibrational relaxation, etc.) and they cannot be
easily identified by experimental considerations alone [3].
In this sense, computer simulation is of great value be-
cause it can discern the various processes. Furthermore,
it is possible to evaluate certain correlation functions in
the course of a simulation which are not easily obtained
from experiments.

There is also great interest in understanding the physi-
cal nature of molecular motion in liquids. Computer
simulations using molecular-dynamics methods have
been mainly focused on the applicability of theoretical
models of molecular reorientation, such as the diffusion
models of Gordon [4], and the stochastic Langevin model
[5]. Attention has also been given to predicting correla-
tion functions from memory functions approximations
[1,6-8] and truncated cumulant expansions [9, 10].

The computer simulation of the dynamical behavior of
molecular fluids has proceeded along two fronts: (a)
simulation of real fluids using suitable model potentials
[1, 11-20] and (b) simulations of highly idealized models
of molecular fluids. The latter is the approach followed
in the study of the dynamics of hard-body molecules,
such as spherocylinders [21], prolate and oblate ellipsoids
of revolution [22-24] infinitely thin hard rods [25, 26],
etc.

In this paper we follow the second approach, reporting
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the results of a molecular-dynamics study of the transla-
tional and rotational motion in the Gay-Berne (GB) mod-
el fluid [27] with anisotropy parameters k=3 and «'=5.
Here « is the ratio between the long and minor axis of the
ellipsoidal molecule and «' is the well-depth ratio for the
side-by-side and end-to-end configurations. Two reasons
lead us to undertake such an study. First, it would be
desirable to know to what extent the dynamical processes
in highly anisotropic systems differ from those in fluids of
small linear molecules. To our knowledge, only limited
studies have been reported for highly elongated molecules
[21-26, 28-30]. Second, it would be of great interest to
know how the onset of orientational order influences the
dynamical behavior of the fluid. The GB fluid has been
shown to form mesogenic phases at high densities
[31-36]. In a previous publication [36], we have shown
that a stable nematic phase is formed at temperatures
above T*=0.80 and, at sufficiently high densities, a Sm-B
phase. Below T*=0.80, the orientationally disordered
isotropic phase directly transforms into the Sm-B phase
[33].

In the present paper we focus on the single-particle
translational and rotational dynamics emphasizing the
diffusion process and the reorientational dynamics. We
limit our study to the translationally disordered phases
(isotropic and nematic). In particular, we consider the
dynamics of the isotropic phase for six state points at
different reduced temperatures and densities: (1)
T*=0.90, p*=0.130; (2) T*=0.80, p*=0.150; (3)
T*=0.70, p*=0.170; (4) T*=0.60, p*=0.190; (5)
T*=0.50, p*=0.210; (6) T*=0.45, p*=0.230. The
liquid-vapor critical point for the GB fluid is located [35]
at T*=~0.49 and p}=~0.095 and the temperature of the
triple point is 7,* =0.38. Hence this choice corresponds
to state points well above the critical point up to temper-
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atures and densities close to the triple point along the
liquid side of the vapor-liquid coexistence curve. In addi-
tion, we study the temperature dependence of the self-
diffusion coefficient in the isotropic phase. This was ac-
complished along the isochore p*=0.230, with tempera-
tures varying from 7*=0.45 up to T*=2.00. The
dynamical behavior of the nematic fluid is studied at

*=0.95. According to previous work [36], the GB fluid
undergoes a weakly-first-order isotropic-nematic transi-
tion at this temperature for densities p; =0.308 and
pr=0.314.

In Sec. II we include a brief summary of the computa-
tional methodology. In Sec. III we describe the transla-
tional motion of the Gay-Berne fluid. In Sec. IV we
study the orientational dynamics of this fluid and the re-
sults are analyzed in terms of different models for molec-
ular reorientation.

II. COMPUTER-SIMULATION DETAILS

The explicit expression of the potential between a pair
of molecules in the Gay-Berne model [27] is given by
12

Ugp =4¢(®,8,,8,)

)
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where 1; is the axial vector of molecule i and T is the vec-
tor along the intermolecular vector r; o(f,1,,4,) and
€(T,1,,1,) are the orientation-dependent range and
strength parameters, respectively, defined in Ref. [27].
These quantities depend on the parameters k (molecular
elongation) and «’ (ratio of the potential-well depths for
the side-by-side and end-to-end configurations).

The dynamical behavior of the GB fluid has been ana-
lyzed in terms of time autocorrelation functions (ACF’s)
defined by

(Alty) Altg+1)
6 ()= ,

r—o(t,0,,0,)+0,

(2)

where A(t) is a classical dynamical property of molecule
i evaluated at time t. In our case, we have calculated
¢ 4(t) for A being the linear velocity of the center of
mass (v), the force (F), the angular velocity (o), and the
torque (IT'). In addition, we have also evaluated the
ACF’s qSU“(t), ¢, (1), ¢F”(t), and ¢y (1), where the sub-

scripts || and 1 refer to the component of the correspond-
ing property parallel and perpendicular to the initial
direction of the molecular axial vector, respectively.

To study the reorientational motion, we have calculat-
ed the self-particle reorientational correlation functions
defined by

¢ = P(Rty)Altg+1))) , (3)

for /=1 and 2, where 1(#) is a unit vector along the sym-
metry axis of molecule i and P, is the /th-order Legendre
polynomial. In the above expressions, the angular brack-
ets imply an average over particles as well as over time
origins. According to these definitions, the correlation

ENRIQUE de MIGUEL, LUIS F. RULL, AND KEITH E. GUBBINS 45

functions are normalized to unity. For the evaluation of
the ACF’s, the spacing between consecutive time origins
was t5 =10At* where At*=0.0015 is the time step, in
reduced units [At*=(mo}/€,) " /?At], used in the in-
tegration of the equations of motion. The long tail of the
ACF’s was calculated up to a time span of 800—1000 #§.
The correlation time associated with a given correlation
function is defined by

TA=fO°°dz¢A(t). @)

The molecular-dynamics program was the same as that
used in earlier works [33, 34]. The calculations were all
made for 256 molecules interacting through the GB po-
tential. The molecules were given a moment of inertia
I*=1. Reduced units are used for all the quantities in-
cluding temperature T*=ky T /€, density p* =po3; time
™ =7(mo3/e,) /%, moment of inertia I*=1(m e
and diffusion coefficient D*=D(me,/03)" /2. The tra-
jectories of the particles were followed for a total of
10000 time steps after an initial equilibration period of
4000-6000 steps.

III. TRANSLATIONAL DYNAMICS

A. Translational motion

The motion of the center of mass has been analyzed in
terms of the velocity ACF (VACF) and the force ACF
(FACF), defined by

_ vlg)vltg+1))

- , 5
S = v(rg)) 5a)
)= (F(ty)-F(ty+1)) (5b)
oF (F(T,)-F(ty)) '’

where v is the velocity of the center of mass of a molecule
and F is the total force acting on each individual mole-
cule.

In Fig. 1 ¢,(¢) is illustrated for the isotropic phase.
For all the state points considered, ¢,(¢) shows an initial
rapid Gaussian-like decay; afterwards, the collisions ran-
domize the velocity and ¢,(¢) decays smoothly. As the
temperature is lowered or the density increased, the re-
laxation process is faster due to an increase of the col-
lision rate with neighboring particles. There are two
striking features in the VACF’s shown in Fig. 1. First,
there is no evidence of a negative lobe even for the
highest density, close to the triple point. This is in
marked contrast to the usual behavior exhibited by other
dense molecular fluids, where the VACF decays to a neg-
ative value and, with a few damped oscillations, goes to
zero while remaining negative [1, 11-17]. Second, as the
density is increased, the system seems to develop an inter-
mediate regime between the initial Gaussian region and
the subsequent monotonic decay. This regime results in a
small positive plateau in the VACF before the system
enters the quasiexponential decay region.

The nature of this positive plateau becomes clearer in
Fig. 2, where the VACF is shown at T*=0.95 below and
above the isotropic-nematic transition (pj=0.308,
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prx=0.314). At a density 0.280, the intermediate plateau
is evident. As the density is increased, the flat region
eventually develops a positive minimum and maximum
after which the smooth-decay regime follows. When the
system is well inside the nematic phase, this structure in
the VACF is even clearer. This behavior can be under-
stood by monitoring the time relaxation of the parallel
and perpendicular components of the velocity along the
molecular axis at time r=0. This is shown in Fig. 2,
where the VACF’s ¢U“(t) and ¢”L(t) are represented along

with ¢,(¢). From this figure it is apparent that the struc-
ture of the VACEF is due to the behavior of the perpendic-
ular component of the velocity. When nematic ordering
has taken place in the system, ¢'fl(” reaches a negative

minimum and a positive maximum at the same time
values as those in ¢,(¢). On the other hand, ¢v”( ;) relaxes

more slowly and eventually develops a negative lobe at
sufficiently long times for the higher nematic densities.
The behavior of ¢,(¢) seems to indicate that in the orien-
tationally ordered phase the translational motion can be
understood as if the individual molecules were diffusing
along cylindrical cages. The reversal in the perpendicu-
lar component and its oscillatory character can then be
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FIG. 1. Velocity autocorrelation function in the isotropic
phase. The curves have been labeled according to the reduced
temperature (T*=kzT/¢€,) and the density (p*=po3); thus
0.90, 0.130 means T*=0.90, p*=0.130. The time has been ex-
pressed in units of ¢§, where t§ =10At*=0.015(mo3/ €,) " '"%
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ascribed to periodic rebounds with this local structure,
while the parallel component undergoes a diffusive
motion along the cylindrical cage.

It is interesting to note that just below the isotropic-
nematic transition, this local structure starts to manifest
itself. This pretransitional effect, which results in
¢U”(t) > ¢, (1), will be discussed in Sec. III B.

The FACEF in the isotropic phase is shown in Fig. 3.
These functions exhibit the same qualitative features as
those found for other molecular fluids [11-13, 15]. A
deep negative minimum is reached after a rapid initial de-
cay and afterwards, the functions show oscillatory behav-
ior about zero. The only effect of varying the tempera-
ture or the density is that the FACF develops a distinct
positive maximum for the lower temperatures or higher
densities.

The correlation times were obtained by numerical in-
tegration of the corresponding ACF up to an upper limit
trax=150tg for 7 and ¢}, =300t5 for 7,. From the
definition of ¢, the correlation time 75 should be zero.
For all the state points, we found 75 <3X 104, which is
zero within the accuracy of the simulations. Following

[-N TRANSITION

0.300

VACF

0.315

FIG. 2. Velocity autocorrelation function (full line) in the
isotropic-nematic region at T*=0.95. The curves have been la-
beled indicating the density in reduced units (p*=po}).
Dashed line, velocity autocorrelation function parallel to molec-
ular axis [¢,,”(t)]; dash-dotted line, velocity autocorrelation

function perpendicular to molecular axis [d)vl( 1]
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TABLE I. Self-diffusion coefficients for the GB fluid obtained from Eq. (6) (D*) and Eq. (7) (Dg).
The parallel and perpendicular coefficients are obtained by integrating the corresponding velocity auto-
correlation function. The results for T7*=0.95 are for the isotropic-nematic region. The rest are for

the isotropic phase.

T* p* D* D} D} D! D; /D!
Isotropic phase
0.45 0.230 0.096 0.097 0.105 0.092 1.15
0.50 0.210 0.128 0.129 0.128 0.128 1.00
0.60 0.190 0.209 0.199 0.254 0.186 1.36
0.70 0.170 0.296 0.296 0.324 0.281 1.15
0.80 0.150 0.366 0.349 0.382 0.357 1.07
0.90 0.130 0.489 0.465 0.490 0.486 1.01
Isotropic nematic region
0.95 0.270 0.115 0.140 0.102 1.37
0.95 0.280 0.103 0.132 0.086 1.52
0.95 0.290 0.098 0.125 0.084 1.49
0.95 0.295 0.086 0.114 0.072 1.58
0.95 0.300 0.078 0.101 0.066 1.54
0.95 0.305 0.065 0.096 0.049 1.97
0.95 0.310 0.067 0.117 0.042 2.80
0.95 0.315 0.067 0.122 0.040 3.04
0.95 0.320 0.060 0.113 0.034 3.32
0.95 0.325 0.056 0.110 0.030 3.67
0.95 0.330 0.046 0.097 0.023 4.22
0.95 0.335 0.048 0.092 0.021 4.38
0.95 0.340 0.042 0.087 0.019 4.58
the prescriptions of Zwanzig and Ailawadi [37] for es-
! [SOTROPIC PHASE timating the errors in the ACF’s, we believe that the
correlation-time values are affected by a margin of error
of =5%. The 7, values were used to calculate the self-
1 diffusion coefficients (see following section).
. 090, 0.130 B. Self-diffusion
1 \/ From the velocity correlation time, the self-diffusion
0.80, 0.150 coefficient D can be obtained using the relation
0 T T T T
1 \/ e
% 0.70, 0.170 T .
<< 0
= 1 M
©
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vz :
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0 10 =20 30 tiI"lI(l)e 50 60 70 FIG. 4. Temperature dependence of the self-diffusion

FIG. 3. Force autocorrelation function in the isotropic
phase. The curves have been labeled according to the tempera-

ture and density in reduced units.

coefficient in the isotropic phase along the isochore p* =0.230;
open circles are for the diffusion constant as obtained from the
velocity correlation time [Eq. (6)]; solid circles are for the
diffusion constant evaluated from the Einstein relation [Eq. (7)].
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kyT

Ty (6)

where m is the molecular mass and ky the Boltzmann
constant. As a check of consistency, we have also evalu-
ated D from the slope at long times of the mean-square
displacement, using the Einstein relation

D= lim é(\r(to+t)—r(to)|2) . )
In Table I we collect the values of the self-diffusion
coefficient obtained from expressions (6) and (7). In gen-
eral, we find that the values of the self-diffusion constant
evaluated from (6) and (7) agree within 5%, which is
within the estimated accuracy of the correlation times.

We have studied the temperature dependence of the
self-diffusion coefficient in the isotropic phase. The simu-
lation results for a fixed density (p* =0.230) and for tem-
peratures in the range 0.45 < T* <2.00 are shown in Fig.
4. The values of D* as obtained from expressions (6) and
(7) are summarized in Table II. Unlike the case of liquid
argon [38] or low-anisotropy diatomic fluids [12], we
could not reproduce the simulation results by using a
linear relation between D* and T*. It seems that an ex-
ponential law of the form D*=Dgexp(— A4/T*) with
D%=0.4086 and A4=0.6959 fits the simulation results
over the range of temperatures considered here.

Of particular interest is the behavior of the self-
diffusion constant in the nematic phase. As the density is
increased below the isotropic-nematic transition, D de-
creases as expected. For all the nematic state points,
D, >D, (see Table I). This is also shown in Fig. 5. From
this plot we can observe that, just above the transition,
there is an enhancement in the parallel diffusion which
results in an anomalous increase in D, with density.
While D, decreases monotonically as the system is
compressed, D|| reaches a maximum at p*~0.320 and
then decreases upon compression. This effect has been

TABLE II. Temperature-dependence of the self-diffusion
coefficient in the isotropic phase at density p* =0.230.

T* D* D; D} D! D} /D}
0.45 0.096 0.097 0.105 0.092 1.15
0.50 0.095 0.097 0.100 0.093 1.07
0.55 0.112 0.118 0.124 0.105 1.17
0.60 0.129 0.125 0.160 0.114 1.40
0.65 0.148 0.147 0.157 0.144 1.09
0.70 0.138 0.145 0.147 0.133 1.10
0.75 0.158 0.163 0.185 0.144 1.28
0.80 0.178 0.187 0.188 0.174 1.08
0.85 0.185 0.190 0.212 0.171 1.24
0.90 0.188 0.198 0.201 0.182 1.10
0.95 0.202 0.211 0.259 0.174 1.49
1.00 0.207 0.211 0.209 0.206 1.02
1.05 0.199 0.217 0.224 0.187 1.20
1.10 0.195 0.205 0.223 0.182 1.23
1.15 0.212 0.214 0.250 0.193 1.29
1.25 0.250 0.249 0.267 0.241 1.1
1.50 0.252 0.261 0.269 0.243 1.10
2.00 0.320 0.336 0.341 0.310 1.10
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FIG. 5. Density effect on the self-diffusion coefficient in the
isotropic-nematic region at T*=0.95. Open circles, isotropic
phases; solid circles, parallel diffusion coefficient D[," in the
nematic phase; triangles, perpendicular diffusion coefficient D
in the nematic phase.
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FIG. 6. Angular velocity autocorrelation function in the iso-
tropic phase. The curves have been labeled according to the
temperature and density in reduced units.
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observed recently in the nematic phase of prolate and ob-
late hard ellipsoids of revolution [22], and has been as-
cribed to the particular density dependence of the nemat-
ic order parameter close to the transition.

What is also noticeable is that D > D, even in the iso-
tropic phase. Values of D /D, >1 have been previously
reported for molecular isotropic fluids [12, 14]. That this
ratio does not actually equal 1 (as it should if the system
is isotropic) is usually explained in terms of the fact that
an upper time cutoff (¢, ,.) is used in the evaluation of
the autocorrelation times. When 7, — 0, the ratio
D, /D, should tend to unity. There is a further effect,
due to the finite size of the system, which makes D /D,
greater than unity. This can be seen by recalling that
D, /D, can be expressed [39, 40] as

Dy _y+n+201—yp)8 ®)
D, Qy+1)—(1—y)s ’

where y =m/(4k), and S is the order parameter. Due to
the finite size of the system, S is not exactly zero in the
isotropic phase, but takes values of the order N 172
where N is the number of molecules. For the systems
considered here (N=256, k=3), values of S =0.10 yield
D,/D,=1.15.

1
I-N TRANSITION
1 0.280
0
[ 1 \ 0.300
O
<< 0
=
<t
1 \ 0.315
0
\ 0.330
0
T T T T T T T
0 10 20 30 40 50 60 70

time

FIG. 7. Angular velocity autocorrelation function in the
isotropic-nematic region at T*=0.95. The curves have been la-
beled according to the density in reduced units.
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Expression (8) can also be invoked to explain the rather
high values of D,/D, on the isotropic side of the
isotropic-nematic transition. In this region, the order pa-
rameter takes values appreciably higher than N ~!/2, Ac-
cording to (8), this results in D,/D,>1. In this case, the
unusually high values of S below the transition, and not
system-size effects, seem to be the main reason for the de-
viation from the ideal ratio. This enhancement in the
parallel diffusion is a precursor effect of the proximity of
an orientationally ordered phase.

IV. REORIENTATIONAL DYNAMICS

A. Reorientational motion

The molecular reorientational motion has been ana-
lyzed in terms of the angular velocity ACF (AVACF) and
the torque ACF (TACF)

<w(t0)‘m(10+z))
¢, ()=
(o(ty)-olty))
(L(ty) T(ty+1))
r(t)= ,
([(t4)-T(£5))

) (9a)

(9b)

where o is the angular velocity perpendicular to the ma-
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FIG. 8. Torque autocorrelation function in the isotropic
phase. The curves have been labeled according to the tempera-
ture and density in reduced units.
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jor symmetry axis of molecule i and T is the torque act-
ing on each molecule. In addition, we have evaluated the
reorientational ACF’s ¢, and ¢,, defined in (3).

The AVACF’s in the isotropic phase are shown in Fig.
6. For the lower densities, these functions decay almost
exponentially except at very short times. The decay be-
comes faster with increasing density or decreasing tem-
perature and, for the highest density, the AVACF shows
a negative minimum and a slow negative decay to zero.
The AVACF’s in the isotropic-nematic region are given
in Fig. 7. They show the same qualitative features as
those of typical dense molecular fluids [11-13,15]. As
expected, the initial decay becomes faster and the nega-
tive region is more apparent with increasing density. The
presence of negative regions is usually ascribed to a rever-
sal in the direction of the angular momentum with
respect to its initial value after a time lapse.

The TACF’s are presented in Figs. 8 and 9. In all cases
the initial decay is faster than that of the corresponding
AVACF’s. From the definition of ¢r, it follows that 7
should be zero. For all state points, we found
TE<4X10~*% which is effectively zero when compared
with the other correlation times.

Next we consider the reorientational ACF’s. They are
shown in Figs. 10 and 11 for the isotropic phase and the

1 [-N TRANSITION
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0
To—
0.300
0
g
O
< \/
=
0.315
? Ve
0.330
0 Val
T T

T T T T T
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FIG. 9. Torque autocorrelation function in the isotropic-
nematic region at 7*=0.95. The curves have been labeled ac-
cording to the density in reduced units.

isotropic-nematic region, respectively. Due to the slow
reorientational relaxation, especially at high densities,
these ACF’s were calculated covering a larger time span.
In general, the long tail was calculated up to 1000-1200
t5. For the lower densities, plots of the logarithms of ¢,
and ¢, versus time show that, after an initial monotonic
decay, they are oscillatory due to remnants of free-rotor
behavior. Conversely, both functions decay almost ex-
ponentially at higher densities, ¢,(¢) fitting more closely
to an exponential than ¢,(¢).

The relaxation times 7; can be defined either from in-
tegration of the corresponding ¢,(z) following expression
(3) (1), or from the slope at long times of the logarith-
mic plots of ¢,(¢) versus time (7,). Experimental infor-
mation about the integral correlation time 7, ; can be ex-
tracted from nuclear magnetic resonance measurements,
while the slope correlation times can be related to the
half-width of the Lorentzian far-infrared (/=1) and Ra-
man (/=2) lines. If ¢,(¢) were true exponentials, both
correlation times 7,; and 7,; would be equal for all /
values. However, this is not the case due to the non-
Markovian nature of the reorientation process in its ini-
tial stage [41] (inertial regime). In Table III we have
gathered the correlation times using both definitions. 7,
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FIG. 10. Reorientational correlation functions ¢,(¢) in the
isotropic phase. Full line, ¢,(¢); dashed line, ¢,(¢). The curves
have been labeled according to the temperature and density in
reduced units.
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TABLE III. Correlation times for the rotational motion of the GB fluid with k=3 expressed in terms of the free rotation time
77 =7(ksT/I)'”?. The subscripts s and i stand for the slope correlation time and the integral correlation time of the reorientational
correlation functions (see text).

T* p* T T 75 o o T /Th 21l 675, T
Isotropic phase
0.45 0.230 0.09 4.89 1.94 4.98 1.85 2.68 0.91 1.01
0.50 0.210 0.12 4.34 1.69 4.30 1.52 2.83 1.05 1.11
0.60 0.190 0.20 2.35 0.79 2.60 1.04 2.50 1.06 1.27
0.70 0.170 0.26 1.51 0.55 1.83 0.82 2.22 0.97 1.30
0.80 0.150 0.35 1.08 0.43 1.65 0.79 2.08 1.16 1.68
0.90 0.130 0.48 1.31 0.65 2.03 1.25 1.85
Isotropic nematic region
0.95 0.280 0.072 6.38 2.37 6.61 2.42 2.73 0.96 1.05
0.95 0.290 0.054 8.32 3.05 8.52 3.13 2.72 0.92 1.01
0.95 0.295 0.057 8.08 3.16 8.29 3.22 2.58 0.94 1.10
0.95 0.300 0.039 10.33 3.79 10.48 3.83 2.74 0.82 0.90
0.95 0.305 0.034 11.44 4.47 11.58 4.37 2.65 0.79 0.90
0.95 0.310 0.018 16.60 6.18 16.69 6.17 2.70 0.60 0.67
0.95 0.315 0.014 19.74 7.04 19.80 7.04 2.81 0.54 0.58
0.95 0.320 0.014 20.43 7.62 20.50 7.63 2.69 0.56 0.62
0.95 0.325 0.008 27.74 9.35 27.78 9.36 2.97 0.44 0.45
0.95 0.330 0.009 28.27 9.72 28.31 9.74 2.90 0.49 0.51
0.95 0.335 0.005 36.02 12.19 36.05 12.46 2.89 0.37 0.39
0.95 0.340 0.006 37.30 12.72 37.32 12.74 2.93 0.43 0.44

was obtained from the gradient of Ing,(#) versus time at
NN I-N TRANSITION long times, while 7,; was evaluated by integrating ¢,(z)
A numerically over the inertial regime and adding the con-

N " 0.980 tribution at larger times by assuming that the subsequent
~ : decay is exponential.
~N
~

~ B. Reorientational models

1 In this section we compare the results obtained from
N our computer simulations with those from several
~ theoretical models for molecular reorientation. Assum-
> 0.300 ing a simple physical mechanism, these models predict
- different relations between the correlation times.
- == The simplest model is the classical Debye diffusion
model (see, for instance, Ref. [3]), in which the reorienta-
tional process is a consequence of many small uncorrelat-
~ ed angular displacements. This results in

—~ WL Ing,(1)=—1(I +1)Dgt , (10)

reorientational ACF

where Dy is the rotational diffusion constant. In this
0 case, the orientational ACF’s are exponentials at all times
1 and the corresponding correlation times are linked
~ through the relation

0.330 T (14+2) (1)
Ti+) ! .

0 . x . . . . In particular, the ratio 7, /7, should equal 3. From Table
0 100 200 300 400 500 600 ITI, we can observe that 7,/7, is always less than 3, the
time departure from the Debye limit becoming more

significant as the density is lowered or the temperature

FIG. 11. Reorientational correction functions ¢;(¢) in the increased. Along the isotropic-nematic transition, this
isotropic-nematic region at 7*=0.95. Full line, ¢,(1); dashed  ratio is found to approach the Debye limit as the system
line, ¢,(¢). The curves have been labeled according to the densi-  is compressed. However, it should be noticed that this
ty in reduced units. fact does not necessarily imply Debye-type (reorientation
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FIG. 12. Comparison of the simulation results for the corre-
lation time 7{ (7)) with predictions from models of molecular
reorientation; (ED), Gordon’s extended-diffusion model; (L),
Langevin model; (I) Ivanov model; (H), Hubbard relationship.
Open circles, simulation results for the isotropic-nematic region
at T*=0.95; solid circles, simulation results for the isotropic
phase.

through small angles) orientational motion. For instance,
Mansour, Murad, and Powles [17] have reported values
of 7,/7, close to 3 at high temperatures and low densities
in a computer simulation study of liquid ammonia. Un-
der these conditions, at which molecules can rotate ap-
preciably between successive collisions, it seems very un-
likely that reorientation via small jumps would be the
physical mechanism of reorientation.

We have also tested the validity of the Hubbard rela-
tion [42]

I+ D)rrr = (12)

derived in terms of a diffusion model. In the above ex-
pression, the correlation times have been scaled by
(I/kpT)'"? (mean time for a classical free rotor in equi-
librium at temperature T to rotate by an angle of order
one radian), so that 7t =7(kzT/I)!/2. From Table III
we see that this relation is approximately obeyed only at
the higher densities in the isotropic phase. As the density
is lowered, the left-hand side of (12) increasingly exceeds
1. It is also seen that the departure from unity is larger
for [=2 than for /[=1. Along the isotherm T*=0.95, we
observe that (12) is only approximately valid below the
transition. As the system enters the nematic phase, the
deviations from unity become significant. It should be
noticed that, in contrast to the behavior found in the iso-
tropic phase, in the nematic phase we find
I+ <1

o
o

00

-0.5

FIG. 13. Same as in Fig. 12, but for 75 (7}).

In Figs. 12 and 13 we show plots of 7, and 7, as func-
tions of 7, as predicted by the extended-diffusion model
(ED), the Langevin model (L), and the Ivanov model (I)
[43], along with the results obtained from our simula-
tions. In the range of values of 7, studied (7. <0.5),
these models yield rather similar values for 7;' (7. ). The
differences in these models are more evident in the
7, (1)) plot. In general, we observe that in the isotropic
phase, the results appear to be between the extended-
diffusion model and the Langevin model. This should not
be taken literally. These models predict that the mean
lifetime of the correlations in the torque ACF should be
negligibly small compared with r,. Comparing ¢, and
¢r we see that this condition is never met. In any case,
the results show that the Ivanov model is not suitable for
the GB fluid, at least under the conditions considered
here.

As 7.7 —0, both models tend to the Hubbard relation-
ship (12) (also included in Figs. 12 and 13). From the dis-
cussion above, we see that the limit of low 7, is reached
in the nematic liquid, for which (12), does not hold. We
conclude that none of these models is able to explain the
molecular reorientational mechanism in the nematic
phase.
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