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Using molecular-dynamics computer simulation, we study the dynamical behavior of the isotropic and

nematic phases of highly anisotropic molecular Auids. The interactions are modeled by means of the

Gay-Berne potential with anisotropy parameters ~=3 and ~'=5. The linear-velocity autocorrelation

function shows no evidence of a negative region in the isotropic phase, even at the higher densities con-

sidered. The self-diffusion coefficient parallel to the molecular axis shows an anomalous increase with

density as the system enters the nematic region. This enhancement in parallel diffusion is also observed

in the isotropic side of the transition as a precursor effect. The molecular reorientation is discussed in

the light of different theoretical models. The Debye diffusion mode1 appears to explain the reorientation-

al mechanism in the nematic phase. None of the models gives a satisfactory account of the reorientation

process in the isotropic phase.

PACS number(s): 61.20.Ja, 61.30.By, 64.70.Md

I. INTRODUCTION

The formalism of time-dependent correlation functions
is a powerful tool in understanding the dynamical pro-
cesses involved in molecular fluids [1, 2]. It provides a
suitable framework in which a wide variety of experi-
ments can be interpreted. However, this is a far from
trivial task. Many observations tend to be inQuenced by
more than one dynamical process (collision-induced
effects, vibrational relaxation, etc.} and they cannot be
easily identified by experimental considerations alone [3].
In this sense, computer simulation is of great value be-
cause it can discern the various processes. Furthermore,
it is possible to evaluate certain correlation functions in
the course of a simulation which are not easily obtained
from experiments.

There is also great interest in understanding the physi-
cal nature of molecular motion in liquids. Computer
simulations using molecular-dynamics methods have
been mainly focused on the applicability of theoretical
models of molecular reorientation, such as the diffusion
models of Gordon [4], and the stochastic Langevin model
[5]. Attention has also been given to predicting correla-
tion functions from memory functions approximations
[1,6—8] and truncated cumulant expansions [9, 10].

The computer simulation of the dynamical behavior of
molecular fluids has proceeded along two fronts: (a}
simulation of real fluids using suitable model potentials
[1, 11—20] and (b) simulations of highly idealized models
of molecular Quids. The latter is the approach followed
in the study of the dynamics of hard-body molecules,
such as spherocylinders [21],prolate and oblate ellipsoids
of revolution [22—24] infinitely thin hard rods [25, 26],
etc.

In this paper we follow the second approach, reporting

the results of a molecular-dynamics study of the transla-
tional and rotational motion in the Gay-Berne (GB) mod-
el fluid [27] with anisotropy parameters a.=3 and a'=5.
Here ~ is the ratio between the long and minor axis of the
ellipsoidal molecule and ~' is the well-depth ratio for the
side-by-side and end-to-end configurations. Two reasons
lead us to undertake such an study. First, it would be
desirable to know to what extent the dynamical processes
in highly anisotropic systems differ from those in fluids of
small linear molecules. To our knowledge, only limited
studies have been reported for highly elongated rnolecules
[21—26, 28 —30]. Second, it would be of great interest to
know how the onset of orientational order inQuences the
dynamical behavior of the Quid. The GB Quid has been
shown to form meso genic phases at high densities
[31—36]. In a previous publication [36], we have shown
that a stable nematic phase is formed at temperatures
above T*=0.80 and, at suSciently high densities, a Sm-8
phase. Below T*=0.80, the orientationally disordered
isotropic phase directly transforms into the Sm-8 phase
[33].

In the present paper we focus on the single-particle
translational and rotational dynamics emphasizing the
diffusion process and the reorientational dynamics. We
limit our study to the translationally disordered phases
(isotropic and nematic). In particular, we consider the
dynamics of the isotropic phase for six state points at
different reduced temperatures and densities: (1)
T*=0.90, p*=0.130; (2) T*=0.80, p"=0.150; (3)
T*=0.70, p*=0.170; (4) T*=0.60, p'=0. 190; (5)
T'=0.50, p*=0.210; (6) T*=0.45, p'=0.230. The
liquid-vapor critical point for the GB fluid is located [35]
at T,*=0.49 and p,*=0.095 and the temperature of the
triple point is T,*=0.38. Hence this choice corresponds
to state points we11 above the critical point up to temper-
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atures and densities close to the triple point along the
liquid side of the vapor-liquid coexistence curve. In addi-
tion, we study the temperature dependence of the self-
diffusion coefficient in the isotropic phase. This was ac-
complished along the isochore p'=0.230, with tempera-
tures varying from T*=0.45 up to T' =2.00. The
dynamical behavior of the nematic fluid is studied at
T' =0.95. According to previous work [36], the GB fluid
undergoes a weakly-first-order isotropic-nematic transi-
tion at this temperature for densities pz

=0.308 and

p~ =0.314.
In Sec. II we include a brief summary of the computa-

tional methodology. In Sec. III we describe the transla-
tional motion of the Gay-Berne fiuid. In Sec. IV we
study the orientational dynamics of this fluid and the re-
sults are analyzed in terms of different models for molec-
ular reorientation.

II. COMPUTER-SIMULATION DETAILS

The explicit expression of the potential between a pair
of molecules in the Gay-Berne model [27] is given by

12

functions are normalized to unity. For the evaluation of
the ACF's, the spacing between consecutive time origins
was tp =10ht* where At*=0.0015 is the time step, in
reduced units [ht*=( mo o/eo)

' bt], used in the in-
tegration of the equations of motion. The long tail of the
ACF's was calculated up to a time span of 800—1000 t p.
The correlation time associated with a given correlation
function is defined by

r„=f dt P~(t) . (4)
0

The molecular-dynamics program was the same as that
used in earlier works [33, 34]. The calculations were all
made for 256 molecules interacting through the GB po-
tential. The molecules were given a moment of inertiaI'=1. Reduced units are used for all the quantities in-
cluding temperature T*=kz T/ep, density p*=pcrp,' time
r' = r(m o o/eo) ', moment of inertia I' =I (m /0 o)
and diffusion coefficient D"= D( me o/rco) ' . The tra-
jectories of the particles were followed for a total of
10000 time steps after an initial equilibration period of
4000-6000 steps.

Uo, =4m(r, G„G, )
00

r —cr(r, G„G2}+0'0

0.
0

'6

III. TRANSLATIONAL DYNAMICS

A. Translational motion

r —o (r, G„Gz)+cro

where u; is the axial vector of molecule i and r is the vec-
tor along the intermolecular vector r; o.(r, G„Gz) and

E(r, u&, uz) are the orientation-dependent range and
strength parameters, respectively, defined in Ref. [27].
These quantities depend on the parameters «(molecular
elongation) and «' (ratio of the potential-well depths for
the side-by-side and end-to-end configurations).

The dynamical behavior of the GB fluid has been ana-
lyzed in terms of time autocorrelation functions (ACF's)
defined by

(A(t, ) A(t, +t))
( A(to) A(to))

(2)

P, (t)= {P,(G(t, ).u(t, +t)) ), (3)

for I= 1 and 2, where G(t) is a unit vector along the sym-

metry axis of molecule i and Pl is the lth-order Legendre
polynomial. In the above expressions, the angular brack-
ets imply an average over particles as well as over time
origins. According to these definitions, the correlation

where A(t) is a classical dynamical property of molecule
i evaluated at time t. In our case, we have calculated
Pz(t) for A being the linear velocity of the center of
mass (v), the force (F), the angular velocity (co), and the
torque (I ). In addition, we have also evaluated the
ACF's P„(t), P, (t), P~ (t), and PF (t), where the sub-

scripts
~~

and I refer to the component of the correspond-
ing property parallel and perpendicular to the initial
direction of the molecular axial vector, respectively.

To study the reorientational motion, we have calculat-
ed the self-particle reorientational correlation functions
defined by

The motion of the center of mass has been analyzed in
terms of the velocity ACF (VACF) and the force ACF
(FACF), defined by

{v(to). v(to+ t) )

{v(to}v(to)),(t)=

{F(t, ).F(t, + t) )
&F(T, ) F(t, })

(sa)

(Sb)

where v is the velocity of the center of mass of a molecule
and F is the total force acting on each individual mole-
cule.

In Fig. 1 P„(t) is illustrated for the isotropic phase.
For all the state points considered, P, (t) shows an initial
rapid Gaussian-like decay; afterwards, the collisions ran-
domize the velocity and P„(t) decays smoothly. As the
temperature is lowered or the density increased, the re-
laxation process is faster due to an increase of the col-
lision rate with neighboring particles. There are two
striking features in the VACF s shown in Fig. 1. First,
there is no evidence of a negative lobe even for the
highest density, close to the triple point. This is in
marked contrast to the usual behavior exhibited by other
dense molecular fluids, where the VACF decays to a neg-
ative value and, with a few damped oscillations, goes to
zero while remaining negative [1, 11—17]. Second, as the
density is increased, the system seems to develop an inter-
mediate regime between the initial Gaussian region and
the subsequent monotonic decay. This regime results in a
small positive plateau in the VACF before the system
enters the quasiexponential decay region.

The nature of this positive plateau becomes clearer in

Fig. 2, where the VACF is shown at T =0.95 below and
above the isotropic-nematic transition (pt =0.308,
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0.45
0.50
0.60
0.70
0.80
0.90

0.230
0.210
0.190
0.170
0.150
0.130

0.096
0.128
0.209
0.296
0.366
0.489

Isotropic phase
0.097
0.129
0.199
0.296
0.349
0.465

0.105
0.128
0.254
0.324
0.382
0.490

0.092
0.128
0.186
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0.486

1.15
1.00
1.36
1.15
1.07
1.01
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0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
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0.315
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nematic region
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7 )
Pl

(6)

D = lim —(~r(to+t) —r(to)~ ) .1

~ 6t
(7)

where m is the molecular mass and k~ the Boltzmann
constant. As a check of consistency, we have also evalu-
ated D from the slope at long times of the mean-square
displacement, using the Einstein relation 0

0

Q
D' o.

~ g

In Table I we collect the values of the self-diffusion
coeScient obtained from expressions (6) and (7). In gen-
eral, we find that the values of the self-diffusion constant
evaluated from (6) and (7) agree within 5%, which is
within the estimated accuracy of the correlation times.

We have studied the temperature dependence of the
self-diffusion coefficient in the isotropic phase. The simu-
lation results for a fixed density (p* =0.230) and for tem-
peratures in the range 0.45 & T* &2.00 are shown in Fig.
4. The values of D ' as obtained from expressions (6) and
(7) are summarized in Table II. Unlike the case of liquid
argon [38] or low-anisotropy diatomic fluids [12], we
could not reproduce the simulation results by using a
linear relation between D' and T*. It seems that an ex-
ponential law of the form D'=Do exp( —A/T') with

Do =0.4086 and 3=0.6959 fits the simulation results

over the range of temperatures considered here.
Of particular interest is the behavior of the self-

diffusion constant in the nematic phase. As the density is

increased below the isotropic-nematic transition, D de-

creases as expected. For all the nematic state points,

D~~ )D~ (see Table I). This is also shown in Fig. 5. From

this plot we can observe that, just above the transition,
there is an enhancement in the parallel diffusion which

results in an anomalous increase in DII with density.

While D~ decreases monotonically as the system is

compressed, DII reaches a maximum at p*=0.320 and

then decreases upon compression. This effect has been

D~

1~~

0.28 0.30
p

0.32 0.34

HASE

0.130

.80, 0.150

FIG. 5. Density effect on the self-diffusion coeScient in the
isotropic-nematic region at T =0.95. Open circles, isotropic
phases; solid circles, parallel diffusion coefBcient DII in the
nematic phase; triangles, perpendicular difFusion coeScient D&

in the nematic phase.

TABLE II. Temperature-dependence of the self-diffusion

coefficient in the isotropic phase at density p* =0.230.
0

70, 0.170

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.25
1.50
2.00

0.096
0.095
0.112
0.129
0.148
0.138
0.158
0.178
0.185
0.188
0.202
0.207
0.199
0.195
0.212
0.250
0.252
0.320

0.097
0.097
0.118
0.125
0.147
0.145
0.163
0.187
0.190
0.198
0.211
0.211
0.217
0.205
0.214
0.249
0.261
0.336

0.105
0.100
0.124
0.160
0.157
0.147
0.185
0.188
0.212
0.201
0.259
0.209
0.224
0.223
0.250
0.267
0.269
0.341

0.092
0.093
0.105
0.114
0.144
0.133
0.144
0.174
0.171
0.182
0.174
0.206
0.187
0.182
0.193
0.241
0.243
0.310

1.15
1.07
1.17
1.40
1.09
1.10
1.28
1.08
1.24
1.10
1.49
1.02
1.20
1.23
1.29
1.11
1.10
1.10

.60, 0.190

.50, 0.210

.45, 0.230

0 25 50
I I I I

i5 100 125 150
time

FIG. 6. Angular velocity autocorrelation function in the iso-
tropic phase. The curves have been labeled according to the
temperature and density in reduced units.
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IV. REORIENTATIONA L DYNAMICS

A. Reorientational motion

The molecu ""cular reorientation
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]or symmetry axis of molecule i and T' is the torque act-
ing on each molecule. In addition, we have evaluated the
reorientational ACF's Pi and P2, defined in (3).

Th e AVACF's in the isotropic phase are shown in Fig.
For the lower densities, these functions decay almost

exponentially except at very short times. The decay be-
comes faster with increasing density or decreasing tem-
perature and, for the highest density, the AVACF shows
a negative minimum and a slow negative decay to zero.

in Fi . 7. The
e AVACF's in the isotropic-nematic region are given
F'g. . y s ow the same qualitative features as

ose of typical dense molecular fiuids [11—13,15]. A
expected, the initial decay becomes faster and the nega-
tive region is more apparent with increasing density. The
presence of negative regions is usually ascribed to a rever-
sal in the direction of the angular momentum with
respect to its initial value after a time lapse.

The TACF's are presented in Figs. 8 and 9. In all cases
the initial decay is faster than that of the corresponding
AVACF's. From the definition of Pr, it follows that rr
should be zero. For all state points we f d
7 &4X 10 , which is effectively zero when compared
with the other correlation times.

Next we consider the reorientational ACF's. They are
shown in Figs. 10 and 11 for the isotropic phase and the

isotropic-nematic region, respectively. Due to the slow
reorientational relaxation, especially at hi h d

ese s were calculated covering a larger time span.
In general, the long tail was calculated up to 1000—1200
to F.or the lower densities, plots of the logarithms of P,
and $2 versus time show that, after an initial monotonic
decay, they are oscillatory due to remnants of free-rotor

ehavior. Conversely, both functions decay almost ex-
ponentially at higher densities, Pi(t) fitting more closely
to an exponential than $2(t).

The relaxation times ~I can be defined either from in-

3
tegration of the corresponding P((t) following expressio

'
n

( ) (r&;), or from the slope at long times of the logarith-
mic plots of P&(t) versus time (r(, ). Experimental infor-
mation about the integral correlation time ~2; can be ex-
tracted from n uclear magnetic resonance measurements,
while the slope correlation times can be related to the

alf-width of the Lorentzian far-infrared (1=1) and Ra-
man (1=2) lin) ines. If (t&(t) were true exponentials, both
correlation times ~I, and ~I, would be equal for all l
values. However, this is not the case due to the non-
Markovian nature of the reorientatio

'
n process in its ini-

tial stage [41] (inertial regime). In Table III we have
gathered the correlation times using both definitions. ~1e nitions. ~1,

I—N TRANSITION
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FIG. 9. Torque autocorrelation function in the isotro ic-
nematic re ion at T*=g —0.95. The curves have been labeled ac-

e &so ropic-

cording to the density in reduced units.
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0
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100 200 300 400 500 600
tinge

FIG. 10. Reeorientational correlation functions Pl(t) in the
isotropic phase. Full line, p, (t); dashed line, $2(t). The curves
have been labeled according to the temperature and density in
reduced units.
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0.95
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0.150
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0.280
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0.315
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0.325
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0.09
0.12
0.20
0.26
0.35
0.48

0.072
0.054
0.057
0.039
0.034
0.018
0.014
0.014
0.008
0.009
0.005
0.006

4.89
4.34
2.35
1.51
1.08

6.38
8.32
8.08

10.33
11.44
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27.74
28.27
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Isotropic phase
1.94 4.98 1.85
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1.31 0654
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6.61 2.4220 3

.133.05 8.52 3.
8.29 3.22
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11.58 4.374.47

6.176.18 16.69
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12.19 36.05 12.46
12 72 37.32 12.74
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2.74
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1.16
1.25

0.96
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0.54
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0.44
0.49
0.37
0.43

1.01
1.11
1.27
1.30
1.68
1.85

1.05
1.01
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0.58
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0.39
0.44
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In Figs. 12 and 13 we show plots of ~1+ and ~&+ as func-
d ted b the extended-diffusion mo el

(ED), the Langevin model (L), and the Ivanov mo e
[43], along wit e re

'
h the results obtained from our simula-

tions. n eI the range of values of ~ stu ied
r r+(r+ ). Thethese models yield rather similar values for ~&

differences in these models are more evident in the
r+(~+) lot. In general, we observe that in the isotropic
phase, the results appear to be between
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1' ll . These models predict that the mean
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