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Freedericksz transitions in zero-field distorted nematic liquid crystals
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The twist, splay, and bend Freedericksz transitions induced by electric or magnetic fields in zero-field

undistorted nematic cells are known to be second order, except the bend transition induced by an elec-
tric field, which can be first order. By a theoretical analysis, we show that similar transitions, with

threshold and symmetry breaking, can be obtained in zero-field distorted cells —the distortion being im-

posed by a +qb and a —
y& rotation of the director at the two boundary planes —with pure twist,

predominantly splay and predominantly bend distortion. The transitions that are second order for

yb ~0 preserve their order for any value of yb, and the critical field is an increasing function of such an-

gle, whereas the first-order bend transition induced by an electric field becomes second order above a
critical value of qb. We discuss the stability of the possible director configurations and the role of the
critical fluctuations in driving the transitions.

PACS number(s): 61.30.Gd, 64.70.Md

I. INTRODUCTION

A nematic liquid crystal uniformly aligned between
parallel planes can undergo a transition to a deformed
state under the action of magnetic, electric, or optical
fields. Under suitable symmetry conditions the transition
resembles a first- or second-order phase transition [I]. In
fact the deformed state occurs above a threshold value of
the field, and the deformation breaks some symmetry ele-
ment of the system. The maximum distortion angle plays
the role of an order parameter. The critical constants are
generally found by considering tile limit of small distor-
tions, where the free energy of the sample is well approxi-
mated by a series expansion up to terms of the fourth or
sixth power in the order parameter. Such transitions
have been intensively studied in recent decades and are
now well known. In particular the twist, splay, and bend
Freedericksz transitions induced by static or low-

frequency electric and magnetic fields are known to be
second order, except the bend transition induced by an
electric field, which can be first order [2,3].

In this paper we discuss the more general cases in

which the boundary conditions impose a zero-field sym-
metric distortion, with predominantly splay, predom-
inantly bend, and pure twist deformations, as shown in
Fig. 1. The splay-type cell has received particular atten-
tion in the past decade [4—9], in view of the potential
display applications. It has been shown that above a
threshold value, a new type of distortion appears that is
asymmetric with respect to the midplane of the cell. The
behavior of such cells near the threshold field is not so
clear as in the case of zero-field undistorted cells. In fact,
simple analytical expressions of the free energy are not
available, and so the standard perturbative approach can-
not be applied. Here we tackle this problem by consider-
ing the behavior of the extremal curves of the free energy
and the well-known amplitude-period relation for the
curves that are periodic functions of z. In this way we
can analyze at the same time the order of the transitions
and the stability of the solutions.

The method of analysis is described in Sec. II by con-
sidering the simple case of twist-type distortion in a rnag-
netic field; a discussion of the possible twist distortions
and of their stability is given in Sec. III. In Secs. IV and
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FIG. 1. Twist-type (a), bend-type (b), and splay-type (c) geometries. The director is orthogonal to the z axis in (a), while it lies in

the (x,i) plane in (b) and (c). The figure points out the symmetries of the director configurations at zero field.
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V the other types of transitions are considered and dis-
cussed. Finally in Sec. VI we analyze the role of the
thermal fluctuations in driving the transitions. This
clarifies the mechanism of the symmetric-asymmetric
transitions and gives a deeper insight into the physics of
these phenomena.

II. THEORY: FIELD OF KXTREMALS
AND STABILITY CRITERIA

& +(q&, q', ) o0, (2.1)

and is always satisfied by all the free-energy expressions
considered in this paper. The Jacoby condition requires
that the arc P, P2 may be included in a field of extremals.
This means that there exists a region D of the (z, gr) plane,

For the sake of definiteness let us consider the
magnetic-field-induced twist Freedericksz transition.
This transition is generally obtained by placing a cell
with a given thickness d in a uniform magnetic field H
suitably oriented, and by increasing the amplitude H of
the field. In this situation all the relevant parameters
only depend on the product Hd. From the analytical
point of view it is therefore completely equivalent to con-
sider as control parameter the thickness d instead of the
field intensity H. The main results are first obtained by
considering this point of view, which allows a simpler use
of the concept of field of extremals, and are then reformu-
lated by considering H as the control parameter.

Following this procedure, we consider a cell with a
pure twist deformation in a given magnetic field, with the
following assumptions [see Fig. 1(a)]: (i) positive diamag-
netic anisotropy g, =g~~

—gj, where g~~
and gj are the

magnetic permeabilities parallel and perpendicular to the
director, respectively; (ii) magnetic field H parallel to the
y axis; (iii) director n lying in the xy plane and forming
with respect to the x axis a twist angle y(z) depending
only on the space coordinate z; and (iv) strong anchoring
conditions IP(z, ) =P„P(zz ) =yz. Under these hy-
potheses the bulk free-energy density F (qr, p, ) is given by
—,'kzp, —

—,'p~, H sin q&, where p, indicates the derivative
of y with respect to z, k2 is the twist elastic constant, and

p0 the free-space permeability. The stable and metastable
director configurations correspond to local minima of the
free energy of the system and are solutions of the Euler
equation derived from the free-energy density.

Let us now consider a central family of extremals, ob-
tained by taking all the solutions of the Euler equation
having a common point in the (z, q ) plane. In Fig. 2 such
a family of extremals is plotted, with center in a point C
of the z axis. Any arc P, P2 of any one of such curves
gives a possible director configuration —for a given field
H —for a cell having the boundaries coincident with the
planes z =z& and z =z2 with the strong anchoring condi-
tions y(z&)=q&&, q&(z2)=y2. The configuration is stable
against small fluctuations (locally stable) if it gives a local
minimum of the free energy. This requires that the
Legendre and the Jacobi conditions be satisfied [10]. The
Legendre condition reads
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FIG. 2. Family of solutions y of the Euler equation for the
twist-type geometry with center in the origin C of the z axis as a
function of the normalized coordinate z/po [see Eq. (2.3)].

k2p(A)=-
PcXa f (1—sin AsinP) ' dP.

0

(2.2)

The half-period p is an increasing function of A with a
minimum value p0 given by

k2
po= lim p(A)=-

A ~0 H p(g~

1/2

(2.3)

III. FREEDERICKSZ TRANSITIONS
FOR TWIST DEFORMATION

IN A MAGNETIC FIELD

Let us consider a configuration with a zero-field distor-
tion imposed by the strong anchoring conditions

q (z i ) = q'b ~ q ( )z=z+ q (3.1)

We will show that a critical value d, of d exists, which
separates two different types of stable solutions, and
which is equal to the half-period p of the extremal with
amplitude A equal to tp&. This means that
d, =p(A =q&b). The maximum distortion angle in the
sample y (d) for the stable solutions is plotted in Fig. 3
(solid line). A simple inspection of Eq. (2.2) shows that

which includes the arc P&P2 and which is such that one
and only one curve of a family of extremals passes
through every point of D. As a limiting case, one of the
points P&, P2 can be coincident with the center of the
family. As an example, the solution corresponding to the
arc P,P2 of Fig. 2 is obviously included in a field of ex-
tremals, and therefore corresponds to a minimum of the
free energy.

In the following, a main role is played by the curves of
Fig. 2, which are periodic functions of z with half-period
p, and by the function A (p), which gives the maximum
value (amplitude) of qr for the curve with half period p.
The inverse function p ( A ) is immediately obtained from
the first integral of the Euler equation, and is given by

1/2
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FIG. 3. Maximum distortion angle y in the sample as a
function of d/p0 for a symmetrically twisted cell with qb =0.2~
rad (solid line). The horizontal part (curve a) corresponds to
symmetric solutions whose maximum distortion angle q coin-
cides with the boundary angle yb. These solutions become un-

stable for d & d, =1.109p0. For d & d, the stable solutions are
two arcs of the periodic curve whose half-period p coincides
with the cell thickness d, and therefore the maximum distortion
angle p coincides with the amplitude A of the extremal curve
with p =d (curve b).

the amplitude magnetic-field intensity plot at fixed d is
given by a curve having exactly the same shape. For
gb =0 it reduces to the well-known plot giving the max-
imum distortion angle as a function of 0 for zero-field
undistorted cells.

In order to show the above results, let us first consider
the case y(z &

) =y(zz ) =0. Such conditions are met by
any arc CP of the extremal curve p(z) =0 of Fig. 2, corre-
sponding to the undistorted configuration for a cell whose
thickness d is equal to the length of the arc. For d &po
this arc is included in a field of extremals, as is evident.
By increasing d, the point P moves to the right, and for
d &po two other solutions with the same boundary con-
ditions are available, corresponding to the periodic
curves with p =d and opposite distortions. For these
curves the maximum distortion angle y is equal to the
amplitude A of the periodic solution, and therefore the
function q& (d) coincides with the function A (p) with

p =d. Furthermore it is evident that each one of these
latter curves is included in the field constituted by a pen-
cil of extremals starting from C, whereas the arc CP of
the curve y(z) =0 can no longer be included in a field of
extremals, since it is intersected by the periodic curves
with small enough amplitude. The above considerations
are straightforwardly extended to the case ys&0. The
role previously played by the arc CP of the curve y(z) =0
is now replaced by an arc having C as midpoint and
values of y at the ending points equal to —

yb and +yb.
For any given value of yb, this arc lies on an aperiodic
curve for small enough values of d, on a periodic curve
for higher values.

The critical value d, of d is reached when the arc
( —y&, q&&) corresponds to a half-period of the extremal
curve having A =yb. Beyond this limit, the arc can no

longer be included in an extremal field, as is easily under-
stood, and therefore the solution becomes unstable.

q&(z)= A sin —z +5
d

7T= A cos5sin —z +sin5cos —z
d d

(3.2)

The boundary conditions p(+d/2) =+y~ give

A cos5=yb .

The order parameter is given by

go= A sin5=( A —
yI, )'

(3.3)

(3.4)

By using the A (p) relation, and recalling that for the
asymmetric solution the thickness d is equal to the half-
period p, we finally obtain

d-d, '"
go=[A (d) —A (d, )j' =2

po
(3.5)

where the well-known small-amplitude approximation

p (rad)

0.27r —,
B'
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FIG. 4. Extremal curves for a symmetrically distorted cell
with yb=0. 2m. rad, d =1.5pp &d =1.109p0. Three solutions
are allowed, corresponding to the arcs AA' and BB' of the
periodic curve a whose half-period p is equal to d, and to the arc
CC' of a periodic curve b whose half-period p is greater than d.
The latter solution is unstable since p & d and therefore it can-
not be included in a field of extremals.

However two other equivalent asymmetric solutions are
now allowed, which are given by the arcs A A ' and BB'
of Fig. 4. They correspond exactly to one half-period and
therefore their y (d) relation is coincident with the
A (p) relation, as in the previously discussed case of
zero-field undistorted cells. The corresponding solutions
are stable (see Sec. V), and are asymmetric with respect to
the midplane of the cell. A symmetric-asymmetric tran-
sition is therefore obtained by increasing d, and the criti-
cal value d, of d is given by the half-period of the period-
ic curve whose amplitude is equal to yb.

A suitable order parameter for this transition is the an-
gle yo at the midplane of the cell. It is easily shown that
immediately above the transition point the order parame-
ter increases as (d —d, )' . The transition is therefore
second order. We first derive an approximate solution
for such a relation, valid in the limit of small distortions.
The asymmetric extremal curve is approximated by the
harmonic function
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Z3& d =Z2 Z}—Z2+Z3

zo =(z2+z& )/2=(z, —z, )/2, z„=(z2+z3)/2

Let us now define

(3.6)

1 d ya=—
2 dz2 z=z

A

d
dz

dA
c =

dp p =dc

(3.7)

and use the approximations

q&(z) = A +a (z —z„) for the arc P3P2, (3.8a)

A —= A (d)= A (d, )+c(d —d, )=y~+c(d —d, ), (3.8b)

0=bzo (3.8c)

By equating the expressions of A —
qb obtained from Eq.

(3.8a) (for z =z2 ) and from Eq. (3.8b) we get with the help
of the last two expressions of Eqs. (3.6), zo =c (d, —d)/a.
Inserting this expression in Eq. (3.8c) we finally have

po=b [c(d, —d)/a]'~2 . (3.9)

If necessary, the quantities a, b, and c are very easily ex-
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FIG. 5. Asymmetric solution for yb=0. 2~ rad and cell
thickness d =z, —zl =1.12po slightly above the critical value
d, =1.109po. The midplane of the cell is at z =zo,' yo=y(zo) is
the order parameter.

A =2(p/po —1)' of Eq. (2.2) has been used.
From the plots of Fig. 3, and from Eq. (3.5), it appears

that the Freedericksz transition in a zero-field undistort-
ed cell can be considered the particular case, for yb ~0,
of the transitions considered here. It must be further no-
ticed that for small yb values the critical thickness d, and
the relation between the order parameter and (d —d, ) are
practically independent of yb. More precisely

d, (m» =pc+ o(e'»
For higher values of y„an approximate (yo, d) relation

can be found by the following procedure. Let us consider
the plot of Fig. 5, which represents an asymmetric ex-
tremal curve with the origin of the z axis in the point
where y=0 and the midplane of the cell in z0. From the
symmetries of the curve we obtain

pressed as a function of yb by making use of Eq. (2.2) and

of the Euler equation. Here we are only interested in

pointing out the dependence of the order parameter y0 on

(d —d, ).
Let us finally observe that other locally stable solutions

are obtained by considering the fact that the angle y is
defined modulus m, since y, y+m. , y+2m, . . . , corre-
spond to the same arrangement of molecules. This fact
poses the problem of finding the absolute minimum of the
free energy. It is particularly interesting to compare the
above solutions, where y ranges from —

yb to +yb, with
the solutions where y ranges from m —

y& to qb and is

equal to n/2 at the midplane. For q&b=a. /4 and zero
field they are energetically equivalent, as evident, the
second one becoming more and more stable by increasing
the field, since the magnetic energy density reaches its
minimum value for y=n/2 .By . a numerical computa-
tion of the free energy we have found that the previously
discussed asymmetric solutions that are locally stable
above the critical field correspond to the absolute
minimum of the free energy only for yb &0.289 rad and a
not too high field intensity.

IV. SPLAY- AND BEND-TYPE TRANSITIONS
IN A MAGNETIC FIELD

In order to discuss the other types of transitions, it is
convenient to summarize the essential points of our pre-
vious analysis. A second-order transition is expected in a
nematic cell with boundary conditions
qr(z2) = —y(z& ) =tpb if d =z2 —

z& is the control parame-
ter and if the Euler equation admits periodic solutions
whose amplitude A is an increasing function of the half-
period p. The mechanism of the transition is the follow-
ing. For any value of pb and for any thickness d, there
exists a symmetric solution with
y(d/2)= —y( —d/2)=yb, ' such a solution is stable if
and only if A yb, or equivalently, d~d, =p(A =yb).
For d )d, other types of solutions are allowed, with

p =d and q&(z, )=+yb In fact, th. e condition d =p im-

plies that tp(z, +d) = —
tp(z& ), and so the other boundary

condition is automatically satisfied.
All the above conditions are satisfied in the splay- and

bend-type Freedericksz transitions induced by a magnetic
field. The bend-type transition can be obtained with a
nematic cell with y, &0, a magnetic field H parallel to
the x axis, and director lying in the plane (x,z} [see Fig.
1(b}]. Here the dependent variable is the polar angle 8
between the director and the z axis, the boundary condi-
tions are 8(z2) = —8(z, )=8&, and the elastic free-energy
density is equal to —,'(k&sin 8+k3cos 8)8„where k& (k3)
is the splay (bend) elastic constant. The half-period p as a
function of the amplitude A is given by

}/2
=2 3p=

H p~,

X
1+(k&/k3 —1)sin A sin P

' }/2

dP . (4.1)
1 —sin A sin P

It is easily found that the Legendre condition (2.1) is al-
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ways satisfied and that p is an increasing function of A.
For the splay-type transition we can use the same equa-

tions with k
&

and k3 interchanged, 6 replaced by
g= vr/2 0—, and H parallel to the z axis [Fig. 1(c)].

V. ELECTRIC-FIELD-INDUCED TRANSITIONS

Let us now consider the transitions induced by an elec-
tric field. They are generally very similar to the transi-
tions induced by a magnetic field, except for the case of

l

the bend transition in a cell with positive dielectric an-
isotropy e, =all —e~. Here the new fact is due to the
A (p) relation, which for high enough elastic and dielec-
tric anisotropies is no more a monotonically increasing
function. In the following we wiH concentrate our atten-
tion on this transition. It requires an unusual experimen-
tal geometry, since the electric field must be applied
parallel to the boundary planes, along the x axis. Ac-
cording to Refs. [3] and [11], the p(A) relation is given
by

' 1/2

Po
2 ~n (1—k sin A sin P)(1—u sin A sin P)(1—u sin A)

z0 1 —sin A sin P
(5 1)

where

D k3
Po=

V eoe~u

' 1/2

k =1—k)/k3,

u =1—e~/all, .
(5.2)

D being the length of the cell along x (with D »d), V the
applied voltage, and eo the free-space permittivity. The
A (p) plot is given in Fig. 6 with the parameters for 5CB
(k, /k3=0. 86, E~=8.2, @1=18.8). It shows the existence
of an interval where the Euler equation admits five
periodic solutions with the same half-period. In a cell of
thickness in this range of half-periods the solutions corre-
sponding to the part of the curve where A is a decreasing
function of p do not satisfy the Jacobi condition and are
therefore unstable, as shown in Fig. 7.

According to the previous discussion, the transitions
are expected to be first order for 8b & A „second order
for 8b ~ A „where A, corresponds to the turning point
of the A (p) curve (see Fig. 6). In the particularly impor-
tant case where 8b =0 the transition is therefore first or-
der, as has been proved experimentally [3].

Q. &n

z/pp

(b)

vr/2

A (rad)

—Q. ln

0
0.8

plpo

FIG. 6. Amplitude A as a function of the normalized half-

period p/p0 for the periodic solutions in a bend geometry with

an electric field for kl/k, =0.86, all=18.8, a~=8.2. The nega-
tive slope portion of the curve (dashed line), between p =p0,
A=O, and p =0.877p0, A = A& =0.334m rad, corresponds to
unstable solutions.

FIG. 7. (a) Director profile 8 as a function of the normalized
coordinate z/pQ for the same values of Fig. 6 with cell thickness
d equal to the half-period p =0.93 lpo, amplitude A =0.2~ rad,
and boundary condition 8b =0 (solid line a). The solution is un-

stable because the A value lies in the negative slope portion of
the Fig. 6 curve. In fact, if we increase the amplitude (dashed
line b, A =0.22m rad) keeping fixed the first boundary condition
8(z=0)=0, the period decreases and therefore the curve crosses
the solution a inside the cell thickness. Similarly, if we decrease
the amplitude (dashed line c, A =0.18m. rad), the period in-

creases and therefore the curve again crosses the solution.
Hence the solution a cannot be included in a field of extremals
and is unstable. (b) Same as (a), but with 8b =0.1m rad. Again
the solution a, which corresponds to one half-period, is unsta-
ble.
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It must be noted that in the actual experiments the
control parameter is the voltage V along D. However, it
is straightforward to restate the theory in terms of V in-

stead of d, since po is inversely proportional to V [see Eq.
(5.2)].

VI. THERMAL FLUCTUATIONS
AT THE CRITICAL POINT

In the preceding sections we have considered the static
of the transitions. A full account of the dynamics is
beyond the aim of this paper. However, it is interesting
to analyze the effects of the thermal fluctuations on the
director configuration at the symmetric-asymmetric
second-order transitions.

As already stated, the transitions that we have con-
sidered resemble a second-order phase transition. In the
Landau model for such transitions, the free energy is ex-
panded in a power series of the order parameter, i.e.,

59'= a ( T)rl +b ( T)rl +O ( ri ), (6.1)

where T is the temperature, which plays the role of a con-
trol parameter. At the critical point T, of a second-order
phase transition, the free-energy dependence on g be-
comes

5V=O(q') &0, (6.2)

y(z, t) =q), (z)+ rl(t)f (z), (6.3)

since a ( T, ) =0 and b ( r, ) & 0. This explains the huge
fluctuations of q and their critical slowing down.

Let us now consider the effects of the thermal fluctua-
tions in a nematic cell with strong anchoring conditions
at z =+d /2. If we consider only the critical mode of the
fluctuations, the director field at the critical point can be
written as

ment of the function tp, (z) the free energy would be un-

changed, since it is in any case integrated over a half-
period. However, in such a translation the boundary
conditions are no longer satisfied. The compensation
comes from the function il(t)f (z), and is of order zo,
since at the boundaries dq&, /dz=0. Now Eq. (6.3) can be
rewritten as

p(z, t) =y, (z zo—)+5y(z, t), (6.4)

where the compensating function 5y(z, t) is of order zo.
Since the function y, (z —zo) is in any case an extremal of
the free energy, 5V depends quadratically on the integral
of 5q&(z, t). This gives 59'=O(zo)=O(rl ).

This result can be summarized as follows: a thermal
fluctuation of the type (6.3) gives in general a change
57= 0 (rl ) in the free energy of the system. At the criti-
cal point, instead, 5P=O(rl ): this is related to the fact
that at the boundary walls we have both f (z)=0 and
dye, /dz=0.

Such analysi. s offers a very simple picture of the
second-order symmetric-asymmetric transition, which
can be of great help in more complicated situations. For
example, let us consider the splay-type geometry of Fig.
1(c). At zero field an angle f, exists, such that for
gb & g, a twisted director configuration with an overall
twist angle 5q= m. is an extremal curve for the free energy
[12,13]. The critical angle g, depends on the actual
values of the elastic constants. The midplane of the cell
is a symmetry element of the system, with the director ly-
ing in the (x,z) plane. The effect of a field along the z
axis on the equilibrium director configuration is not easi-
ly found, since here both angles g and tp depend on z.
The above considerations suggest that a symmetric-
asymmetric second-order phase transition can occur at
the critical point where d 8/dz=O at the boundaries.

where q&, (z) is the stationary director configuration, rl(t)
is the order parameter, which can be identified with the
distortion angle at z=0, and f (z) is an even function of z,
which is equal to zero at z =+d/2. In a zero-field undis-
torted cell the function y, (z) is identically zero, f (z) can
be approxiinated by cos(nz/d), and il coincides with the
amplitude A of the distorted field. Therefore huge
thermal fluctuations of the amplitude A are expected.
Instead, in a zero-field distorted cell p, (z) is a periodic
function of z with half-period p =d and amplitude
A =yb. Since this function reaches its minimum and
maximum values at the boundary walls, where f (z) =0, it
is easily understood that for yb ))g the amplitude of the
function y(z, t) is changed very little by the fluctuations.
The main effect appears as a simple shift along z of the
function y, (z). Practically, the thermally fluctuating
field p(z, t) can be visualized as an oscillation of the dis-
tortion in the z direction. This is evidently at the origin
of the symmetric-asymmetric transition.

From the Landau theory, the change 5P of the free en-
ergy is expected to be of the order g . This can be direct-
ly proved as follows. The displacement zp of the director
field is proportional to the order parameter g, as shown
by Fig. 5 and Eq. (3.8c). Now for a simple rigid displace-

VII. CONCLUDING REMARKS

The bistable behavior of zero-field distorted nematic
liquid-crystal cells under the action of an electric field has
been intensively studied in recent years, in view of its po-
tential display application. Such behavior is associated
with the existence of two equivalent asymmetric states,
which appear above a critical value of the field. Below
the critical field, the director configuration is symmetric
with respect to the midplane of the cell. In the literature
the main emphasis has been focused toward the possibili-
ty of switching between different configurations and to
the high-field limit.

Here we have analyzed the behavior of the cells near
the symmetric-asymmetric transition. We have shown
that this transition is generally second order, and that the
main effect of the critical fluctuations is to give an oscilla-
tion along z to the symmetric stationary solution. The
actual director configuration at the critical point appears
therefore as an oscillation between the two stationary
asymmetric solutions. This oscillation is very slow and
its amplitude zp extremely high, since the free-energy
change during the oscillation is zero up to second-order
terms in zp. This fact allows for a very useful visualiza-
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tion of the transition and gives a deeper insight in the
transition mechanism.

The formalism developed here together with the em-
ployed symbols are such that they point out the analogy
of these transitions with the well-known Freedericksz
transitions in undistorted cells, which appear as particu-
lar cases of a more general picture. However, it must be
stressed that these particular cases are singular points in
the framework of the general theory. In fact, the zero
values of the parameters that measure the initial distor-
tion correspond to a change in the symmetry of the prob-
lem, since new elements of symmetry appear. Some im-
portant differences between zero-field undistorted and
distorted cells are therefore expected, and deserve a few
comments. A most important difference concerns the
thermal fluctuations. In the ideal case of a zero-field
undistorted cell a huge increase in the amplitude of the
critical or nearly critical fluctuations at the transition
point occurs, which can give rise to an intensity peak in
the scattered light. For a zero-field distorted cell with
g) 10 rad the amplitude of the fluctuations is practi-
cally unchanged, and some other experiment must be
devised in order to detected the critical noise.

Another interesting difference concerns the case of

weak anchoring conditions. A second-order transition
can be obtained in a zero-field distorted cell only if the
surface anchoring energies at the two boundaries are ex-
actly the same, whereas in a zero-field undistorted cell
such a condition is no longer required. The transition
may be second order even in the case of strong anchoring
at one of the boundary planes and weak anchoring at the
other one, as can be easily understood.

Finally, let us recall that we have only considered the
simplest case of distortion configurations with only one
dependent and one independent variable. Other more
complicated situations of first- and second-order phase
transitions are found in the literature. Most of these
transitions have been studied only in zero-field undistort-
ed cells as, for instance, the transition giving rise to a
periodic structure along one transverse coordinate
[14,15], and the [14,15], and the transition obtained in the
presence of both electric and magnetic fields [11,16). An
extension of our theory to the case of zero-field distorted
cells could be of great interest both from the theoretical
and from the practical point of view. In fact, the actual
experiments are generally performed on slightly distorted
cells, since perfectly planar or homeotropic anchoring
cannot be easily obtained.
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