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Director fluctuations anti nuclear-spin relaxation in lyotropic nematic liquid crystals
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Lyotropic nematic liquid crystals, like their thermotropic counterparts, exhibit collective reorienta-
tion modes known as director fluctuations. In this work we consider the effect of director fluctuations on
the transverse spin relaxation of quadrupolar nuclei in uniaxial lyotropic nematic liquid crystals, report-
ing H (labeled surfactant) and 'Na (counterion) relaxation data from the calamitic (N& ) and discotic
(ND ) phases of the system sodium dodecyl sulphate-decanol-water. The transverse relaxation is found
to be dominated by a large contribution to the secular zero-frequency spectral density from diffusion-

modulated (counterion) or viscoelastic (surfactant) director fluctuations. The existing theory of nuclear-
spin relaxation by director fluctuations is extended to include the effect of translational diffusion on the
fourth-order director-fluctuation time correlation functions. In contrast to thermotropic nematics, the
second-order director-fluctuation contribution to the nonsecular high-frequency spectral densities is
negligible in lyotropic nematic liquid crystals at conventional magnetic fields. This is a consequence of
the much longer short-wavelength cutoff in lyotropic liquid crystals. The large zero-frequency spectral
density, however, allows us to deduce the viscoelastic properties of the nematic phases, obtaining
effective elastic constants of 0.3—1.0 pN in the investigated temperature range. The nematic order pa-
rameter is found to be significantly influenced by collective modes as well as by local micelle reorienta-
tion. For the oblate micelles in the ND phase, the local modes are most important, whereas the reverse
is true for the prolate micelles in the Nc phase. In the surfactant case, the longest-wavelength-director-
fluctuation modes are too slow to motionally average the nuclear-quadrupole coupling, resulting in a
static broadening of the H satellites.

PACS number(s): 61.30.Gd

I. INTRODUCTION

Nematic liquid crystals differ from isotropic fluids in
that the constituent molecules or molecular aggregates
are orientationally correlated over macroscopic distances.
Phenomenologically, this long-range orientational order
is described by a second-rank ordering tensor [1],which,
in the case of uniaxial nematic mesophases, is character-
ized by three independent quantities: the order parame-
ter S and the two Euler angles that specify the orientation
of the principal frame in which the ordering tensor is di-
agonal. More commonly, however, the set of three in-
dependent quantities is chosen as S and the two trans-
verse components, n and n, of a unit vector referred to
as the nematic director [1].

Because of thermal motion in the nematic fluid, the
director orientation fluctuates in time. (Fluctuations in
the order parameter S, which may be important near the
nematic-isotropic phase transition [2—4] are not con-
sidered here. ) Such director fluctuations may be regarded
as collective reorientation modes for the nematic mole-
cules or molecular aggregates emerging as a direct conse-
quence of the long range of the orientational correlations.
The principal cause of the characteristic light scattering
from nematic mesophases, director fluctuations are also
manifested in the spin-relaxation rates of nuclei residing
in the nematic molecules or aggregates [1,4—6]. As the
collective reorientation modes are expected to be slow,
they should be reflected most strongly in the low-
frequency-spin-relaxation behavior.

Nuclear-spin-relaxation studies of director fluctuations
have been largely confined to thermotropic nematics,
where the characteristic angular dependence and co

dispersion of the longitudinal relaxation rate [4—6] have
been experimentally verified for several systeins [7]. In
this work, however, we are concerned with lyotropic
(surfactant-based) nematic liquid crystals. Whereas the
light scattering from lyotropic nematic liquid crystals is
much less intense than from thermotropic nematics [2,3]
(due to the much smaller dielectric anisotropy), there is
no reason for expecting director fluctuations to be a less
eScient spin-relaxation mechanism for lyotropic than for
thermotropic nematic liquid crystals. To our knowledge,
this has not yet been experimentally demonstrated. In
the case of lyotropic smectic mesophases (most notably
phospholipid bilayers), on the other hand the importance
of director fluctuations has been established for the longi-
tudinal relaxation at low frequencies [7—9] and for the
transverse relaxation [10].

The aim of the present work is to quantitatively assess
the importance of director fluctuations for the spin-
relaxation behavior from lyotropic nematic liquid crys-
tals. To this end we have measured the transverse relaxa-
tion rates of H in the specifically deuterated sodium
dodecyl sulphate (SDS) surfactant and of Na in the
counterion from the calamitic (Nc ) and discotic (ND )

uniaxial nematic mesophases of the system sodium dode-
cyl sulphate-decanol-water [11]. These phases are coin-
posed of prolate and oblate spheroida1 mice11es, respec-
tively, with an essentially temperature-independent axial
ratio in the range 3—4 [12].
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In Sec. II we recapitulate relevant aspects of the theory
of spin relaxation by nematic director fluctuations and
extend the theory in certain respects. The emphasis is on
transverse relaxation, which is dominated by fourth ord-er
director-fluctuation contributions to the zero-frequency
spectral density. As compared to previous treatments of
higher-order director-fluctuation contributions [13,14]
our development differs in that we consider in more detail
the secular (zero-frequency) contribution and the effect of
translational diffusion.

In contrast to typical thermotropic nematics, the
second-order director-fluctuation contribution to the non-
secular high-frequency spectral densities J, (cdQ) and
J2 ( 2CQQ) is negligible for the investigated Nc and ND
phases. This is mainly due to the much larger short-
wavelength cutoff A,, in the lyotropic mesophases, which
makes the cutoff frequency co, much smaller than the
Larrnor frequency at conventional magnetic fields. The
zero-frequency spectral density JQ(0), hpwever, is very
large and dominated by diffusion-modulated (coun-
terions) or viscoelastic (surfactants) director fluctuations,
allowing us to estimate the viscoelastic constants of the
mesophases. In the case of the surfactant, the longest-
wavelength-director-fluctuation modes are too slow to
motionally average the nuclear-quadrupole coupling, re-
sulting in a static broadening of the H satellites. Invok-
ing also the results of our previous study of the longitudi-
nal relaxation behavior [12], we decompose the nematic
order parameter into contributions from local rnicelle re-
orientation and collective director fluctuations. The rela-
tive importance of the two contributions is found to be
qualitatively different in the two nematic mesophases.

II. THEORY

A. Quadrupole relaxation in uniaxial nematics

The frequency spectrum and the spin-relaxation behav-
ior of the H and Na nuclei used in this work are
governed by the interaction of the nuclear electric-
quadrupole moment with the electric-field gradient gen-
erated by the surrounding charge distribution [15]. The
quadrupole coupling is manifested to first order in the
quadrupole splitting v& and to second order in the vari-
ous spin-relaxation rates, which are linear combinations
of the motional spectral densities JQ(0), J, (tGQ), and
Jz (2diQ) [16]. The high-frequency spectral densities

J, (coQ) and J~ (2cdQ) are usually not significantly affected
by motions that are slow compared to the Larmor fre-
quency cop. The zero-frequency spectral density, on the
other hand, may be influenced by much slower motions
and is therefore an appropriate experimental quantity for
investigating director fluctuations. In the following we
focus on JQ (0).

Nematic rnesophases are readily aligned by the mag-
netic torque exerted by the static magnetic field used to
polarize the nuclear-spin system. For uniaxial nematic
phases the angle 6ILD between the magnetic field and the
macroscopic (mean) phase director is determined by the
sign of the diamagnetic susceptibility anisotropy in the
director frame hgD =g~~

—y~; OLD =0 for hyL, )0 and

OLD=a/2 for BED &0 [1]. In this work we study a
calarnitic nematic phase with hgD )0 (denoted N& ) and
a discotic nematic phase with b,g~ & 0 (denoted ND ).

In order to exploit the uniaxial symmetry of the nemat-
ic phases, the lab-frame spectral density JQ (0) is
transformed to the director frame [4,17]. For the Nc
phase (OID =0) we have (trivially)

JG(0)=JQ (0),
and for the ND phase (Ot D

=n l2)

JQ (0)= —,'JG (0)+—'J (0)

(2.1a)

(2.1b)

J (0)=J i„(0)+J d;, (0) . (2.2)

As shown in Sec. II C, the director-fluctuation (denoted
by the subscript "dir") contributions to these spectral
densities are related by

JQd;, (0)=3J~d;, (0) . (2.3)

We need, therefore, consider only JQ d;, (0), which can be
expressed as

JQ d (0)=cg (7ryi ) jd' (0) (2 4)

where c~ is a spin-dependent numerical factor: c~ =
—,
'

for I= 1 ( H) and cz =1 for I=—', ( Na). y„, is the
quadrupole coupling constant averaged over all local
motions [18]. The reduced spectral density jd;, (0) can be
formally factorized into a fluctuation amplitude gd;, (0)
and an effective correlation time 7d;, as

Jdir(0) gdir(0) dir 1

with

rd;, =f "
dt gd, ,(t)lgd;, (0),

p

gd;, (t)= ( P2(cosODd )Pz(cosOD„) ) —Sd;, ,

(2.5)

(2.6)

(2.7)

where ODd =OD„(t) is the angle between the macroscopic
(mean) director and the local director (the uniaxial sym-

metry of the phase is assumed to persist down to the local
level), and Sd;, is the associated order parameter

Sd;, =(P2(cosOD„)) . (2.8)

The locally averaged quadrupole coupling constant g&„
depends on the size and shape of the micelle as well as on
the details of the interfacial region [12]. In our analysis

The director-frame spectral densities J (0) reflect dy-
namic processes on several time scales. Among these
processes we consider explicitly only director fluctua-
tions, i.e., the process(es) whereby the orientation of the
local director experienced by a given spin fluctuates in
time (cf. Sec. IV D). All other processes are referred to as
local. As discussed in detail elsewhere [12,18], the local
motions include noncollective micelle reorientation,
molecular diffusion over the curved micelle surface, and
various "internal" motions. We assume that the local
motions are uncorrelated with, and much faster than, the
director fluctuations. The director-frame spectral densi-
ties can then be decomposed as
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vQ
—

cQ P2 (COSOLD )Sdirgloc ~ (2.9)

of director fluctuations, however, we can eliminate y&„by
invoking the quadrupole splitting v&, given by

the quadratic form of the free-energy expression (2.11) it
follows that the equilibrium distribution for k~(q) is
Gaussian with the variance [1]

where c& is a spin-dependent numerical factor: c& =
—,
' for

I=1 and cg= —,
' for I=—,'. «(q +g )

(2.13)

B. Continuum description of the local director Beld

To relate the order parameter S~;„the fluctuation am-
plitude gz;, (0), and the effective correlation time r~;, to
the macroscopic properties of the nematic phase, we
adopt the usual continuum description, where the defor-
mational fluctuations of the (locally uniaxial) nematic
fluid are described entirely in terms of a unit vector field
n(r) referred to as the local director [1]. The macroscop-
ic phase director no is simply the average (n(r)). We
define two Cartesian coordinate systems D and d, such
that the zD axis is along no and the zz axis along n(r).
Because of the local uniaxial symmetry, the local director
components n„(r} and n (r) in the D frame are statisti-
cally equivalent.

The director components n (r) (a=x or y) can be
Fourier expanded as

1
n (r)= —g & (q)exp( iq r)—, . (2.10a)

where V is the averaging volume used to define the mean
director no. (For a uniformly aligned sample, free from
orientational defects [1], V is simply the sample volume. )

The complex-valued mode amplitudes 8' (q) are related
to the n (r) by the inverse transform

n (q)= f drn (r)exp(iq. r) . (2.10b)
V

The deformational free energy of the nernatic fluid, as-
sociated with its curvature elasticity and its interaction
with the external magnetic field 80, may be expressed, to
second order in the mode amplitudes 8' (q) as [1]

(2.11)

where « is an effective elastic constant (neglecting the an-
isotropy in the elasticity tensor) and g is the magnetic
coherence length. For the latter, we obtain

1/2
1

(2.12}
0

P0KSalr

b gDP2(cosOLD )

where p0 is the vacuum permeability. This expression
differs in two respects from that usually encountered in
the literature. First, the factor P2(cosHLD) reflects the
dependence of the magnetic free energy of deformation
on the orientation OL~ of the mean director. Second, this
energy involves the diamagnetic susceptibility anisotropy
in the local director frame Ay&, which has been expressed
in terms of the experimentally accessible susceptibility
anisotropy in the mean director frame Ega =Sz;,4g&.

Like the director components n (r), the mode ampli-
tudes fi' (q) are regarded as stochastic variables. From

Furthermore, director-fluctuation modes of different
wave vectors are uncorrelated (strictly true only in the
limit V~ ao ), i.e.,

(2.14)

The order parameter S~;, defined by (2.8) can be ex-
pressed (exactly) as

S;,=1—3([n„(r)]') . (2.15)

Inserting the Fourier expansion (2.10a) and using (2.13)
and (2.14), one obtains

3k~ T
S~;,=I — g(q +g )

KV
(2.16)

3k~ T
Sz;,= 1 — [1—e arctan( 1 le) ],

7TKA, ~

where

(2.18)

(2.19)

As typically E «1 (cf. Sec. IV D), we can safely replace
the expression within square brackets in (2.18) by unity.

According to (2.7) and (2.8), the initial-time correlation
function g~, ,(0) can be expressed (exactly) as

(2.20}

where n+ =n + in . Using the Fourier expansion
(2.10a), the statistical independence (2.14) of the q modes
and the Gaussian property of & (q), one finds [13]

(2.21)

Combination of (2.15), (2.20), and (2.21}then yields

At this point we encounter the fundamental limitation
of continuum theory; it is valid only over length scales
that are large compared to typical intermicellar separa-
tions. If we use the macroscopic (q =0 limit} elastic con-
stant « in (2.16), we should, therefore, truncate the sum
over q modes beyond a certain wave number q„corre-
sponding to a lower continuum cutoff wavelength
1,, =2m /q, . (The problem of choosing an appropriate A,,
value is discussed in Sec. IV B.)

For a sufficiently large volume V (strictly, in the limit
V~ ~ ), we can replace the discrete-director-
fluctuation-mode spectrum by a continuous one. The
sum in (2.16) is then converted to an integral using the
correspondence rule

g~(2m) Vf dq. (2.17)
q

After performing the integration in (2.16) one obtains the
well-known result [1]
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gd;, (0)=(1—Sd;, ) (2.22)

gdir(0} 5+ pSdir+ sgQdir Sdir (2.23)

This simple result can also be obtained by noting that,
for small 0Dd, gd;, (0)=—,'[(0Dd ) —(0Dd ) ] and

Sd;, =1——', (0Dd ), and that, for a Gaussian distribution

f(0Dd )-exp( —
0Dd l(0Dd ) ), one has (04Dd ) =2(02Dd )~.

The exact result is [4,17]

the diffusing spin varies stochastically in time. Accord-
ingly, the time correlation functions involve a double en-
semble average; ( ) refers to an average over the joint
director-orientation distribution at positions ro and r, and

( )d'f refers to an average over all positions ro and r con-
nected by a diffusional trajectory in time t. [It may be
noted that the stochastic process QDe(t) is non-
Markovian in the presence of translational diffusion. ]

The latter diffusional average may be formulated ex-
plicitly as

where Qd;„= (P4(cos0Dd ) ). The approximation (2.22)
thus implies a relation between the second-rank and
fourth-rank order parameters Sd;, and Qd;, .

C. Effective correlation times

As shown in Sec. II A, the zero-frequency spectral den-
sity Jo (0) for a uniaxial nematic phase involves the time
correlation functions go"(t) and gz'"(t). The former, sim-

ply denoted gd;, (t) in Sec. II A, is given by (2.7) while the
latter is

gz'"(t) = (Dao I QDd(0) ]Dao [+Dd(t) l & . (2.24)

The Euler angles ADd(t)=[0Dd(t), PD(t)] specify the
orientation of the local director, at the current location of
the spin, with respect to the D frame. These angles Auc-

tuate in time as a result of two dynamic processes: (i)

translational diffusion of the spin-bearing molecule
through the inhomogeneous director field n(r), and (ii)

viscoelastic director fluctuations that render time-
dependent the orientation of the local director n(r, t) at a
given "point" r. In general both processes occur; in the
following, however, we consider only the two limiting
cases of (i) translational diffusion in a static director field

(corresponding to a diffusion coefficient D))a/71), and

(ii} an immobile spin subject to viscoelastic director fluc-

tuations (D « iclg). Since the two processes can be con-
sidered statistically independent, the extension to the
general case is straightforward (cf. Sec. IV D).

(( ))dr= —f dro fdr f(r, tire)( ), (2.27)

where f (r, t lro) is the translational diffusion propagator

f (r, t lro) =(4mDt) exp
lr —r, l'

4Dt
(2.28)

with an effective self-diffusion coefficient D for the spin-
bearing molecule in the nematic fiuid. (In keeping with
the neglect of anisotropy in the elasticity tensor, we
neglect the anisotropy in the diffusivity tensor D and take
D =TrD/3. Unless the micelles are very large, this is a
reasonable approximation. ) Because of the translational
invariance we can set r0=0. [The propagator (2.28) is

strictly valid only for an unbounded system ( V~ ~ ).]
After Fourier expanding the diffusion propagator, we ob-
tain

( ln+(0)l'ln+(r)l'& —
& ln+(r) ')'

g (lR'„(q)l )exp(iq r)2

q

2

=
—,'([n+(0)] [n+(r)] ) . (2.30)

(( ))d;t= —g exp( qDt) f—dr( )exp( iq r)—. (2.29)
1

q

Using (2.10a), (2.14), and the Gaussian property of the
n (q), as in the derivation of (2.21), we find

n+ =n„+in —=sin0Ddexp(iPD ) . (2.25)

Substitution into (2.7}and (2.24) yields the exact results

go" (t)= —', [((ln+(ro)l ln+(r)l ))dt —(ln+(r}l ) ],
(2.26a)

g~2 (t} 8 && [n+(ro}) [n+(r}] ))chf (2.26b)

where the time dependence enters implicitly via the Auc-

tuating position of the spin r=r(t) and ro=r(0).
The orientational variable n+ is stochastic at two lev-

els: (i) the local director orientation and hence n+(r)
varies stochastically in space, and (ii) the position r(t) of

1. Static director jield

The time correlation functions g "(t) involve the Euler

angles QDd, which are related to the local director com-

ponents n through

It follows from (2.26), (2.29), and (2.30) that

go" (t) =3g,""(t), (2.31)

which proves (2.3) for the special case of translational
diffusion in a static director field. It suffices, therefore, to
consider the correlation function go"(t)—=gd, ,(t), which

becomes

, fdqf dq'& ltt„(q)l'&& lfi'„(q')I'&
(2') V

X exp( —
l q+ q'

l
Dt ), (2.32)

where we have also made the transition to a continuous-
mode spectrum according to (2.17).

Because of the exponential cross term exp( —2q.q'Dt ),

the two-dimensional integral in (2.32) cannot be reduced
to the square of a one-dimensional integral as in the limit
of an immobile spin (cf. below). For this reason, transla-
tional diffusion cannot in general be incorporated into the
director-fluctuation theory simply through the replace-
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ment a/g~D+a/ri in the expression for the mode re-
laxation time [1]. Such a procedure is correct for the
second or-der (in n~ or 8Dd) contribution to g, "(t) [4,6],
but not for the fourth-order time correlation functions

gp" (t) and g2"(t) considered here.
Inserting the mean-square mode amplitude (2.13) into

(2.32), introducing spherical polar coordinates, and carry-
ing out the angular integrations, we find

gdir(t) 1 q ~. , qq'sinh(2qq'Dt)exp[ (q —+q' )Dt ]dg dg
g~ (0) 2q2Dt p p ( 2+/ —

2)( '2+/ —2)
(2.33)

where we have also used (2.18) and (2.22) for gd;, (0). The
effective correlation time rz;„defined by (2.6), is now ob-
tained by integrating (2.33) over time,

x xy X+/
q,'D p p (x +e')(y +e')

(2.34)

with e defined by (2.19). The double integral in (2.34)
cannot be expressed in closed form; however, since typi-
cally e((1 we can expand the nondivergent part in
powers of e to obtain

In this case it is necessary to make the additional as-
sumption [13,14] that the different wave-vector com-
ponents of the local director field behave as independent
Gaussian Markov processes. Whereas in the limit of a
static director field we only needed the Gaussian form of
the equilibrium distribution f [& (q)], in the present case
we must make the stronger assertion that the stochastic
process R' ( q, t ) is Gaussian, i.e., that the director-
fluctuation propagator f [it (q, t), tIR (q, O)] is of the
Ornstein-Uhlenbeck forin [14,19]. (The latter property
clearly implies the former. ) It then follows that the mode
autocorrclation functions decay exponentially as [1,19]

'rd; [ln(—1/e) 1.12+0(e)]— (2.35) (8' (q, O)R'"(q', t) &=5qq. (Itt (q)I &exp[ t/r„(q—)],
To obtain a convergent zero-frequency spectral density

jz;,(0) it is thus essential to introduce a finite short-
wavelength cutoff A,, as well as a finite magnetic coher-
ence length g (or long-wavelength cutofl). However, the
dependence of jd;„(0) on A,, and g is weak; the k, factor
in rz;, is cancelled by a A,, factor in gd;, (0) [cf. (2.18) and
(2.22)] leaving only the logarithmic dependence on the ra-
tio g /A, This fortunate circumstance allows us, in the
limit of a static director field, to determine the elastic
constant a from jd;, (0) without the need for accurate esti-
mates of g and A, It should be emphasized that to ob-
tain the results (2.22) and (2.35) for jd;, (0), we have intro-
duced only one approximation above those inherent in
the standard continuum theory of elastic fluctuations [1],
viz. , the (reasonable) neglect of anisotropy in the transla-
tional diffusion tensor.

(2.37)

with the viscoelastic mode relaxation time r„(q) given by
[20]

(q2+g
—2)

r„(q)
(2.38)

gd;, (t)=, fdq(R'„(q, O)R'(q, t ) &

(2ir) V
(2.39)

where ri is an effective nematic viscosity (any q depen-
dence in ri is neglected).

Proceeding as in the case of a static director field, one
finds that the relation (2.31), and hence also (2.3), remains
valid, and that

2. Immobile spin

In this limiting case, previously treated by Void, Void,
and Warner [13] and by van der Zwan and Plomp [14],
one considers the temporal fluctuations of the local direc-
tor orientation at a fixed point in space. The time corre-
lation functions g "(t) are now spatially local (and
translationally invariant in the limit V~ 00), and n+ (r, t)
varies only as a result of viscoelastic fluctuations;

(2.40)Xexp (q +g ) t— —

The effective correlation time becomes

Combination of (2.13), (2.18), (2.22), and (2.37)—(2.39)
then yields the reduced time correlation function

ger(t) 1 i~ q
dg

g&;,(0) q, o (q2+g ')

gp'"(t)= —'[( I"+(r 0)l I"+« t)l & (I"+«)I & )

(2.36a)

1 1 X2 2

q, a p p (x +e )(y +e )(x +y +2e )

g2"(t)= —,'([n+(r, O)] [n+(r, t)] & . (2.36b) [ln(1/e) 1.52+0(e)] . —
8m.~ (2.41)
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To leading order in e, i.e., keeping only the logarithmic
term in (2.41), our result for rd;, is a factor 2 larger than
that obtained by Void, Void, and Warner [13]. This
difference is due to the further approximations invoked
by these authors to evaluate the q integrals. It may also
be noted that, to leading order in e, the substitution
lc/rl~D in (2.41) yields an effective correlation time that
differs by 2/n. from the correct result (2.35) for transla-
tional diffusion in a static director field.

J l, dl ( ~0) CR ( ~xl..)'j l
'( ~0»

and for the XD phase (k = 1 or 2)

~k, dh ( k ~0 ) CR ( &pl )—J l
"(k coo )

(2.42a)

(2.42b)

Here we have only included the leading (second-order)
director-fluctuation contribution. The reduced spectral
density function in (2.42) is given by [4,5]

j,'"(co)=(1—Sd;, ) dx
(x +e )[x +(co!co,) ]

where

m U(co, /co)=( —
dir )

( 8cor co )
(2.43)

U(x) =H(x —1)

1 &2x &2x+—arctan —arctan
vr 1 —x 1+x (2.44)

H (z) is the unit step function and the cutof' frequency co,
is defined as

K
co =q D+-

C C (2.45)

(In the derivation of these results, terms of order e have
been neglected. )

For thermotropic nematic liquid crystals it is common-
ly assumed that coo((co, so that the cutoff function
U(co, /coo) has attained its low-coo limit of unity. In this
limit one obtains the celebrated coo

' relaxation disper-
sion [6]. For lyotropic nematic liquid crystals, however,
the cutoff frequency co, is much lower and one has in-
stead coo»co, at conventional magnetic fields (cf. Sec.
IV D). The cutoff' function then reduces to

D. High-frequency-director-fluctuation contribution

The bulk of the literature on spin relaxation by direc-
tor fluctuations is concerned with longitudinal relaxation
rates and hence with the second-order director-fluctuation
contribution to the spectral density function J, (co)
[4—6]. For the purpose of estimating the director-
fiuctuation contribution to J, (coo) and Jz (2coo) in our ly-
otropic nematic phases, we summarize here the necessary
relations.

Under the conditions stipulated in Sec. IIA, we have
for the Xc phase

(This form is accurate to within a few percent for
x &0.3.) Consequently,

COCj,"(coo)=(1—Sd;„)
3coo

(2.47a)

which is of the same form as the high-frequency tail of a
Lorentzian dispersion with correlation time 3/co, . Since
1/m, should exceed the longest single-micelle tumbling
correlation time [12,17], director fluctuations are not ex-
pected to contribute significantly to the high-frequency
spectral densities (cf. Sec. IVD). With (2.18) and (2.45)
inserted into (2.47a), we obtain

4mks T(1+r)D/lc)
(~0)

'QCt)0

(2.47b)

Note that the dependence on the viscoelastic constants is
overshadowed by the strong dependence on the ill-defined
cutoff wavelength A,„and that, in the immobile spin limit
(D «R/g), the director-fluctuation contribution does
not depend on the elastic constant K.

E. Incomplete motional averaging

In the preceding analysis it was tacitly assumed that
director-fluctuation modes of all wave vectors down to
the low-q cutoff 2n/g are. fast on the NMR time scale
so that all modes in the range 2m. /g &q &q, contribute
to motional averaging of the quadrupole splitting v& (via

Sd;, ) and to the zero-frequency spectral density jd;„(0)
(which was treated within the restrictions of motional-
narrowing theory). The condition for motional averaging
by a director-fluctuation mode of wave vector q is rough-
ly

co (q) «q —+D
Q

(2.48)

where the frequency co&(q) is the part of the quadrupole
coupling that is modulated by the director-fluctuation
mode of wave vector q. While there is some uncertainty
about how to define co&(q), previous estimates [4,21] sug-

gest that the motional-averaging condition (2.48) is
indeed satisfied for thermotropic nematics.

For our lyotropic nematic liquid crystals, however, the
observation of a significant inhomogeneous broadening
(not due to the 80 field or to static dipolar eouplings) in

the H spectrum demonstrates that the inequality (2.48) is
not satisfied over the whole q range (cf. Sec. IV A). Since
the effect is rather small, it is analyzed in a simple ap-
proximate manner rather than by invoking the full
machinery of the stochastic Liouville equation.

%'e thus define a wave vector q* such that modes with

q & q* are completely motionally averaged [i.e., (2.48) is

obeyed], while modes with q & q
* can be treated as static

on the NMR time scale. Since the variance of the
(Gaussian) local director orientation 6Dd may be expand-
ed in q modes as (cf. Sec. II B)

)
3/2

3' (2.46)
'=(0', ) =& ( l~) (q)l'),

q

(2.49)
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it follows that III. EXPERIMENT

o. =o. +o, ,f (2.50) A. Materials and sample preparation

where the subscripts refer to the fast (motionally aver-
aged) and slow (static) q modes. Incomplete motional
averaging thus leads to an order parameter Sd;, =1—

—,
'o.f

that is larger than the value Sd;, =1——', cr for complete
motional narrowing;

3 2
dir dir+ 2~s (2.51)

2k~ T
o',=, [1—e"arctan(1/e*)],

7TKA,
(2.52)

with e'=(q'g )

The inhomogeneous satellite line shape is obtained as

7T

d 8Ls»n8r. sf (8rs )Ls(rp 8rs )
0

(2.53)

where OLS is the angle between the 80 field and the static
(partially averaged) director and Ls(co, 8rs) is the homo-
geneous satellite line shape corresponding to a given stat-
ic director orientation:

To (approximately) account for the effects of incomplete
motional averaging on the quadrupole splitting v& and
the spectral density jd;, (0) we simply replace Sd;, by Sd;,
in (2.9) and (2.22). Proceeding as in the derivation of
(2.18), the static variance may be related to the motional
averaging wavelength A,

* as

SDS (sodium dodecyl sulphate), selectively deuterated
at the a position (next to the sulphate headgroup), from
Synthelec (Lund, Sweden) was purified by repeated recry-
stallization from aqueous solution. Decanol (n-decanol,
specially pure) from BDH Chemicals and deuterium-
depleted water from Sigma were used as supplied. The
composition of the investigated nematic Nc (ND ) phase
sample was 24.5 (24.9):4.4(5.4):71.1 (69.7) weight % of
SDS-decanol-water, corresponding to molar ratios

/("d + "sDs) 35.2 (32.2) and nd„l (nd +nsDs)
=0.25 (0.29). The volume fraction micelles (SDS + de-
canol) was /=0. 27 (0.28). These compositions are the
same as used for the H relaxation studies in Ref. [12],
where the relevant part of the ternary phase diagram can
be found.

The sample preparation started by mixing appropriate
amounts of SDS and water yielding an isotropic micellar
(L, ) phase. This micellar phase and decanol were
weighed into a 7-mm i.d. Pyrex tube (filled to approxi-
mately 15 mm height) which was immediately flame
sealed. Upon mixing at 20 'C a clear, viscous,
birefringent nematic (Nc or ND ) phase was obtained.

The samples were nematic from approximately 15'C
(where the SDS precipitates) to about 25.4'C for the Nc
phase and to approximately 28.5'C for the ND phase.
At higher temperatures the samples entered two-phase
regions (two superimposed signals in the NMR spectra)
with the nematic Nc (ND ) phase in equilibrium with an
L& (Nc ) phase. The Nc L, two-ph—ase region is nar-
row, approximately 1'C, while the ND —N& two-phase
region is much wider.

R2
Ls( 8Ls) 2 p 2(R z ) + [co co&P2 (cos8L—S ) ]

(2.54)
B. Spin-relaxation experiments and results

f (8Ls)-exp( —8~s/o. , ) . (2.55a)

For the ND phase, 81D =m l2 and cos81s =sin8DscospD,
so that

f(8is)- J dPD J «Dss(n8Dsexp( 8Ds/o
0 0

X 5[cos8I s —sin 8Ds cospD ]
—exp( —cos 8Ls/o, ) . (2.55b)

By analytically transforming the distribution function
rather than the Euler angles, one avoids a time-
consuming numerical double integral [22].

where R2 is the transverse relaxation rate and co& is the
angular frequency of the satellite (relative to the center of
the spectrum) for the (hypothetical for the ND phase)
case of the phase director along the Bp field (8LD =0) and
with no static broadening of the satellites.

We must now relate the distribution f (81s ) in (2.53) to
the Gaussian static director distribution f (8Ds) with
variance o, For the Nz phase, OLD=0 and OL,s=ODs,
so that

The H and Na NMR experiments were performed
on a Bruker MSL-100 spectrometer (resonance frequen-
cies 15.371 MHz and 26.487 MHz for H and Na),
equipped with a 10-mm vertical saddle-coil probe and a
2.35-T superconducting magnet.

The sample volume was centered in the saddle coil
yielding a spatial rf (B&) inhomogeneity of less than
+10%. The magnetic field inhomogeneity was less than
20 (10) Hz for H ( Na). The temperature was regulated
by a Stelar VTC87 regulator with a high air flow (1.5
m /h), reducing temporal and spatial temperature fluc-
tuations to within +0.03 C. Typically, the length of the
180' pulse was 20 (13) ps for H ( Na). Since the reso-
nant 180' pulses (applied at the center of the spectra)
showed less than 6%%uo attenuation at the H and Na sa-
tellites, the pulses were considered nonselective. Consid-
erable care was taken to avoid systematic errors [12,22].

While, in general, a 2D quadrupolar echo (2D QE) ex-
periment [23,24] is required to obtain the homogeneous
satellite linewidth for Na, the homogeneous H
linewidth is usually obtained from a single-exponential fit
to the decay of the quadrupolar echo amplitude with in-
creasing r [25]. The relatively large B, inhomogeneity,
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JL(0)—~(Qvinhom gvinhom) (I 3 23Na) (3.1)

where b,v,'""' and b, v',""' are the full linewidths (includ-

however, then introduces a small systematic error (by
giving rise to a small-amplitude modulation of the decay).
To eliminate this artifact, we used 2D QE experiments to
determine the homogeneous H satellite linewidth hv,"'
from a Lorentzian fit to the central line in the F1 cross-
section spectrum derived from the satellite position in
F2. The experimental uncertainty (+2o, due to noise) in

hv," is estimated to+20Hz for H.
For Na it was found that, in all investigated cases,

the satellite lines in the conventional 1D spectrum were
Lorentzian, cf. Fig. 1, and their width was the same
(within the experimental uncertainty) as the homogene-
ous satellite linewidth b,v,"o obtained from a 2D QE ex-
periment (correcting for the reduction of the small mag-
netic field inhomogeneity broadening in the 2D QE ex-
periment [24]). In other words, static quadrupolar inho-
mogeneity did not contribute to the Na satellite
linewidth. Therefore, the Na zero-frequency spectral
density JII (0) could be obtained from the linewidths in
the 1D quadrupolar echo spectrum, using r = 1/v& so
that all three peaks in the spectrum are in phase [23,24],
according to [24]

JL (0) & (~gvhom 3 JL JL ) (I—
1 2H ) (3.2)

J, and Jz have previously been determined [12] to be

about 10 s ' each (independently of sample and tempera-
ture), so the correction in (3.2) amounts to less than 1%.
For convenience, the lab-frame spectral densities

Jk =Jk (kazoo) in (3.1) and (3.2) are defined so as to include

spin-dependent numerical factors and coupling constants.
The static broadening of the H satellites also includes

contributions from unresolved H- H and H-'H static di-
polar couplings. As the quadrupolar echo pulse sequence
only partly refocuses these dipolar couplings [26,27], the
experimental quantities Av,"' and Av',""' —Av,"' tend

ing a small magnetic field inhomogeneity broadening) of
the satellite (s) and central (c) lines as obtained from
Lorentzian fits.

In contrast to the Na case, the satellites in the H
spectrum were slightly asymmetric (cf. Fig. 1), suggesting
a contribution from quadrupolar inhomogeneous
broadening. This was more clearly seen in the large
difference between the inhomogeneous and homogeneous
H linewidths. The spectral density Jo(0) was thus ob-

tained from the homogeneous satellite linewidth as [25]
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FIG. 1. H (top) and Na (bottom) 1D quadrupolar echo
spectra from the N& sample at 24.9'C.

FIG. 2. Temperature variation of 'H and 'Na quadrupole
splittings from the Nc (top) and ND (bottom) phases. The ex-
perimental uncertainties are smaller than the size of the sym-
bols. The vertical lines indicate the Nc -Ll and ND —Nc tran-
sition temperatures.
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TABLE I. Lab-frame spectral densities JQ (0)' and director-fluctuation contributions Jo d;, (0) for H
(SDS) and Na (Na+ ) in the Nc and ND phases.

T ('C)

16.4
18.4
20.4
22.4
24.4
24.9
25.4
16.4
18.4
20.4
22.4
24.4
26.4
27.4
28.4

Phase

N+

ND

J (0) (s ')

1885

2220
2555
3225
3415
3775
3075

2755

H
JQ, dir (0)

1870

2205
2540
3210
3400
3760
6090

5450

5540

JQ(0) (s ')

202
216
239
327
480
572
702
392
355
345
346
362
374
394
401

Na

Q, dir

149
166
191
281
436
528
659
556
498
490
506
550
584
630
648

'Obtained from measured linewidths according to (3 ~ 1) or (3.2).
Obtained from JQ (0) using (2.1)—(2.3) and estimates of the local contributions (cf. Sec. IV B).

to overestimate the quadrupolar homogeneous linewidth
and the quad rupolar static broadening, respectively.
However, the effect (estimated from dipolar effects seen in
the hexagonal phase of the present system [28]) is small:
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FIG. 3. Temperature variation of inhomogeneous (~ ) and

homogeneous (~ ) H linewidths and of Na satellite-central
linewidth difference (0) in the Nc (top) and ND (bottom)
phases. The experimental uncertainties are smaller than the
size of the symbols. The vertical lines indicate the N& —L l and
ND —Nc transition temperatures.

(40 Hz in Av,"' and ~1' in the static orientational
spread o, (cf. Secs. II E and IV A). The propagation of
these small systematic errors causes the parameter
(~/g+DsDs) to be underestimated by at most 15% (cf.
Sec. IV D).

The measured quadrupole splittings v& are shown in

Fig. 2. The Na splitting was obtained from the
frequency-offset difference between the central line and
the satellites as provided by the line-shape fits, and the H
splitting was measured directly as the peak separation.
(The true splitting is deduced in Sec. IV A by including
the static quadrupolar broadening in the analysis). The
measured linewidths are shown in Fig. 3. The inhomo-
geneous H linewidth is the width at half-height of the sa-
tellites. The zero-frequency spectral density Jo (0), as ob-
tained from (3.1) or (3.2) and the data in Fig. 3, is given in
Table I. The linewidth data in Fig. 3, reflecting mainly
temperature variation of Jo (0), is similar for the two nu-

clei but is qualitatively different for the two nematic
phases.

IV. DATA ANALYSIS

The H and Na quadrupole splittings and relaxation
data presented in Sec. III will now be analyzed in terms
of director fluctuations using the theoretical results of
Sec. II. First, however, we must address the issues of in-
complete motional averaging ( H data) and relaxation
contributions from local motions ( Na data). In addi-
tion, we need to estimate the translational diffusion
coefficients for the SDS surfactant and the Na+ coun-
terion in the nematic phases.

A. Static broadening of H spectrum

As noted above (Secs. II E and III B), the H spectrum
from the a-deuterated SDS surfactant in the nematic
samples exhibits asymmetrically broadened satellites. We
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ascribe this broadening to incomplete motional averaging
of the quadrupole coupling by the long-wavelength-
director-fiuctuation modes (cf. Sec. II E). Magnetic field
inhomogeneity and temperature gradients can account
for neither the magnitude nor the asymmetry of this stat-
ic broadening, which is absent from the Na spectra.

The static director spread o., was obtained from line-
shape analysis according to (2.53)—(2.55). The least-
squares fit (using the Levenberg-Marquardt algorithm
[29]) involved four adjustable parameters: the static-
director spread o.„the true quadrupole frequency co&, a
frequency offset, and a factor accounting for the slightly
unequal peak amplitudes. A minor baseline correction
(the offset) was performed manually. A fifth parameter,
the homogeneous linewidth hv,"', was taken from the
2D QE experiments (cf. Sec. III B) and was not adjusted
in the fit. The result of a typical fit is shown in Fig. 4.
The minor discrepancy between experimental and fitted
spectra is ascribed to a small first-order phase error (due
to the problem of compensating for the pulse duration).

The fitted parameters of primary concern, o., and the
homogeneous (peak-to-peak) splitting v& (equal to co&/m.
for the Nc phase and to aP&/2mfor the. ND phase), are
given in Table II. The remaining parameters, the fre-
quency offset and the satellite amplitude ratio, showed
only small deviations (less than 150 Hz and 6%, respec-
tively) from their nominal values (0 and 1, respectively).

B. Local motions and continuum cutoÃ

Jo,dir(0) =Jo (0)—Jo», (0),
and for the ND phase

Jo d;„(0)=2[Jo (0)——,'Jo», (0)——,
' J2 i„(0)] .

(4.1a)

(4.1b)

We consider first the case of surfactant H relaxation.

To obtain the director-fluctuation contribution,
Jo d'„(0), to the measured spectral density Jo (0), we must
subtract the contribution from local motions. According
to (2.1)—(2.3), we have for the Nc phase

TABLE II. Static director spread 0., and homogeneous quad-
rupole splitting v& deduced from the H line-shape analysis.

T(C) Phase 0., (deg) v& (kHz) v& (kHz)'

16.4
20.4
22.4
24.4
24.9
25.4
16.4
20.4
28.4

uncertainty

Nc 8.0
8.9

10.3
13.4
13.9
15.7
10.4
7.8
9.1

+0.4

17.25
15.48
14.29
12.74
12.22
11.61
13.20
11.95
9.89

+0.04

16.93
15.06
13.85
12.21
11.60
10.86
12.86
11.83
9.56

+0.05

'Peak-to-peak separation in inhomogeneously broadened spec-
trum.

As discussed in detail elsewhere [12,18], three kinds of
motion contribute to Jo i, (0): (i) "internal" motions, (ii)
diffusion of the SDS molecule over the curved micelle
surface, and (iii) local reorientation of the micelle. On
the basis of our previous NMR studies of the hexagonal
[22] and nematic [12] phases in the present system, we
can estimate the contribution to Jo (0) from "internal"
motions to 2 s ' and from surface diffusion to 10 s
(Nc phase) or 25 —40 s '

(ND phase). This is merely
about 1% of the total Jo (0) (cf. Table I).

The contribution from local micelle reorientation is
more difficult to estimate since it brings up the vexed is-
sue of the physical significance of the cutoff wavelength
k, and, indeed, of the local director field. We are facing
here the general statistical-mechanical problem of merg-
ing continuum and particle concepts into a self-consistent
description.

To be useful, the cutoff wavelength must be sufficiently
large that we can use the macroscopic (q =0 limit) elastic
constant and nematic viscosity in the continuum descrip-
tion of director fluctuations. The local director may be
defined with reference to a group of N micelles enclosed
in a volume of linear dimension A,, and the ordering ten-
sor for the instantaneous orientation of these micelles
with respect to an external frame. The orthogonal trans-
formation that diagonalizes this tensor defines the orien-
tation of the (instantaneous) local director and the largest
eigenvalue defines the local order parameter S&„. The
nematic order parameter S„, , describing the orienta-
tional order of the micelle with respect to the macroscop-
ic phase director, is then

Snem Sloe Sdir (4.2)

-15000 -10000 -5000 0 5000 10000 15000
v (Hz)

FIG. 4. Experimental (solid) and fitted (dashed) H spectrum
from the N& phase at 16.4 C. The fitting procedure is de-
scribed in Sec. IV A.

where Sd;, is the director-fluctuation order parameter in-
troduced in Sec. II A, and we have assumed that the local
director, like the mean director, is at least a threefold
symmetry axis.

If the averaging volume is taken to be of the same
spheroidal shape as the micelle and if the cutoff wave-
length is identified with the longest dimension of this
volume, then
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A,,=2a(NIP)' ', (4.3)

where a is the major semiaxis of the micelle and P is the
volume fraction micelles in the nematic fluid. For the
nematic samples studied here /=0. 27 and, on the basis
of our previous NMR study [12] of micelle size and or-
der, a =7 nm in both Nc and ND phases at all investi-

gated temperatures. Values for A,, of 30, 40, and 50 nm
thus correspond to 2.7, 6.3, and 12.3 micelles in the local
averaging volume. In the following calculations we shall
set A.,=40 nm. Note that this value is much larger than
the typical cutoff wavelengths of 2-3 nm used for ther-
motropic nematics [7,13,14]. There are three reasons for
this difference. First, the surfactant micelles are larger
than the thermotropic nematic molecules. Second, the
relevant length scale for assessing the validity of continu-
um theory is the separation between the molecules or ag-
gregates rather than their length. This distinction is
unimportant for one-component fluids such as thermotro-
pic nematic liquid crystals, but accounts for the factor

in (4.3). Third, we argue that several micelles
should be included in the averaging volume used to define
the local director, i.e., N ) 1 in (4.3).

The partitioning of reorientational modes into local
and continuum modes, as reflected in the factorization of
the nematic order parameter in (4.2), also applies to the
reorientational contributions to the spectral densities
J (0). To avoid double counting, J i„(0)should reflect
only those reorientational modes that are confined to the
averaging volume of dimension A, With A,, =40 nm, this
leaves little room for anything but noncooperative
single-micelle reorientation modes. Adopting a model of
restricted rotational diffusion in an even uniaxial restor-
ing potential of the mean torque [30] one can show that
the dominant tumbling-mode contribution to Jo (0) takes
the form [17]

(1—Si„)
2Si„(4Si„—1 )D i

(4.4a)

where D~ is the tumbling rotational diffusion coefficient
of the micelle. This simple high-order approximation is
accurate to within a few percent for S&„~0.7. Using S&„
values as deduced below and calculating D j for a
spheroid of axial ratio p=3. 5 [12] with the viscosity of
water, we thus estimate the contribution to Jo (0) from
single-micelle reorientation to (1 s ' for the Xz phase
and &40 s ' for the XD phase, i.e., at most approxi-
mately l%%uo of the total Jo (0) (cf. Table I).

Next we consider the case of counterion Na relaxa-
tion. As compared to the H case, the contribution from
local motions is larger (mainly because of the larger Na
quadrupole coupling constant), while the contribution
from director fluctuations is much smaller (because the
counterions diffuse much faster than the surfactants).
Consequently, the local motions contribute significantly
to Jo (0) in the Na case. The contribution to Jo (0)
from "internal" motions (mainly picosecond dynamics in
the counterion hydration shell [31,32]) and surface
diffusion can be estimated from our previous work
[12,22]: 30—40 s ' from "internal" inotions and 10 s

(50—70 s ') from surface diffusion in the Nc (ND )

phase.
Because of the larger g&„ for Na, the contribution

from local reorientation predicted by (4.4a) is about five
times larger than for H. This contribution would then
account for as much as half of Jo (0) (at the highest tem-
perature for the ND phase). The actual contribution,
however, is considerably smaller since, for counterions,
(4.4a) should be replaced by

2
(1—Si„)

Jo „,(0)=c~ (my„, )
S1

2(4SI„—1 )D i 1+
1 —Si„ +ex

(4.4b)

where ~,„is the intermicellar exchange time for the coun-
terions. We estimate [12] that r,„=10 (20) ns for the Nc
(ND ) phase. Using the Si„values deduced below, we

thus find that the local-reorientation contribution is
negligible for the Nc phase, while it amounts to 4—10%
of Jo (0) for the ND phase. As the deduced S„,value de-

pends on the local-reorientation correction, the calcula-
tion was performed self-consistently.

In Table I we give the director-fluctuation contribu-
tions Jo d;, (0) obtained from (4.1) and corrected for local
motions (except single-micelle reorientation) as described
above.

C. Translational difFusion coefBcients

For the analysis of Jod;, (0) we need the diffusion
coeScients for translational motion over distances large
compared to the continuum cutoff wavelength A,, of the
Na+ counterion and the SDS surfactant molecule. Since
macroscopic diffusion measurements have not been car-
ried out on lyotropic nematic phases, we have to rely on
estimates based on related sources of information.

For counterions we assume that

DN, (T)=aDN, (T), (4.5)

where DN, (T) is the known [33] limiting self-difFusion
coefficient of Na+ in H20. The temperature-independent
factor a accounts for the obstruction effect and for the
effect of the local electrostatic field. In principle, a could
be calculated by solving the steady-state Smoluchowski-
Poisson-Boltzrnann equation in a spheroidal cell, as pre-
viously done for spherical [34] and cylindrical [35]
geometry. With the surface charge density and volume
fraction of our Nc sample, the cylindrical model yields

aj =0.58. Accounting for the difference in geometry, we
take o'. =0.65 for the X& phase. This estimate should not
be off by more than 10%%uo. For the AD phase, a should be
smaller because of the stronger local electric field sur-
rounding the oblate spheroidal micelle; we use the value
a=0.3. The greater uncertainty in this value propagates
to the viscoelastic constants deduced for the XD phase
(cf. Sec. IVD). The DN, values obtained in this way, in
the range (3—9)X10 ' m s ', aremuch larger than the
"diffusion coefficient" ~/g for viscoelastic director fluc-
tuations (cf. Sec. IV D). Consequently, the Na data can
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be analyzed using the static director limit of the theory in
Sec. I!C.

Two processes may contribute to the translational
motion of the SDS molecules: (i) molecular migration of
individual SDS molecules from one rnicelle to another,
and (ii) displacement of the entire micelle. For the first
process we may write

X
—+ SDS
7l

2~/
ln

e

(1—Sd;, —,'—cr,)
Q( H)=

P, (cosOL~ )(Sd;,+—,'o,')

—1.52

d
Dsos(T)=

fCS

(4.6} (4.8b)

where d is the average nearest-neighbor interrnicellar sep-
aration and ~„,is the mean residence time of a SDS mole-
cule in a micelle. The latter quantity has been deter-
mined from kinetic studies on micelle solutions [36]:
~„,=6 ps at 25'C with an activation energy of 40
kJrnol in the range 10—25'C. Since the fraction of
nonmicellized surfactant is very small (about 10 ), an es-
caped SDS molecule is reabsorbed within a few
nanoseconds so that only nearest-neighbor micelles can
be reached. We thus identify d with the average cell di-
ameter, d =2b(p"/P)'~ with n =1 (2) for the N& (Np )

phase. With the minor semiaxis of the micelle b =2.0
nm, the micellar axial ratio p=3.5, and the micelle
volume fraction P =0.27, we thus obtain D sos values in
the range (2 —7)X10 ' m s ', i.e., two orders of magni-
tude smaller than DN, .

As regards the second process, the diffusion coeScient
for a single micelle at infinite dilution is calculated to be
approximately 5X10 " m s '. Although this is an or-
der of magnitude larger than Dsos due to molecular mi-

gration, the high micelle density and strong intermicellar
electrostatic repulsion should make micelle translation a
highly cooperative process that may be too slow to con-
tribute to Ds~s.

Since the Dsos values obtained from (4.6) are of the
same order of magnitude as (a/ri+Dsos ) (cf. Sec. IV D),
we cannot use the immobile spin limit of the theory in
Sec. II C to analyze the H data. Rather we must consid-
er the more general case where both translational
diffusion and viscoelastic fluctuations contribute to
Jo d;, (0). Treating the general case along the lines of Sec.
II C, we find that the resulting effective correlation time

rd;, agrees to within a few percent with (2.41) modified by
the substitution a/r)~~/rl+D, provided that D is not
much larger than ~/g.

D. Director fluctuations

In order to eliminate the local quadrupole coupling
constant y„, from the analysis, we form the quotient

Among the parameters appearing in (4.8), OL~ and o,
are known experimentally, Ds~s and DN, are obtained
from (4.5) and (4.6), and A,, is set to 40 nm (cf. Sec. IV B).
The magnetic coherence length g, which only weakly
affects Q, is not known for the nematic phases studied
here. It has been determined, however, for the N& phase
of the closely related system sodium deeyl sulphate-
decanol-water [37]. With the reported values of ~/by~
and our magnetic field (Bo=2.35 T), we obtain from
(2.12) g =18—22 pm in the 20'C temperature interval
investigated [37]. Assuming that (Irlbgz)' does not
vary significantly between the two systems, we take

=20 pm for our Nc phase (at all temperatures). Fur-
ther, we assume that (~/Ay~ )'~ has essentially the same
value in the Nr, phase, so that g =20&2 =28 pm ac-
cording to (2.12). [The factor Sdg in (2.12) is approxi-
mated by unity here. ]

Substituting Sd;„ from (2. 18) into (4.8a), we see that
Q( Na) now involves only one unknown, the elastic con-
stant a. Furthermore, for large Sd;„Q( Na} is essential-
ly proportional to ~ and depends only logarithmically
on A, Consequently, a can be determined rather accu-
rately despite some uncertainty in A., and DN, .

The temperature variation of a in the two phases is
shown in Fig. 5; as expected ~ decreases with increasing
temperature. The dependence of ~ on the estimated pa-
rameters A,„g,and DN, is weak; if g is changed to 10
(40) pm, then a. decreases (increases) by 4%,' changing A,,
to 30 (50) nm increases (decreases) a. by 8 (6)%; and if
DN, is varied by +10%, then x. varies by only +5%.

Figure 6 shows the order parameter Sd;, obtained from
a. and I,, through (2.18). In both phases Sd;, is in the
range 0.8 —0.9, except a few degrees within the N& -L~
transition, at which Sd;, =0.65 (for X, =40 nm).

By combining the Sd;, values in Fig. 6 with the mea-
sured quadrupole splittings v& in Fig. 2, we can obtain
the local quadrupole coupling constant y&„ from (2.9).
We then make use of the relation [12]

(1—sd. }
Q(23N )—

4 Pz(cos81 ~ )S~;,

2m/
X ln

C

—1.12

,
2
C

DN,

Q =Jo d;, (0)/vg,

which, according to the results in Sec. II, is given by

(4.7)

(4.8a)

(4.9)

where S&„ is the local order parameter, related to the
orientation of a micelle with respect to the local director
(cf. Sec. IVB), S,z is a known function of the micellar
axial ratio p accounting for orientational averaging by
surface diffusion [12,17], and g is the residual quadrupole
coupling constant (motionally averaged by "internal"
motions only). Taking p and g from our previous work
[12,22], we thus obtain the local order parameters shown
in Fig. 6. The (asymmetric) error bars include the propa-
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gation of the uncertainty in axial ratio p=3.5+0.5 [12].
It is interesting to note that the local orientational order
is substantially lower for the oblate micelles in the N~
phase than for the prolate micelles in the Nc phase.

Having determined v, we can then use Q( H) to obtain
the nematic viscosity g from (4.8b). However, as the re-
sulting (xlri+'DsDs) is close in value to the estimated

DsDs (even smaller for the ND phase) it is clear that we
cannot obtain reliable results for g. In Fig. 5 we, there-
fore, show the quantity (~lri+DsDs), which provides an

upper bound on DsDs (corresponding to ri~ ~) and a
lower bound on ri (corresponding to DsDs=0). In the

Nc phase, the minimum nematic viscosity obtained in
this way decreases from 2.0 poise (16.4'C) to 0.4 poise
(25.4'C). If we use our estimate for DsDs (cf. Sec. IV C),
these figures are instead 3.2 and 0.5 poise. In contrast,
for the N~ phase a more accurate estimate of DsDs is
needed to deduce g. As compared to ~ and Sd;„
(Klr)+DsDs ) is somewhat more sensitive to the values of
the estimated parameters; a variation in A., by 10 nm or a
10% variation in D~, changes (alg+DsDs) by 12%.
Due to cancellation, (a lri+DsDs ) is insensitive to g

In a recent study [12],where we interpreted the H and
Na longitudinal relaxation rates essentially in terms of

"internal" motions and molecular diffusion over the

curved micelle surface, we tacitly neglected any contribu-
tion from director fluctuations to the high-frequency lab-
frame spectral densities J, (coo) and J2 (2coo}. We are now
in a position to check this assumption.

Inserting (xlri+DsDs) or Dz, into (2.45), we obtain
for A,, =40 nm cutoff frequencies co, of (0.2 —2.0) X10
s ' and (0.8—2.0) X 10 s ' for H and Na, respective-
ly, in the two samples. Since, therefore, co, &(coo it fol-
lows that (2.47} is an accurate approximation. Calculat-
ing y&„ from the splitting v& and Sz;, via (2.9), we obtain
from (2.42) and (2.47) the director-fluctuation contribu-
tions to J 1 (coo) (Nc ) and to J& (coo) and J2 (2coo) (ND ) of

for 2H and 0.3 s 1 for 23Na jn the Nc+ phase
(and even less in the ND phase). If we decrease the cutoff
wavelength A,, to the largest dimension of the micelles
(approximately 14 nm) then these contributions increase
by a factor 8. Even then, however, the director-
fluctuation contribution is negligible compared to the
local-motion contribution to J, (coo) and J2(2$p) (ap-
proximately 10 s ' for H and approximately 50 s ' for

Na) [12].
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FIG. 5. Temperature variation of the elastic constant ~ (solid

symbols, left scale) and of the effective "diffusion coefticient"
(a lg+Dsos ) (open symbols, right scale) in the N& (top) and
ND (bottom) phases. The error bars correspond to the pro-
pagated random errors in the experimental data. The transition
temperatures are T&1=25.5'C and T» =28.5 C.

FIG. 6. Temperature variation of the director-fluctuation or-
der parameter Sd;, and the local order parameter S& in the N~
(top) and ND (bottom) phases. The error bars for Sd;, corre-
spond to the propagated random errors in the Na data, while
for S&„ they also account for the propagated uncertainty in mi-

celle size (cf. text). The transition temperatures are
Ter=25. 5'C and T» =28.5 C.
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V. CONCLUDING DISCUSSION

In this work we have demonstrated that director fluc-
tuations dominate the transverse spin-relaxation rates
from lyotropic nematic liquid crystals, which thus con-
tain valuable information about the viscoelastic proper-
ties of these phases. Counterion nuclei (such as Na) see
an effectively static director field, whence the local direc-
tor orientation is modulated exclusively by translational
diffusion. Consequently, the zero-frequency spectral den-
sity J0 (0} provides access to the elastic constant of the
nematic fluid (if the macroscopic counterion diffusion
coefficient is known and if the corrections for local
motions can be estimated). Surfactant-bound nuclei (such
as H), by virtue of their slower diffusion, experience the
viscoelastic director-fluctuation (collective reorientation)
modes, thus providing access to the nematic viscosity (if Ir

is known, e.g. , from counterion relaxation data, and if the
surfactant diffusion coefftcient can be estimated).

As shown in our previous NMR study of the present
nematic phases [12], the strong temperature dependence
of the H and Na quadrupole splittings (cf. Fig. 2) is due
mainly to a reduction of the nematic order parameter
S =Sd' S] with increasing temperature. On the basis
of the present analysis, the qualitatively different ternper-
ature dependence of the linewidths (cf. Fig. 3) from the
two phases can be rationalized in terms of the director-
fluctuation spectral density Jad;, (0) (cf. Table I) as fol-
lows. The temperature dependence of Jad;, (0) derives
essentially from the two factors (1—Sd;, ) S~„-S~„/x.
and I/D~, or I l(lrlg+Dsos); the former is a measure
of the amplitude of the fluctuations and the latter is a
measure of the fluctuation time scale. As can be seen
from Figs. 5 and 6, the amplitude increases while the fluc-
tuation time decreases with increasing temperature. In
the N& phase the amplitude factor has the strongest tem-
perature dependence, thus accounting for the monotonic
linewidth increase in Fig. 3. In the Nz phase the temper-
ature variation in the two factors nearly cancel, thus ac-
counting for the nearly temperature-invariant linewidth
in Fig. 3.

As far as we know, the only previous spin-relaxation
study of a lyotropic nematic phase is that of Wong and
Jeffrey [38], who reported H R2(=mdiv," ) data from
the o.'-deuterated surfactant in the Nz phase of the sys-
tem potassium laurate-decanol-potassium chloride-water.
The temperature variation of R2 from this phase is quali-
tatively similar to the results (Fig. 3) from our Xn phase:
a high-temperature plateau and an increase (although
much stronger than in our case) of the transverse relaxa-
tion rate at lower temperatures. Wong and Jeffrey attri-
buted the high-temperature plateau to H-'H dipolar re-
laxation and the low-temperature increase to extremely
slow trans-gauche isomerization. In light of the present
work, we propose a different interpretation in terms of
director fluctuations. Neglecting surfactant diffusion, the
temperature dependence of Rz should then derive essen-

tially from the viscoelastic constants in the combination
g/~ . The strong increase in R2 as the low-temperature
phase boundary is approached can thus be ascribed large-
ly to an increasing nematic viscosity, the elastic constant

being less temperature dependent (cf. Fig. 5). On the oth-
er hand, Wong and Jeffrey did invoke director fluctua-
tions to account for the high fre-quency spectral densities
J, (co0) and Jz (2co0), basing their conclusion on the as-
sumed I /&co form of the director-fluctuation dispersion.
As shown in Secs. II D and IV D, however, the appropri-
ate frequency dependence for lyotropic nernatic liquid
crystals is of the form I/co . As discussed elsewhere [12],
it appears that the high-frequency spectral densities can
be adequately accounted for in terms of diffusion of the
surfactant molecule over the curved mieelle surface.

Finally, we briefly compare the viscoelastic constants
and order parameters deduced here with the rather limit-
ed amount of published data, obtained by other methods,
for related lyotropic nematic phases. In making such
comparisons, it should be borne in mind that our nematic
samples, with a micelle volume fraction of 0.27, are
unusually dilute.

The nematic order parameters derived from x-ray and
neutron scattering are typically in the range 0.8—0.9
[39—42]. As it has been suggested [40] that the order pa-
rameter derived from scattering data is due mainly to
long-wavelength orientational fluctuations, we identify it
with our Sd;, . As can be seen from Fig. 6, our Sd;, values
are indeed consistent with this interpretation.

Next we consider the elastic constant ~. For the Nz
phase of the system decylammonium chloride-ammonium
chloride-water Zhou, Stefanov, and Saupe [43], from
measurements of magnetic-field-induced deformations,
obtained K&=2.6 pN and ~3=4.7 pN for the splay and
bend elastic constants at a temperature of 48'C (7'C
below the nematic-isotropic transition}. According to
mean field theory [44,45] the elastic constants should
scale as (PS„,) . Taking into account the higher micelle
volume fraction (/=0. 44) in the sample studied by
Zhou, Stefanov, and Saupe, their elastic constants are
close to those obtained here (cf. Fig. 5). More sophisti-
cated theories [46,47] suggest that the elastic constants
also should depend sensitively on the micelle size and the
intermicellar interaction. Electron microscopy studies
[48] suggest, however, that the micelles in the phase in-
vestigated by Zhou, Stefanov, and Saupe are of a size
comparable to that in the present phases [12].

The "diffusion coefficient" a/g for director fluctua-
tions has been obtained by Lacerda Santos, Galerne, and
Durand [49] for the Xz& phase of the system potassium
laurate-decanol-water using Rayleigh scattering. (X-ray
scattering studies [39] indicate that the oblate micelles in
this phase have an axial ratio of approximately 2.8, i.e.,
not far from the value 3—4 obtained [12] for our Nn
phase. ) At 19 C, about 20'C below the nematic-isotropic
transition, these authors report D, ~,„=a, /g, &,

m s '. Referring to Fig. 5, we note that these values are
in the same range as those obtained here (assuming that
Dsns does not make a dominant contribution).
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