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Fast and slow sound in a dense gas mixture of helium and neon
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(Received 21 August 1991)

For a dense gas equilibrium mixture of 65 at. % He and 35 at. % Ne at T=39.3 K and p = 114bar, we

determine from neutron scattering the total dynamic structure factor S(k, co) as a function of frequency
co for wave numbers 4& k &28 nm '. For all k, S(k, co) is a sum of four Lorentzians; two located at
co= +co,"'(k) (directly visible for smaller k) and two located at co= +co,' '(k) (not visible). co,"'(k))ck can
be attributed to fast oscillations of the light He particles (fast sound) and m,"'(k) & ek to slow oscillations
of the heavy Ne particles (slow sound), where c is the hydrodynamic (k~0) sound velocity of the total
mixture. co',"(k) is virtually indistinguishable from the (extended) sound dispersion measured in pure
helium at T=39.3 K and p =114 bar. A kinetic model, consistent with our experiment, predicts that
fast sound vanishes at k =0.7 nm ' and that slow sound merges into hydrodynamic sound then.

PACS number(s): 61.12.—q, 05.20.—y, 61.20.Lc

I. INTRODUCTION

Recent theoretical calculations [1,2] and molecular-
dynamics (MD) simulations [3,4] on disparate-mass
binary fluid mixtures in equilibrium have shown that in
the partial dynamic structure factor Sii(k, co} of the light

component (1} side peaks occur at the frequencies
co=+co,'"(k) for wave numbers k beyond the hydro-

dynamic regime (k &kH, with kH the limiting hydro-

dynamic wave number}. Since co,'"(k}& ck, with c the hy-

drodynamic speed of sound, the side peaks in Sii(k, co)

are attributed to fast oscillations supported by the light
particles alone (fast sound). It appears that for k &ktt,
the heavy particles (2) cannot follow the oscillations of
the light particles, a new effect not seen in hydrodynam-
ics (k & kH), where the constituents oscillate simultane-

ously so that c is determined by both components of the
mixture. Indeed, for k & kH, no side peaks at +co,'"(k)
occur in the partial dynamic structure factor S2z(k, co) of
the heavy component. Instead, Sz2(k, co) shows side
features at to=+co,' '(k), i.e., either very weak shoulders

[3] or (not directly visible) Lorentzians obtained from line
fitting [1,2,4]. The frequency co,' '(k) & ck is attributed to
slow oscillations due mainly to the heavy particles (slow
sound). Thus both theory and MD predict that for
binary mixtures the hydrodynamic (k & ktt ) sound
dispersion co, (k)=ck will split up for increasing k & kH
into two branches: fast sound co,"'(k)&ck and slow
sound co', '(k) &ck.

The total dynamic structure factor S(k,co) measured

by neutron scattering [5] on a dense gas mixture of 65
at. %%uoH ean d3 5at . %Neat temperatur eT=39.3 Kan d
pressure p = 114 bar shows clear side peaks or shoulders
at co,"'(k) & ck, in agreement with the predicted existence
of a fast-sound mode in mixtures. A series of light-
scattering experiments on dilute gas mixtures has shown
the existence of both fast and slow sound [6,7]. In this
paper we give a more-detailed account of the neutron-
scattering experiment reported in Ref. [5]. In particular,

we show that S(k,co) can be described very well by a sum
of four Lorentzians located at +co,"'(k) [with co',"(k)& ck]
and +co,' '(k) [with co,' '(k) & ck]. The two directly visible
Lorentzians at +co,"'(k} are almost certainly due to fast
oscillations of the light He particles, since to,"'(k) agrees
perfectly with the extended sound dispersion co, (k) ob-
tained from a recent neutron-scattering experiment [8] on
a corresponding pure-He state at T=39.3 K and p =114
bar. We argue that the two (not directly visible)
Lorentzians of the He-Ne mixture, located at +co,' '(k),
are most likely due to slow oscillations of the heavy Ne
particles. The reason is that the two Lorentzians at
+coI '(k) determine the half width at half height coIt(k) of
the total S(k,co), and that the observed behavior of
coH(k) can be understood from the dynamics of the Ne
atoms in the He-Ne mixture. We find that all observed
wave numbers 4&k &28 nm ' are beyond the hydro-
dynamic regime, i.e., k )kH. The most obvious
difference between hydrodynamic predictions and our
present results is that in hydrodynamics (k & kH ) S(k, co)

is described by two (different) central Lorentzians (due to
heat and mutual particle diffusion) and two Lorentzians
located at co=+ck (due to hydrodynamic sound propaga-
tion) [9]. To make a connection between the two k re-
gions, we present a kinetic model that is consistent with
our experimental S(k,co) for k & kJt and can be extended
to k &kH. This model predicts that kH=0. 7 nm
where fast sound vanishes and slow sound merges into
hydrodynamic sound.

This paper is organized as follows. In Sec. II we give
the details of the neutron-scattering experiment from
which the total S(k, co) of the He-Ne mixture is deter-
mined. In Sec. III we present the results derived from
S(k, co) either directly or indirectly (by Lorentzian line
fitting}. In Sec. IV we discuss the kinetic model that ex-
tends the results to hydrodynamics. We end with a dis-
cussion in Sec. V. Throughout we use the results of the
neutron-scattering experiment on pure helium [8] as a
reference for the behavior of the light component (He) in
our He-Ne mixture.
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II. EXPERIMENT

Our neutron-scattering experiment on the He-Ne mix-
ture was performed on the rotating-crystal spectrometer
RKS2 at the Interfaculty Reactor Institute in Delft. The
monochromatic incident beam of neutrons on the He-Ne
sample had a cross section of 2. 5 X 10 cm and an intensi-
ty of Io =800 neutrons/cm s. The wavelength A.o=0.200
nm of the neutrons in the incident beam was selected by a
rotating pyrolytic graphite crystal (18750 rpm) and using
the (004) Bragg reflection (Bragg angle 8((=36.6'). The
sample container was a single aluminum cylinder with
length 11 cm, diameter 2 cm, and wall thickness 0.1 cm
subdivided into six parts, with disks of boron nitride (a
pure absorber) to reduce multiple scattering. This con-
tainer was filled at T=39.3 K first with pure He up to a
pressure p =83 bar and then with purified natural Ne up
to a total pressure p =114 bar. The number densities n,
of He and nz of Ne of the resulting He-Ne sample are
n, =12.1 nm (derived from Ref. [10]) and nz=6. 5

nm (derived from a mass-spectroscopy measurement
on the total sample). We note that this value of nz differs
from the estimate nz =3 nm reported in Ref. [5], which
was derived from ideal mixing rules.

Spectra I((i(,co) as a function of scattering angle P and
energy-gain or -loss frequency e were obtained from the
measured intensity of scattered neutrons and their time of
flight from the sample to the detectors. We used 56
detectors located at a distance 1.503 m from the sample
at angles —17.6' P 69.3' with ~P~ 4.4'. The experi-
ment was done in four steps, each step taking about 200
h. First, the He-Ne scattering was measured. The total
scattering of the He-Ne sample was 5% so that, also due
to the boron nitride disks, we can safely neglect the effect
of multiply scattered neutrons in the sample. Second, to
account for background and the shielding of the con-
tainer by the sample, the empty container was filled with
a very small amount of He gas (a pure and strong ab-
sorber) that absorbs as many neutrons as the He-Ne sam-

ple scatters. Thus, the background spectra It((g, co) are
obtained in a manner similar to the determination of the
spectra I((ii, co). Third, to account for frequency resolu-
tion and absolute normalization, the empty container was
filled with vanadium foil for which the scattering proper-
ties are known, yielding the spectra I„((i(,co). Finally, the
empty container is filled again with He gas to determine
the background spectra I(( „(P,co) relevant for I„(g,co).
From the difference I„((i(,co) It( „(P,co) we det—ermine the
resolution function of the spectrometer. The half width
at half height of the resolution functions is h~z =0.95
ps '. The difference I„((i(,co) Ie „(P,co) is also u—sed as a
standard for absolute normalization of I(g, co) It((g, co). —
The spectra I(g, co) I((((i(,co) are furth—er corrected for
detector efficiency and the resolution of the spectrometer
and interpolated from constant P to constant k using
standard correction procedures [11]. Finally, the spectra
are symmetrized in co using the quasiclassical approxima-
tion [11]. The size of the error in the spectra so obtained
will in general depend on k and co due to different detec-
tor efficiencies (which depend on P), the subtraction of

+2(x,xz )'i b*, b z S,z(k, co), (2.1)

with x, =n, /(n, +nz)=0. 65 the number concentration
of He, xz=n z/(n (+n z)= 03 5 the number concentra-
tion of Ne, and b the normalized scattering length of
species j, i.e.,

b'=b /(x b . +x b )' (2.2)

with b
&

=3.26 fm the scattering length of He and

b2 =4.55 fm the scattering length of Ne, so that

x, bi =0.49, xzbz =0.51, and 2(xixz)'~ bibz =1.00.
In Eq. (2.1) the S(((k,co) are the partial dynamic structure
factors given by

SJ((k,co)= f dt e' 'F, , (k, t), (2.3)

with j or l =1,2, and the FJ((k, t) are the intermediate
partial scattering functions

F ((k, t ) = ( [5nj(k, O) ]'5n((k, t ) ) . (2.4)

Here the angular brackets denote the equilibrium canoni-
cal ensemble average, the asterisk denotes complex conju-
gation, k is a wave vector with length k, and 5n((k, t ) is a
microscopic plane-wave density fluctuation of species
l = 1 or 2 at time t, given for kAO by

(2.5)

with N( the nuinber of particles of species l and r'(('(t) the
position of particle p of species l at time t. We refer to
S»(k, co) in Eq. (2.1) as the He contribution (describing
the dynamics of the He density fluctuations in the mix-
ture), to Szz(k, co) as the Ne contribution, and to
Siz(k, co) as the cross term (describing the influence of He
fluctuations on Ne fluctuations and vice versa). The re-
sults for the total S(k, co) [cf. Eq. (2.1)] are presented in
the next section.

III. RESULTS

In this section we present the results of our neutron-
scattering experiment on the 65% He and 35% Ne mix-
ture at T=39.3 K and p =114 bar. As a reference, we
compare the data for the He-Ne mixture with results ob-
tained from a neutron-scattering experiment [8) on pure
He at T=39.3 K, p = 114 bar, and number density [10]
n =15.1 nm . The dynamic structure factor S(k, co) of
pure He is given by expressions equivalent to Eqs.
(2.1)—(2.5) with x, =1 and xz=O. For both fluids we
present and discuss S(k, co) Sec. (IIIA), their areas Sec.
(III B), second-frequency moments Sec. (III C), half
widths Sec. (III D), and the results obtained from
Lorentzian line fitting (Sec. III F).

the background (which depends on P and co), and the in-
terpolation from constant P to constant k.

Thus we obtain the absolutely normalized symmetric
total dynamic structure factor S(k, co) of the He-Ne mix-
ture, given by

S( k, co)=x, bi S„(k,co)+xzbz Szz(k, co)



45 FAST AND SLOW SOUND IN A DENSE GAS MIXTURE OF. . . 3751

A. Dynamic structure factor

In Fig. 1(a) we show the total S(k, co) of the He-Ne
mixture [cf. Eq. (2.1)] as a function of co for wave num-
bers k =5, 6, 7 and 8 nm '. One observes clearly visible
side peaks in S(k, co} at frequencies we shall call co,"'(k }.
In Fig. 1(b) we display the S(k, co) of pure He at the same
values k =5, 6, 7 and 8 nm '. One finds (in fact, for all
k) that the S(k, co) of pure He are rather featureless, do
not show any side wings (cf. Fig. 1), and therefore appear
quite different from the S(k, cu) of the He-Ne mixture.
[In Fig. 1(b) we only show the error in S(k, co), averaged
over cu. ] In Fig. 2 we show the S(k, co) of the He-Ne mix-
ture for wave numbers k=9, 10, . . . , 20 nm '. Side
wings or shoulders in S(k, cu) can still be observed at
finite frequencies coI')(k ) (albeit barely for most k values).

B. Static structure factor

Next we consider the areas of S(k,co), i.e., the static
structure factors S(k) given by

S(k)= f dcoS(k, c0), (3.1)

so that for the He-Ne mixture [cf. Eq. (2.1)],

S(k)=x,b; S„(k)+xzbz Szz(k)

+2(x)xz)' btbzStz(k), (3.2)

where the partial structure factor Sji(k} is the area of
SJI(k &co)

In Fig. 3 we plot S(k) of the He-Ne mixture and of the
pure-He state. Both S(k) are very similar and appear to
be hard-sphere-like. For pure He we find a best fit with
the theoretical Percus- Yevick hard-sphere S(k) [12]
when we take 0.&=0.248 nm as the equivalent hard-
sphere diameter of the He particles (cf. Fig. 3). Using
this value o, =0.248 nm for the helium particles, we find
a best fit of the S(k) of the He-Ne mixture with the
Percus-Yevick hard-sphere S(k) of mixtures when we
take 0.2=0.288 nm as the equivalent hard-sphere diame-
ter of the Ne particles (cf. Fig. 3). According to the
Percus-Yevick theory, the static structure factor S(k) of
a mixture depends only on n „o.„b&, and n2, 0.2, and b2.

Since o z/cr, is close to 1, the S(k) of the He-Ne mixture
is very similar to that of a pure Quid with number density
n, +n2 and particles of size o., =o.2, i.e., roughly to that
of pure He (cf. Fig. 3). The large difference between the
He mass m

&
and Ne mass rnz (rnz/m

&
=5) is irrelevant

to understand S(k). As a further consequence of this
theory, the contribution to the total S(k) in Eq. (3.2) of
the helium particles [-S»(k)] and neon particles
[-Szz(k )] in the He-Ne mixture is about equal for all k.
The cross term [-S,z(k)] contributes considerably less
to S(k) than the He or Ne term.

Mz(k)=x, b; (Pm, ) '+xzbz (Pmz) (3.4)

with p=(k~T) '. Here (pmt} ' and (pmz} ' are the
reduced second-frequency moments of the helium contri-
bution S

& t ( k, co) and neon contribution Szz ( k, co) to
S(k, co) in Eq. (2.1), respectively. The reduced
second-frequency moment of the cross tertn S&z(k, co}
in Eq. (2.1) vanishes. Thus [cf. Eq. (3.4)] Mz(k)
=0.49(Pm&) '+0.51(Pmz} '=0.048 nm ps, agree-
ing reasonable well with the experimental values. Due to
the large mass ratio mz/m, =5, 83% of the theoretical
Mz(k} is contributed by the first term 0.49(Pm, ) ', i.e.,
by the light helium component in the mixture. This im-
plies that the large-co behavior of the total S(k, co) of the
He-Ne mixture is strongly dominated by the contribution
of the helium particles. The theoretical value of Mz(k)
for the pure-He state is Mz(k)=(Pm, ) '=0.0816

C. Second-frequency moment

The reduced second-frequency moment Mz(k) of
S(k, co) is defined by

M, (k) = f dco(co/k )'S(k, co), (3.3)

and is therefore typical for the large-co behavior of
S(k,co). In Fig. 4 we display the experimental Mz(k) of
the He-Ne mixture and of pure He, where one sees that
Mz(k} of He-Ne is considerably smaller than Mz(k) of
He. The theoretical value of Mz(k) for the He-Ne mix-
ture is given by [cf. Eqs. (2.1)—(2.5)]

10
I

CO

0

I I

5 nm' (a)

(b)

I I I

k = 6 nm' (a)

(b)

I I I

k = 7nm'(a)—

}INW-

I' (a)-

0
0

FIG. 1. Dynamic structure factors S(k,co) (error bars) of (a) Heo 65Neo 35 and (b) pure He both at 39.3 K and 114 bar as a function
of co. Solid curves are the best Lorentzian line fits with (a) four and (b) three lines. Arrows point to the frequency co,' '(k) of slow
sound [dashed arrow in (a)], co',"(k) of fast sound [solid arrow in (a)], and co, lk) of normal extended sound [solid full arrow in (b)].
Note that co',"(k)=ca,(k), and that the half width for pure He [in (b)] is much larger than for Heo 6~Neo 3~ [in (a)].
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nm ps (cf. Fig. 4), also in agreement with experiment.
Therefore, the large increase in M2(k) from the He-Ne
mixture to the pure-He state (cf. Fig. 4) is due to the fact
that mainly the He particles in the mixture contribute to
M2(k), while there are fewer He particles per unit
volume in the mixture than in the pure-He state. As a
consequence of these results, the total S(k, co) of the He-
Ne mixture is dominated for small co by the neon contri-
bution; since S»(k, co) and Sz2(k, co) in Eq. (2.1) have
about equal area, S»(k, co) )S22(k, co) for large co, so that
S»(k, co) (S22(k, co) for small co.

D. Half width

S(k)

I.O

I I I
t

I I I I
i

I I I I I I I I I

0.5

(a)

I I I I I I

I I I I I I

0 0
I I I I

t
I I I I

I
I I I

I.O

The quantity most typical to characterize the small-co
behavior of S(k, co) is the half width at half height coH(k),
defined by

0,5

(b)

S(k, coH(k ) }=—,'S(k, O) . (3 5)

In Fig. 5 we plot co&(k) for the pure-He state and for the
He-Ne mixture. One observes that coH(k) of pure He is
for all k considerably larger than cozen(k) of the mixture,
as can also be seen directly in Fig. 1. To understand, glo-
bally, the behavior of coH(k) of pure He, we consider the

0 l5 50
k (nm')

FIG. 3. Static structure factors S(k) as a function of k for
pure He [closed circles in (a)] and for He06&Neo 3& [crosses in
(b)] both at 39.3 K and 114 bar. Solid curves are theoretical for
corresponding hard-sphere fluids.

0
CQ

5
I

CD

0

0

I 1

k=15nm

k = 16nm'

coH" (k ) =k [Pm ) S(k ) ] (3.6)

In Fig. 5 we also show I '=5.7 nm ' (arrow) and
coH"(k), with S(k) taken from the Percus-Yevick theory
[cf. Fig. 3(a)]. The half widths coH(k) and coH'(k) of pure
He indeed agree well for k & I ' (cf. Fig. 5), meaning that
free motion is the physical process most relevant to un-
derstand S(k, co) for k &)I

equivalent Quid of hard spheres with diameter 0
&
=0.248

nm. For this pure Quid of hard spheres, the mean free
path between collisions is l =0.175 nm. Then, for large
wave numbers k ))I ', one might expect that S(k, co) is
determined by the free motion of the He particles, so that
S(k, co) is Gaussianlike in co with area S(k}and reduced
second-frequency moment (Pm, ) '. Therefore, using
this Gaussian shape of S(k, co), the half width coH(k) of
pure He should be approximately given by

m 11

0

13

C4
~~ 0.~2

0.08
moo

W
g ~ ~

~ ~

0
0

0
10 0 10

0.04

o.oo

+++++++~++ ++++++++g+ ++-y+++ +

~ (P~ ) 15
k(nm )

30

FIG. 2. Dynamic structure factors S(k,co) (error bars) of
He06~Ne035 at 39.3 K and 114 bar as a function of co. Solid
curves are the best four-Lorentzian line fits. Arrows point to
the frequencies co,' '(k) of slow sound (dashed arrow) and co',"(k)
of fast sound (solid arrow).

FIG. 4. Reduced second-frequency moment M2(k) as a func-

tion of k for pure He (closed circles from experiment, upper
solid curve from theory) and for Heo 6,Neo 35 [crosses from ex-

periment, lower solid curve from theory, cf. Fq. (3.4)].
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FIG. 5. Half width coH(k) as a function of k for pure He

[closed circles from experiment, upper solid curve from Eq.
(3.6)] and for Heo 65Neo 35 [crosses from experiment, lower solid
curve from Eq. (3.7)]. The arrow points to k =1

To understand co+(k) of the He-Ne mixture, we as-
sume that coH(k) is determined fully by the neon contri-
bution S22(k, co) in Eq. (2.1) and distinguish two k re-
gions: k=1 ' and k »1 ' (with 1=0.175 nm as a typi-
cal length for the averaged mean free path also in the
mixture). For k »1 ', Sz2(k, co) will be Gaussianlike
with area Szz(k) and reduced second-frequency moment

(pmz) ', since the Ne particles can be expected to move
freely then. Thus, the half width is approximately given
by

FIG. 6. Reduced half widths coH(k)o. 2/Do as a function of
reduced wave number ko 2 for Heo 65Neo 35 (crosses, o 2=0.288
nm, o z/Do =3.3 ps), for latex in benzene (open circles, o.

2
=219

nm, crz/DO=16 ms), and AH(k)=Dok (dashed curve, Stokes-
Einstein). The arrow points to k =I

cr~/Dc = 16 ms. The agreement between the reduced half
widths cole(k) of Ne in He and coH(k) of latex spheres in
benzene is good for kcr2(3 (cf. Fig. 6). Thus, we con-
clude that the small-co behavior of the total S(k, co) ob-
served in our He-Ne mixture (cf. Figs. 1 and 2) can be at-
tributed to the motion of the neon particles, not only for
k »1 ' (free motion), but also for k=1 ' (diffusive
motion).

coH'(k ) =k [pm 2S~2(k ) ] (3.7) E. Line fitting

We show coH'(k) in Fig. 5, with Sz2(k) taken from the
Percus- Yevick theory for hard-sphere mixtures
(o &=0.248 nm and oz=0. 288 nm). The agreement of
cole'(k) [cf. Eq. (3.7)] with the experimental half widths
coH(k) of the He-Ne mixture, seen in Fig. 5 for k »1
is good enough to ascertain that, indeed, the heavy, free-
moving Ne particles determine the relatively small half
widths coH(k) of the mixture.

For k =1 ', we assume that S22(k, co) is determined by
a diffusivelike motion of the Ne particles through a fluid
of He as if the He-Ne mixture were a colloidal suspen-
sion, with Ne as the colloidal particles and He as the sol-
vent. For colloidal suspensions, it is found [13—15] both
theoretically and experimentally that the reduced half
width coH(k)o 2/Do of the dynamic structure factor
Sz2(k, co) of the colloidal particles (labeled 2) is a function
only of the reduced wavenumber ko 2 and reduced densi-
ty n2o2, where Do=(3mptlcrz) ' is the (Stokes-Einstein)
diffusion coeScient of a single colloidal particle in the
solvent, with g the shear viscosity of the solvent. In Fig.
6 we plot for the He-Ne mixture and 4 & k & 15 nm ' the
reduced half width coH(k)o2/Do as a functio. n of ko2,
with o.

2 =0.288 nm, reduced density n 2o.z =0.15,
Dc = (3mPrio 2)

' =2.51 X 10 m /s and o 2/Do =3.3 ps.
Here g is the shear viscosity of the solvent, i.e., of the
pure-He fiuid [16] (T=39.3 K, p =114 bar,
g=7.9X10 Ns/m ). In Fig. 6 we also plot the experi-
mental reduced halfwidths co~(k )o 2/Do as a function of
ko2 for a real colloidal suspension [15] at virtually the
same reduced density n2crz=0. 14 i.e., for a suspension of
latex balls (diameter o2=219 nm) in benzene at room
temperature, for which Do =3.0 X 10 ' m /s and

For all wave numbers k, the dynamic structure factor
S(k, co) of the pure-He state [cf. Fig. 1(b)] can be de-
scribed very well by three Lorentzians in co: one central
line and two side lines located at the frequencies +co, (k)
[8]. The best three Lorentzian line fits are shown in Fig.
l(b) as solid curves. The locations of the side lines in
S(k, co) at co, (k) are given by solid arrows in this figure.
Of the parameters obtained from the best fits, we only
need here the frequency co, (k), which we shall call the ex-
tended sound dispersion of pure helium. We show co, (k)
as a function of k in Fig. 7. One observes that co, (k) is
close to the hydrodynamic sound dispersion cH, k, with
cH, =534 m/s the speed of sound in the pure-He state
[10].

We find for all k that the S(k, co) of the He-Ne mixture
cannot be described adequately with three Lorentzians.
Instead, we need four Lorentzians for an accurate
description of the total S(k, co): two lines located at
+co,"'(k), and two lines at +co,' '(k). In fact, we describe
S(k, co) of the He-Ne mixture by

1S(k, co) =—S(k) Re
7T i co+z„'~'(k)

(3.8)

where the four Lorentzians are labeled with j =1 or 2
and p=+ or —and where A'f'(k)=[A'~'(k)]* are
complex-conjugate amplitudes and z'g'(k) = [z'i'(k) ]' are
complex conjugate frequencies. We define

z„'J'(k) =p, i co,' '(k)+z,' '(k), (3.9)

with p=+ or —,and define co,'"(k) &co,' '(k). Then for
j= 1 or 2, z,'J'(k) is the half width and
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Fig. 8). The fast-sound frequency co',"(k) obtained from
line fitting [cf. Fig. 8(a)] agrees very well with the location
of the visible side peak directly read off from S(k, co),
which is plotted as a function of k in Fig. 7. One also
sees in Fig. 7 that the location co,"'(k}of the He lines in
S(k, co) of the He-Ne mixture is virtually indistinguish-
able from the extended sound dispersion co, (k) of the
pure-He state. In addition, one observes in Fig. 7 that
co,"'(k) is significantly larger than the hydrodynamic
sound dispersion ck of the He-Ne mixture. Here c =362
m/s is the speed of sound of the He-Ne mixture, calculat-
ed from a phenomenological equation of state [17,18].
The sudden drop in coI"(k) seen in Fig. 8(a) at k=13
nm ' is probably not significant, as will be discussed at
the end of Sec. IV D.

10 15
IV. KINETIC MODEL

k (nrn ')
FIG. 7. Fast-sound frequency co',"(k) as a function of k for

He06&Neo 35 (crosses with error bars, read off from Figs. 1 and

2), the extended-sound frequency co, (k) for pure He (closed cir-
cles), and the hydrodynamic-sound dispersions ck for
Heo 65Neo 35 (solid straight line, with c =362 m/s) and pure He
(dashed straight line, with c =534 m/s).

S(k)Re A 'g'(k) =S(k)Re A 'J'(k) is the area of the
Lorentzian located at co,'~'(k) or at —coIJ'(k). The right-
hand side of Eq. (3.8) contains eight free parameters that
are all determined by a fit to the exponential S(k, co).
The best fits of S(k, co) with four Lorentzians [cf. Eq.
(3.8)] are shown in Figs. 1(a) and 2 as solid curves. For
each k we also plot the locations co,"'(k) (solid arrow) and

coI '(k) (dashed arrow). One observes in Figs 1(a) a.nd 2
that the Lorentzian at co,"'(k) is located roughly where
one sees a side peak or wing in S(k, co), while no directly
visible features are seen in S(k, co) at co,

' '(k). In Fig. 8

we plot the parameters of the four I.orentzians in Eq.
(3.8) as functions of k. We show for j =1 or 2 coIJ'(k) in

Fig. 8(a), z,'J'(k) in Fig. 8(b), ReA'g'(k) in Fig. 8(c) and
ImA'f (k) in Fig. 8(d). Due to the large number (eight)
of free parameters in Eq. (3.8), the scatter in the results is
considerable. Nevertheless, we can conclude the follow-
ing. Since ReA '+'(k) »ReA'+'(k) [cf. Fig. 8(c)], the
area of the slow-sound line at co,' '(k) is much larger than
the area of the fast-sound line at co,"'(k). Thus, slow
sound dominates the shape of S(k, co ). Both the slow-
and fast-sound lines are strongly asymmetric around
co,' '(k) and co,"'(k}, respectively, since both ImA'+'(k)
and ImA'+'(k) are significantly difFerent from zero [cf.
Fig. 8(d)]. The two dominating Lorentzians at +co,' '(k)
determine the central part of the total S(k, cu), in particu-
lar its half width co~(k)=z,' '(k) [cf. Figs. 5 and 8(b)].
Therefore we refer to the two Lorentzians at +co,' ~(k) as
the "neon lines" that are not separately visible in S(k, co),
since co,' '(k) (z,' '(k) [cf. Figs. 8(a) and 8(b)]. We refer to
the two Lorentzians at +co,'"(k) as "helium lines, " direct-
ly visible in S(k, co) since they are well separated from the
Ne lines [co,"'(k ) & co,' '(k)] and since co,"'(k) & z,"'(k) (cf.

In this section we present a kinetic model that is con-
sistent with the experimentally observed total dynamic
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FIG. 8. The eight parameters of the four Lorentzians that de-

scribe S(k, col of Heo 6~Neo „[cf.Eq. (3.8)] as functons of k.

These are (a) co,'"(k), (b) z,' '(k), (c) Re A '+'(k), and (d)

ImA '+'(k). Crosses refer to j = 1 (fast sound) and dots to j=2
(slow sound).
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structure factor $(k, co) [cf. Eq. (2.1)] for k )kH, with the
phenomenological description of S(k,co) in terms of four
Lorentzians discussed in Sec. III, and which can be ex-
tended to the hydrodynamic region k (kH. The kinetic
model is based on five microscopic variables. This set in-
cludes both the four hydrodynamic variables and the four
microscopic variables discussed in Ref. [3],which proved
useful to understand the dynamics in a MD Li-Pb mix-
ture. To apply this model to the present He-Ne mixture,
we need the partial static structure factors S»(k), Sz2(k),
and S,2(k). We discuss an approximation for these SJi(k)
in Sec. IV A, and we present the five microscopic values
in Sec. IV B, the kinetic model in Sec. IV C, the results of
model fitting in Sec. IVD, and the transition to hydro-
dynamics in Sec. IV E.

A. Static structure factors

B. Basic variables

We consider the following five basic k-dependent mi-
croscopic variables of the He-Ne mixture. First, the mi-
croscopic density of He particles 5n, (k)=5n, (k, O)

[given by Eq. (2.5) with t =0] and the microscopic densi-

ty of Ne particles 5n2(k) =5nz(k, O) [cf. Eq. (2.5)]. Next,
the two corresponding microscopic longitudinal veloci-
ties (1= 1 or 2)

IN
ii r' '

5u, (k)= g (vIi'k/k)e
QNi p=i

(4.5)

with l =1 for He and l =2 for Ne. Here rIi' and viiP' are
the location and velocity at time t=O of particle p of
species l, respectively. Finally, the total microscopic en-

ergy density of the mixture, defined by

The partial static structure factors SJi(k) are defined by
Eqs. (2.4) and (2.5), i.e.,

1 ii r' '
N

5e(k) = e(f ie

QNt+N2 i=ii, =i
(4.6)

SJI(k) =Fii(k, O), (4.1)

with j or l =1,2. The total static structure factor Sr(k)
of the mixture (irrespective of the scattering lengths) is
defined by

Sr(k) =xtSi, (k)+x2$22(k)+2(x, x2)' S,2(k) . (4.2)

N.

EI '= 'mivti' —+ 'g g— P i( ~r'i' —rIi'~ ),
j=l q=1

(4.7)

with sI ' the total (kinetic and potential) energy of parti-
cle p of species I,

We use the following three (approximate) relations:

Si i (k) = 1+x,[S~(k)—1],

$~2(k) = 1+x~[Sr(k)—1],

$,2(k)=(x,x2)'~ [Sr(k)—1] .

(4.3)
([5n, (k)]*5n,(k)) =S,,(k),

( [5u, (k)]'5ui(k) ) =5,i(Pm, )

( [5n (k)]*5ui(k) ) = ( [5e(k)]'5ui(k) ) =0,
(4.8)

where QJi(r) is the interaction potential between a parti-
cle of species j and a particle of species l at distance r.

We need the fluctuation formulas (j or l = 1,2)

These so-called ideal mixing rules are valid exactly for
binary mixtures of particles with different masses
(mz/m& arbitrary) but interparticle potentials that do
not depend on the species (in particular for hard-sphere
mixtures with cr2/cr&=1). In that case, Sr(k) of Eq. (4.2)
is the static structure factor of the corresponding pure
fluid in which all particles are made identical by setting
m z /m, = 1. For the hard-sphere mixture ( a 2/o

&

= l. 16)
corresponding to our present He-Ne fluid, we find from
the Percus-Yevick theory that Eq. (4.3) holds well, i.e.,
within S%%uo for all k. We assume that Eq. (4.3) may be ap-
plied also to our present He-Ne mixture (within about the
same accuracy). Thus, using Eqs. (3.2), (4.2), and (4.3),
one has (approximately)

which follow from Eqs. (2.5), (4.1), and (4.5)—(4.7). By
taking linear combinations and using Eq. (4.8), we con-
struct five equivalent basic variables 5aJ(k) of the mix-
ture that are orthonormal, i.e., satisfy

([5a,(k)]"5a,(k)) =5,, (4.9)

with j or I=c,N, P, T, v. These five labels refer to fluc-
tuations in the mutual number concentration (c), the to-
tal number density (N), the total momentum (P), the to-
tal temperature (T), and the mutual relative velocity of
the constituents (U). The five basic fluctuations 5a (k) of1
the fluid are schematically represented in Fig. 9 by five
circles labeled c, N, P, T, and v. The microscopic concen-
tration is given by

Sz.(k)=1+(x,b,*+x~b~ } [S(k)—1], (4.4) 5a, (k)= [x2 5n, (k) —x', 5n2(k)),
1

C

(4.10)

so that Sz-(k) is expressed directly in terms of the experi-
mentally observed total static structure factor S(k).
Since (x,bi +x2bz } =1.028 is close to 1, Sz(k) is vir-
tually indistinguishable from $(k), as given in Fig. 3(b).
We obtain the partial static structure factors S i(k) of our
He-Ne mixture from the experimental S(k) and Eqs. (4.4)
and (4.3).

with the normalization factor

A, (k}= [x,$~2(k)+x2$„(k)

—2(x,x~)' S,2(k)]'

The microscopic total number density is

(4.11)
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1
s,'"(k)= [x z S„(k)—x ', S,z(k )],

C

s~ '(k) =x ' A (k)/A, (k)

1

C

(4.18)

FIG. 9. Schematic representation of the 5X5 kinetic model

matrix H(k) of Eq. (4.22). The circles represent the five basic
variables c, X, I', T, and U, and the springs represent the five

nonvanishing elastic corces f,i(k) of H(k).

5a~(k)= [[xI~ Szz(k) —xz~ S,z(k)]5n, (k)1

A~(k)

s~ '(k) =x ' 'Atv(k)/A, (k )' .

%e use these transformation formulas to express the den-
sity time correlation functions FJt(k, t) of Eq. (2.4} in
terms of time correlation functions of the orthonormal
set 5a (k). We remark that the four 5a (k) with

j=c,N, P, T are the hydrodynamic variables, and the
four 5a (k) with j =c,N, P, u are those used in Refs.

with

+ [x ' S))(k)—x ' S)z(k )]

X5nz(k)], (4.12)

C. Kinetic matrix

%'e introduce the 25 time correlation functions
Gjt(k, t) between the five basic orthonormal variables

5a, (k) by

A~(k) = A, (k ) [S„(k)Szz(k)—[S,z(k )] ]
' (4.13) G/t(k, t)=([5a (k)]'e' 5at(k)), (4.19)

The microscopic total momentum is

5ap(k)=(p/m)'~z[xI~ m, 5u, (k)+xz mz5uz(k)],

(4.14)

with j or l =c,N, P, T, u, with I. the Liouville operator of
the mixture (given in the Appendix), and exp( tL ) the cor-
responding streaming operator replacing all positions and
velocities of the particles at time t =0 by those at time t.
Then the intermediate partial scattering functions
F~&(k, t ) of Eq. (2.4) are given by [cf. Eq. (4.17)]

with m =x,m, +x2m2 the averaged mass of a particle.
The microscopic temperature is F,;(k, t)= y y s"'(k)s,'"(k)G, (k, t),

p=c, Nq=c, N

(4.20)

5aT(k)= [5e(k) —(5e(k)[5a, (k)]')5a, (k)
AT(k)

—( 5e(k) [5az(k) ]' )5az(k) ], (4.15)

where the normalization factor Az(k) follows from Eq.
(4.9) with j=l = T, but will not be explicitly needed here.
Finally, the microscopic relative velocity is G (k t ) [e

—tH(k)] (4.21)

with j or l =1,2 and s'~'(k) with p =c or N given by Eq.
(4.18). In our kinetic model we replace for t ~ 0 the Liou-
ville operator L in Eq. (4.19}by —H(k), where H(k) is a
5 X 5 matrix that effectively (and approximately) describes
the dynamics of the 6ve basic microscopic variables

5a/(k) Thus, for j o. r l=c,N, P, T, U and t ~0,

5a, (k)=(pm&mz/m)' [xz 5u~(k) xl 5uz(k}] .

(4.16)

where the symmetric kinetic matrix H(k) is given by (cf.
the Appendix)

5nj(k) = g s("'(k)5at(k),
1=c,N

(4.17)

One readily verifies from Eq. (4.8) that the five variables

5aj(k) satisfy Eq. (4.9) for all j=c,N, P, T, U. We will ex-

press the microscopic densities 5n&(k) and 5nz(k) in

terms of 5a, (k) and 5az(k) using

H(k)=
0 0 iftvp(k)

0 if', (k} z (k)

0 0 ifpT(k)

if„(k) if~„(k) 0

if,„(k)
if~„(k)

ifpT(k) 0

zzz(k) ifT„(k}

ifr, k z,„(k)

(4.22)

where j = 1 or 2 and where
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f„(k)=
(P~)'/2 A, (k} m, m

1/2

k
(Pm)'"

f¹(k}= k
¹

A, (k)

AN(k)

I (x,x2m 2/m, )' S22(k) —(x,x2m, /m2 )'/ S» (k)
N

+ [x1(m1/m2)' —x2(m2/m, )' ]S12(k)] . (4.23)

Ref—dte ' 'G (k t), (4.24)

where we have used the fact that the G &(k, t) are sym-
metric in t [cf.Eq. (4.19)]. Thus, from Eq. (4.21),

T

Explicit expressions for the remaining so-called "forces"
f~&(k) in H(k) and for the damping rates zJJ(k) are given
in the Appendix. The five nonvanishing elastic forces

f,&(k) of H(k) are schematically represented in Ref. 9 by
springs between the basic variables j or I =c,N, P, T, U.

By definition of the microscopic concentration fiuctua-
tion 5a, (k) [cf. Eq. (4.10) and the Appendix], there is no
elastic force between c and I' (cf. Fig. 9). This implies
that a fluctuation in the microscopic concentration c does
not directly induce a variation in the total microscopic
momentum P.

We need the spectrum S„(k,to) of concentration fiuc-
tuations, the spectrum S)vN(k, co) of total number fiuctua-
tions, and the cross spectrum S,)v(k, co}, defined by (a or
P=c,N)

S &(k,co)= J dt e '"'G &(k, t)

' 1/2

f,„(k)=
(pm }'/2 m)m2

ftvt (k) =
(Pm )' ' QS (k)

(4.28)

f „(k)=, (x,x )'/ m2 —
m&

(Pm)'/2 +Sr(k) (m, m, )'"

Thus the force f,„(k)=u„k is linear in k for all k with
velocity u,„=198m/s [using that (Pm) '/ =184 m/s]. .

The forces fttp(k) and f¹(k) are proportional, i.e.,
fN, (k) =0.86fNt, (k), and behave linearly in k for small k,
i.e., for 0~k (8 nm ', where ST(k)=0.38 is constant
(cf. Fig. 3}. Thus for k ~0, fz~(k) = vNt, k and

fz„(k)=uz„k, with velocities uz&=300 m/s and
UN„= 260 m/s.

We write the experimentally observed S(k, co) of Eq.
(2.1) in terms of the spectra S„(k,co) S)vN(k, co}, and

S,)v(k, co) defined by Eqs. (4.24) and (4.19) using Eqs.
(2.3), (4.20},and (4.27},so that

S(k, t0) =C„(k)S„(k,to)+ CN1v(k)S)tv(k, co)

S p(k, to)= —Re
1 1

with a or P= c,N

(4.25)

with

+ C,N(k)S,)v(k, to), (4.29)

D. Model Stting

Throughout this section we use the ideal mixing rules
given by Eq. (4.3). Then A, (k) [cf. Eq. (4.11)]and AN(k)
[cf. Eq. (4.23)] are

C„(k)=x)x2(b) b2 )—
C )vN(k)=( xb)) +x2b2 ) Sr(k),
C N(k)=2(x)x )'/ (b' b2 )—

X(x,b;+x2b2 )[Sr(k)]'/

(4.30)

A, (k)=1,
AN(k) = [ST(k)]'

{4.26}

s,"'{k)=(x )'

s"'(k) = [x,S,(k)]'",
s(2)(k) — (x )1/2

s(2)(k) —[x S (k)]1/2

(4.27}

and the three forces f„(k), f)v~(k), and fN, (k) of H(k)
in Eq. (4.23) are

with ST(k) defined by Eq. (4.2). The transformation pa-
rameters s1J'(k) of Eq. (4.17) are then given by

Thus S(k, co) is strongly dominated by S)vN(k, (0), since
C)vtv(k) =0.973ST(k) is of order 1, C„(k)=0 027 is very.
small, and C,)v(k)= —0.322[ST(k)]' is intermediate,
and since the S t)(k, (0) are normalized; i.e.,
f +"den S &(k, co}=5 &, with a or P=c,N [cf. Eqs. (4.9),
(4.19), and (4.24)].

We describe our experimental S(k, co) in terms of
S t)(k, (0) (a or P=c,N}, cf. Eq. (4.29), with S t)(k, co)
given by Eq. (4.25), in which the matrix H(k) is given by
Eq. (4.22}. For f,„(k), fNp(k}, and fN„(k) in H(k), we
use Eq. (4.28), with Sr(k) obtained from the experimental
S(k), cf. Eq. (4.4}. We fit S(k, co) with the five unknown
elements of the matrix H(k): ft„{k),f„„(k)and zest, (k),
zTT(k), and z„„(k) as fit parameters. We find that the fits
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are as good as the fits with four Lorentzians shown in
Figs. 1(a) and 2. We show the resulting eletnents of the
matrix H(k) in Fig. 10.

The kinetic matrix H(k) so obtained from the experi-
mental S(k, tu) has five eigenmodes (i.e., eigenvalues and
corresponding eigenvectors) that we call the effective
eigenmodes of the He-Ne mixture, since they effectively
describe the dynatnics of the five basic variables fia. (k)
with j=c,N, P, T, U. These five effective eigenmodes of
H(k) lead directly to a description in terms of five
Lorentzians in co for S &(k, co) with a or P=c,N [cf. Eq.
(4.25)], as well as for the partial dynamic structure factors
SJ,(k, co) with j or 1 =1,2 and the total experimental dy-
namic structure factor S(k, co) [cf. Eq. (4.29)]. We plot
the five eigenvalues of H(k) in Fig. 11.

The matrix H(k) has one diffusive-type eigenmode, i.e.,
one real eigenvalue z, (k):

z„' (k)=pi t0,' '(k)+z, i (k) (4.33)

are two pairs of complex conjugate eigenvalues and
ttj'~'(k) are two pairs of corresponding complex-conjugate
eigenvectors g'g'(k)=[/' '(k)]*. The four propagating
eigenmodes of H(k) show up strongly in S&z(k, co) and
almost completely determine the experimental dynamic
structure factor S(k, co), which is therefore, in practice, a
sum of four Lorentzians only. Indeed, the eigenvalues
z„'J'(k) obtained from H(k), cf. Eq. (4.32) and Fig. 11, are
virtually indistinguishable from the z„'1'(k) obtained from
the four-Lorentzian description, cf. Eq. (3.8) and Fig. 8.
One also observes in Figs. 8 and 11 that the scatter in the
z„'J'(k) derived from H(k) via a fiue-parameter fit (Fig.
11) is less than the scatter in the z„'1'(k) derived from four
Lorentzians via an eight-parameter fit (Fig. 8). In partic-
ular, the k dependence of the fast-sound frequency
A@I"(k) in Fig. 11(a) is smoother than that of co,"'(k) in

Fig. 8(a). Therefore, the sudden drop in tuI"(k) seen in
Fig. 8(a) at k=13 nm ' is possibly not significant, since
it is absent in Fig. 11(a).

H(k)li, (k) =z, (k)p, (k), (4.31)

with corresponding eigenvector g, (k), which has its main
component on the microscopic concentration (c). Thus
the resulting central Lorentzian with half width z, (k)
shows up strongly in S„(k, co ) and very weakly in

S~N(k, co) and S,~(k, co) We fin. d, in fact, that this cen-
tral Lorentzian does not show up significantly in the ex-
perimental S(k, a&) [cf. Eq. (4.29)].

The matrix H(k) has four propagating eigenmodes,
given by

K. Hydrodynamics

In this section we extrapolate the kinetic matrix H(k)
given by Eq. (4.22) and obtained from the experimental
S(k, co) for 4~k ~25 nm ' to the hydrodynamic regime,
i.e., to k~O. As discussed in the Appendix, all five in-
dependent forces f I(k) in H(k) behave linearly in k for
k~0, i.e.,H(k)g„' '(k) =z„' '(k)P„' '(k), (4.32)

f,,(k)=u, ,k, (4.34)labeled with j = 1 or 2 and p =+ or —,where
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FEG. 11. The five eigenvalues of H(k) as functions of k [cf.

Eqs. (4.31)-(4.33)]. Crosses (fast sound) refer to (a) co,"'(k) and
(b) z,'"(k). Closed circles (slow sound) refer to (a) co,' '(k) and (b)

z,' '(k). Open circles in {b) refer to z, (k). The dashed straight
line in (a) is ck, with c=362 m/s. Solid curves in (a) are the ex-
tensions co,'J'(k) to k =0 of Fig. 12.

FIG. 12. The five eigenvalues of H(k) as functions of k ex-
tended to k =0 (from the solid curves in Fig. 10). Solid curves
labeled f (fast sound) refer to (a) c0,"'(k) and (b) z,"'(k). Solid
curves labeled s {slow sound) refer to (a) ap,

' '(k) and (b) z,' '(k).
The unlabeled curve in (b) is z, (k). The dashed straight line in
(a) is ck, with c =362 m/s.

with j or l=c, lV, P, T, U, and where the three velocities
v,„, vN&, and v&, are given below Eq. (4.28), leaving the
two velocities v&T and Uz„as unknown quantities. Furth-
ermore (cf. the Appendix), the two hydrodynamic damp-
ing rates zpz(k) and zTT(k) in H(k) vanish quadratically
in k when k —+0, while the nonhydrodynamic (i.e., kinet-
ic) damping rate z„,(k) approaches a constant z„„(0)then.
We fit all our S(k, co) data with k & 6 nm ' simultaneous-
ly to H(k) [cf. Eqs. (4.29) and (4.25)], with f,;(k) repIaced
by vi&(k) [cf. Eq. (4.34)], z„„(k) replaced by z„„(0),and
z "(k) replaced by

zij(k)=p k +B k (4.35)

with j=P or T.
We find that the resulting best approximations to

S(k, cv) in this seven-parameter fit are good, with
ui,T

= 160 m/s, ur„= 650 m/s, z,„(0)= l.0 ps
Pi =7.8X IO nm /ps. B~=—5.8X10 " nm /ps,
Jr=3.9X10 nm /ps, and Br= —1.1X10 nm4/ps.
These (rough) extensions for the elements of the matrix
H(k) to k ~0 are shown in Fig. 10 as solid curves. Thus,
we can also (roughly) extend the eigenmodes of H(k) to
the hydrodynamic regime 0 & k & kH. In Figs. 11 and 12
we show the extensions of the five eigenvalues z, (k) [cf.
Eq. (4.31)] and z„'~'(k) =pi cv,'J'(k)+z,"'(k), with j= 1 or 2
and p=+ or —[cf. Eq. (4.33)] of H(k} to k~O, where
we find that kH =0.7 nm '. One sees in Figs. 11 and 12
that z, (k) extends smoothly to 0&k &kH, where
z, (k) =D,k, with D, =0.005 nm /ps, the concentration
diffusion coefficient. In Fig. 12 one sees that the slow-
sound mode eigenfrequency co,' '(k) becomes linear,
c0,'~'(k )=ck for 0 & k & kH. Here c= (uN+ +ui T )

' is the
hydrodynamic sound velocity of the mixture determined
by the (hydrodynamic) velocities vzp and vpT, which are

both obtained from our present neutron-scattering exper-
iment at k) kH. This value of c =340 m/s is not too
different from the estimate c =362 m/s derived from the
phenomenological equation of state. For 0& k & kH, the
corresponding damping z,' '(k) becomes quadratic in k,
i.e., z,'2'(k}= I k, with I =0.19 nm2/ps the sound damp-
ing coefficient (cf. Fig. 12). The fast-sound mode frequen-
cy co,'"(k) vanishes for 0&k &kH, and the damping
z,"'(k) sphts into two branches (cf. Figs. 11 and 12}; One-
branch approaches the constant z„„(0)=1.0 ps ' and
corresponds to a kinetic mode of H(k) [eigenvector
-Ba„(k)]. The other branch of z,"'(k) tends to zero qua-
dratically in k, i.e., z,'"(k)=ak2, with a =0.27 nm2/ps
the heat diffusivity. Thus, in hydrodynamics
(0&k &kH), S(k, co) is a sum of four Lorentzians: two
central lines with half widths D, k and ak, and two
lines located at +ck and half widths I k . In hydro-
dynamics, the kinetic eigenmode of H(k) does not show
up in S(k, co}, since 5a„(k) is orthogonal to the micro-
scopic number densities 5n i(k} and 5n2(k) so that corre-
sponding amplitudes in S(k, cv) vanish.

V. DISCUSSION

The experimentally observed total dynamic structure
factor S(k, co) [cf. Eq. (2.1)] of our mixture He065Neo 35
at 39.3 K and 114 bar can be represented very well by
four Lorentzian lines [cf. Figs. 1(a) and 2]. Two directly
visible lines are located at +co,"'(k), with co,'"(k) & ck (fast
sound) and two not separately visible lines at +co,' '(k),
with co,' '(k) &ck (slow sound), where c =362 m/s is the
intermediate hydrodynamic sound velocity of the mix-
ture.

We attribute the fast-sound lines at +co,'"(k) to fast os-
cillations of the light helium (1) particles, since S(k, cv) is
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in its wings dominated by the helium contribution
S»(k, co) in Eq. (2.1). This follows from the behavior of
the zeroth- [S(k); cf. Fig. 3] and second- [M2(k); cf. Fig.
4] frequency moments of the total S(k,co). In addition,
co,"'(k) of the He-Ne mixture is virtually indistinguish-
able from the (extended) sound dispersion co, (k) observed
for corresponding pure helium (cf. Fig. 7).

We attribute the slow-sound lines at +co,' '(k) in

S(k, co) of the He-Ne mixture to slow oscillations of the
heavy neon (2) particles. The reason is that the two lines
at +~,' '(k) (merged into one another) determine the cen-
tral part of S(k, co), while this central part is determined
mainly by the motion of the Ne particles. This follows
from the behavior of S(k), M2(k), and the half width

coH(k) of S(k, co), as shown in Figs. 5 and 6.
The four Lorentzians of S(k, co) can be described by a

kinetic model that involves the 5 X 5 model matrix H(k)
of Eq. (4.22). This matrix H(k) approximately deter-
mines the dynamics of the five basic microscopic vari-
ables labeled c, N, P, T, and u [see Fig. 9 and Eq. (4.9)].
The forces f~i(k) of H(k) are schematically represented
in Fig. 9 as springs between the basic variables j and l.
We see in Fig. 10 that the force f„z (k) between u and T is
the largest of the five forces in H (k). In fact, it strongly
determines the two fast-sound eigenmodes of H(k), i.e.,
co',."(k)=f,r(k). The smaller force fpr(k) between P
and T is most relevant for the two slow-sound eigen-
modes of H(k), i.e., co,

' '(k) =f~r(k), at least for smaller-

k values (cf. Figs. 10 and 11).
In hydrodynamics, for small k &kH=0. 7 nm ', all

five forces f i(k) -k vanish proportional to k, the two hy-J
2drodynamic transport coefficients z~~(k)-zrr(k)-k

vanish proportional to k, while the kinetic transport
coefficient z„„(k)=z,„(0) approaches a constant. It is as
if the kinetic variable U in Fig. 9 becomes a "massive ob-
ject" for k~O, which cannot oscillate. Indeed, normal-
sound oscillations arise for k~0 between the variables
N, P, and T, with the hydrodynamic sound velocity deter-
mined by the forces fz~(k) and f~r(k) alone (see Sec.
IVE). Thus, quite naturally, the slow-sound modes of
H(k) observed for k ) kH merge into hydrodynamic
sound for k & kzz and fast sound vanishes (cf. Figs. 11 and
12), since fast sound involves the kinetic variable u and
slow sound mainly involves the hydrodynamic variables P
and T. It would be interesting to see whether neutron-
scattering experiments for k =k& confirm this predicted
peculiar transition from normal to fast and slow sound.

In addition to the four propagating fast- and slow-

sound eigenmodes, H(k) has one diffusive-type eigen-
mode [cf. Eq. (4.31)] that strongly determines the dynam-
ics of the microscopic concentration c in Fig. 9. The cor-
responding real eigenvalue z, (k) behaves as z, (k)=D, k 2

when k~0 (cf. Figs. 11 and 12). We find that the con-
centration diffusion coefficient D, =0.005 nm /ps is2

about five times smaller than the Stokes-Einstein
diffusion coefficient Do =0.0251 nm /ps discussed in Sec.
III D. The reason for this rather unphysical result might
be that in our experimental S(k, co) we observe mainly
the dynamics of the microscopic total number density N
of Fig. 9 and not that of c [cf. Eqs. (4.29) and (4.30)]. In

I
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3 QQ I

0

m (ps )
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FIG. 13. co S(k, co) as a function of co for Heo65Neo35 and
k =8 nm ' (error bars). Arrows point to co,"'(k) (solid arrow,
fast sound) and co,' '(k) (dashed arrow, slow sound). The solid
curve connects the midpoints of the error bars.

fact, the Lorentzian in S(k, co) corresponding to z, (k) has
a vanishing amplitude. Thus, the indirect determination
of D, from S(k, co) through model fitting (via f~„and f„
in Fig. 9) and extrapolation to k~O certainly involves
large uncertainties. Therefore, our value of D, is not reli-
able, and the difference between D, and Do is possibly
not significant. It appears that a reliable determination
of D, in mixtures can only be achieved from neutron-
scattering experiments for which both Siva(k, ru) and
S«(k, co) in Eq. (4.29) contribute significantly to the total
measured S(k, co).

Finally, we discuss the relevance of our present results
for kinetic theory and light-scattering experiments. Ki-
netic theory of hard-sphere mixtures representative of
dense He-Xe shows the existence of fast and slow sound
for k ) kH [2]. Similar to what we find here, fast sound
vanishes for k & kH and slow sound merges into hydro-
dynamic sound. However, no fast and slow sound is
found for k & k~ in a hard-sphere mixture representative
of our dense He-Ne state. Thus, for k & kH, microscopic
oscillations behave differently for dense mixtures of hard
spheres and of soft particles like He or Ne. Such a
difference in oscillating behavior is already found be-
tween one-component fluids of hard spheres and of soft
(Lennard-Jones) particles [see Fig. 5(c) of Ref. 19]. It ap-
pears that soft particles oscillate more easily and more
pronouncedly than hard spheres.

Light-scattering experiments on dilute-gas mixtures of
H2-Ar [6], H2-SF6 [7], H2-Xe [20] and He-Xe [21] show
that, in general, fast sound vanishes for k & kH and slow
sound merges into hydrodynamic sound. Here k& can be
in the experimentally accessible k region. Thus these re-
sults are consistent with our present findings from neu-
tron scattering and model fitting (cf. Figs. 11 and 12). It
is also shown from light-scattering experiments that the
slow-sound lines at +co,' '(k), not directly visible in the
measured S(k, co), become visible as peaks or shoulders at
+co,' '(k) in the related spectrum co S(k, co).

In Fig. 13 we show co S(k, co) as a function of co for our
present Heo 65Neo 35 state and k =8 nm '. Indeed, apart
from the main fast-sound peak at co,"'(k) (solid arrow),
one observes a shoulder near co,' '(k) (dashed arrow).
Whether there are side features of co S(k, co) hidden in
the large error bars of Fig. 13 at co) co,"'(k) can only be
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revealed by neutron scattering with accuracy higher than
that used in our present experiment.

APPENDIX

G (l t ) [e
—(H(k)]

which is Eq. (4.21).
For H(k) we need that

(A10)

We derive the kinetic equation (4.21} for the set of 25
time correlation functions 6,((k, t.) of Eq. (4.19) using the
standard Zwanzig-Mori projection operator formalism
[22,23,19]. We need the Laplace transforms 6 ((k,z) of
GJ((k, t), defined by

C,((k,z)= f dte "G,,(k, t)
0

(A 1)

with j or l=c,N, P, T, v. The Liouville operator L is
given by

v(q). + F(q).
(q) I (q)

(A2)
1=1q =1 Brl ml av

with Fl ' the force exerted on particle q of species l by all
other particles,

L 5a, (II)=if,„(k)5a„(lc) (A 1 1)

and that

L 5a(v(lc) =if(vp(k)5ap(lc)+if(v„(k)5a„(lc), (A12)

PIL 5a, (k)=PIL 5aN(lc) =0, (A13)

so that in Eq. (A7) UJ((k, z)=0 for j=c or N and for
l =c or N. Therefore H(k) of Eq. (A9) can be written as

as follows from Eqs. (A2) and (4. 10)—(4. 16). Here
f„(k), f(qp(k), and f(v„(k) are given by Eq. (4.23). The
microscopic concentration 5a, ( k ) [cf. Eq. (4.10)] is
defined such that on the right-hand side of Eq. (All) no
term occurs proportional to 5ap(lc). From Eqs. (4.9) and
(A8), (Al 1), and (A12) it follows that

z 0 ((k,z)=—
n=c, N, P, T, U

H „(k,z)C„((k,z)+5 (, (A4)

2 J

y y y, (lr'" —r'p'I) . (A3)
~rl j=l p =1

The C ((k,z) of Eq. (Al) satisfy the exact Zwanzig-Mori
relation

H(k)=
0 0 if(((p(k}

0 ('fNp(k) zpp(k)

0 0 if pT(k)

if,„(k) if(((„(k) zp, (k}

ifpT(k)

ZTT(k)

ifT, (k)

if,„(k)

if(q„(k }

zp, (k)

ifT„(k}

z,„(k}

where the symmetric 5X5, k- and z-dependence kinetic
matrix H(k, z ) is given by with the transport coefficients (j=p, T or U)

(A14)

HJI(lc, z ) = LJI(lc ) —UJ(—(lc,z ),
with L(((k ) the symmetric Liouville matrix,

LJ((k ) = ( [5aJ(ic) ]"L 5a((k) ),

(A5)

(A6)

z,j(k) = —U~(k, O),

zp„(k) = —Up„(k, O),
(A15)

and UJ((k, z ) the symmetric matrix of k- and z-dependent
transport coeScients,

U, (k, z ) = ( [5a (k) ]'LPI PIL 5a((lc) ) .
1

and the elastic forces

fpT(k) =i [LpT(k)+ UpT(k, O)],

fT, (k) =i [LT,(k)+ UT„(k,O) ] .
(A16)

j=c,N, P, T, U

5,(k)([5,(lc)]*f) . (A8)

%e assume that the z dependence of the transport
coefficients in U(k, z) is irrelevant, so that H(k, z) in Eq.
(A4) can be replaced by the matrix H(k} with elements

H(((k) =H,((k, O) = LJ((k ) —UJ((k, O) .— (A9)

The solution of (A4) then leads, after inverse Laplace
transformation, to the relation

(A7)

The orthogonal projection operator PI is given by
PI= 1 —P, where P projects any arbitrary function f on
the five basic variables:

In Eq. (A15) we use the fact that L.((k)=0 when j and
l refer to basic variables that have the same symmetry un-
der microscopic velocity inversion [in particular,
L&( ( k ) =Lp ( k) =0]~ Wc fiIld III a fI'cc fit to ouI' cxPcI'I
mental results for S(k, a) ), that the cross transport
coefficient zp„(k) in Eq. (A14) is negligible for all k.
Thus, Eq. (A14) for H(k) reduces to Eq. (4.22} applied in
the main text.

For small k we use the fact that the label j=c, N, P, or
T refers to a hydrodynamic (conserved} variable, the time
evolution of which behaves near k=0 as L5a (lc)-k.J
Therefore the forces fpT(k)-fT, (k)-k vanish propor-
tional to k and the transport coe%cients
Zpp( k ) -ZT2.( k ) -k proportional to k . The transport
coefficient z„„(k)approaches a constant z„(0) for k ~0,
since 5a„(II) is a kinetic (nonconserved) variable.
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