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Population transfer in a level-crossing model with two time scales
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We set up a level-crossing model with two time scales and compare the numerically calculated proba-
bility transfer with several analytic results. We also examine the probability transfer in the adiabatic
limit and make a comparison with a calculation based on the approach of Dykhne [Sov. Phys. —JETP
11,411 (1960); 14, 941 (1962)] and of Davis and Pechukas [J.Chem. Phys. 64, 3129 (1976)]. We find that
we can get an improved agreement if we modify their approach.

PACS number(s): 32.80.Bx, 33.80.Be, 42.50.—p

I. INTRODUCTION

The behavior of simple quantum systems in the adia-
batic limit has become of some interest recently. This is
particularly so because of the awareness of the geometric
phase in quantum mechanics [1]. We have been interest-
ed in extending our understanding of the general behav-
ior of two-level systems in the adiabatic limit, and in see-
ing which universal features they share. This has result-
ed in the study of an increasing number of models, in-
cluding those found in Refs. [2,3]. In this paper we
present a generalized pulse model with two separate time
scales and we see how it relates to other known models,
how it behaves in the adiabatic limit, and how its general
behavior may be understood.

We may envisage a number of different physical situa-
tions. For example, we could have an experiment where
an atom (or molecule) interacts with a laser pulse. Pro-
vided the pulse is not too short, the atomic system may
be simplified to a two-level problem with a coupling be-
tween the levels that is dependent on the electric-field
amplitude of the light pulse. If we change the frequency
of the light pulse, we will effectively induce a time depen-
dence into the energies of the two levels that would cause
them to cross if the laser sweeps through resonance (see,
for example, Refs. [4,5]). Another example of a physical
system can be found in the crossing of Rydberg energy
levels caused by the application of an external field [6,7].
By manipulating this field, we can control the way the
system passes through a level crossing.

The prototype of all level-crossing problems is the
Landau-Zener system [8]. In this model one assumes a
constant coupling and energy levels that cross linearly in
time. This means that the model contains several absur-
dities; it is unrealistic to have infinite energies as t ~4 00,
or a constant coupling that never turns off. However, the
problem is analytically solvable and yields sensible
answers. From a physical point of view it does this be-
cause only the behavior of the system near the crossing is
important when considering the final transfer of probabil-
ity between the levels. This allows physical applications
of the model because, over a small enough time scale, al-

most any crossing system will have a linear dependence in
its energy levels and a constant interaction. However,
the Landau-Zener model cannot be correct if the time
scale over which the processes important to probability
transfer occur is greater than the linear region of the
model. Further, the Landau-Zener problem gives no clue
as to how applicable it may be in practice.

It is with this in mind that we consider a model with a
linear region near the crossing, but with finite energies at
large times. This is similar to the system studied in Ref.
[6], except that we have a pulsed coupling that acts over
a finite time scale. This time scale is not connected to the
time scale over which the crossing is linear —unlike the
pulsed model we studied in Ref. [3].

In the following section we shall discuss the general be-
havior of the two-time-scale model. In particular we
shall see how it can relate to the Landau-Zener model,
what its behavior is like in various limits, and how it re-
lates to other models with analytic solutions. Then in the
third section we will discuss concepts of adiabaticity and
we will show how the model approaches the adiabatic
limit. A comparison of the exact numerical behavior will
be made with nonperturbative predictions. Finally, Sec.
IV contains some concluding remarks.

II. THE TWO-TIME-SCALE MODEL,
RELATED MODELS, AND THEIR BEHAVIOR

First we shall set up the formalism and notation for the
problem. The whole class of two-level problems without
dissipation can be described by the Hamiltonian

a(t) Y(t)
Y(t) — (t)

The symmetric form of Eq. (1) can always be achieved
with the aid of suitable transformations. The state vector

(2)

will satisfy the Schrodinger equation of motion (with
fi= 1)
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This equation of motion is not trivially solved when a or
V are functions of time. Apart from some special excep-
tions, we must solve the two coupled first-order linear
diff'erential equations in Eq. (3) by numerical methods
such as Runge-Kutta integration. However, in this paper
we will also describe nontrivial analytic solutions of a few
of the special cases, in order to show their relevance to
the more general model.

We choose as initial conditions

(4)

a=ED tanh(t /T, ),
V = Vo sech( t /T, ),

(6)

as is illustrated in Fig. 1(a). We see that the two levels 1

and 2 start at t = —Oo with finite energies +Ep ~ Near
t =0 there is a crossing of the energy levels that takes
place over a time scale T, . There is no coupling except
during a time of the order T2 around t =0. The parame-

and the time-dependent probabilities will be
P, (t) =

~ C, (t)
~

and P~(t) =
~ C2(t)

~
. We shall also define

P =Pi( oo )

as the probability of the system remaining in level 1 after
the whole crossing process is over. As we have a single
crossing of the levels, the quantity P will be very small as
we approach the adiabatic limit, corresponding to a van-
ishing transfer of population in the adiabatic basis.

The function a(t) in Eq. (1) is interpreted as the energy
of one of the two levels in the simplified atomic system,
and the function V(t) is a time-dependent coupling be-
tween the levels. The particular form of these functions
for the two-time-scale model treated in this paper will be

ter T, gives the second time scale. At t =G the coupling
is at its maximum and has the value Vo.

We note that the two-time-scale problem, as defined by
Eqs. (6), has four parameters, of which only three are
significant. This is because we are only interested in the
final transition probability and so by scaling time we can
eliminate one of the free parameters. If we choose the
scaling so that t ~pt we will find that the final transition
probability is unchanged if the parameters are scaled as

/p

VO~ Vo/p,

T~~PT~ .

(7)

In our numerical work we have chosen p=EO so that Eo
is effectively fixed at a value of unity. We note that com-
binations of parameters such as VOT2, EOT„EoT2 and

VOT, /Fo are invariant under the scaling.
One of the special cases of Eq. (1) with an analytic

solution is the Landau-Zener model which may be
defined by [see Fig. 1(b)]

a=At,
V=Vo .

where we have defined an "adiabaticity" parameter

A= Vo/A, . (10)

Here the parameter A, gives the slope of the crossing, and
the coupling V shows no time dependence. The solution
to the differential equations is in terms of parabolic
cylinder functions and it may be shown that the probabil-
ity of remaining in level 1 is [8]

P = exp( ~A), —

(c)
r

r

(d)

FIG. 1. This figure illustrates the di6erent types of models
that we discuss in this paper. The function a(t) is shown in the
solid curves, and V(t) is shown in the dashed curves. The mod-
els are (a) the two-time-scale model, or, with equal time-scales,
the first Demkov-Kunike (or DK1) model; (b) the Landau-Zener
model; (c) the Rosen-Zener model; (d) the second Demkov-
Kunike (or DK2) model.

Note that as the adiabaticity parameter A increases, the
population in level 1 decreases. A high degree of adiaba-
ticity may be achieved in two ways: the coupling Vo may
be very large, or, as expected intuitively, the rate of
change of the energy levels A, may be very small.

In our previous work [2,3] we have noted that there is
a time scale associated with the Landau-Zener model that
is of the order of Vo/X. This is the time, measured from
the crossing, when the energies of the two levels and the
coupling energy are equal in magnitude, and it appears to
be the time scale over which nonadiabatic processes take
place. As a result, we may suppose that the two-time-
scale model defined in Eq. (6) will produce a probability
transfer close to the prediction from the Landau-Zener
model when this time scale is somewhat shorter than the
times T, and T2. Thus to make a comparison between
the two-time-scale model and the Landau-Zener model
we should set X=EO/T, so that A=VOT, /Eo is the
Landau-Zener adiabaticity parameter. Then the final
population of level 1 is determined by Eq. (9) provided
that

VoT, /E, «(T„T,) .
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However, it turns out that this condition is not sufhcient.
We can check the validity of the argument above by

considering a special case of the two-time-scale model
where T, = Tz, and the single time scale is given the label
T. This model, defined by

a=Eo tanh(t/T),

V= Vo sech(t/T),
(12)

was discussed in Ref. [3], and it is one of the few exam-
ples having an analytic solution. To our knowledge, the
first people to derive the result were Demkov and Kunike
in 1969 [9], (followed more recently by Hioe and Carrol
[10]), and so we shall refer to this model as the DK1
model. Because their paper is not, we believe, widely
available, we have reproduced some of the details of their
solution in Appendix A in this paper. Presently, we only
require the result for the probability of nontransfer which
is [Eq. (All) with a =O, b =Eo,c = Vo]

cosh ~Z (g —V )'~
P=

cosh~a TEp
(13)

As a function of increasing Vp, this probability at first
falls from unity until Vp & Ep, when characteristic oscilla-
tions are seen with a constant amplitude of sech mTEp.
In Ref. [3] we showed how each of these oscillations was
connected to an integer number of precessions of the
Bloch vector during the time evolution.

We now examine the limit Vo/Eo «1 in Eq. (11) and
expand the square root in Eq. (13) in powers of Vo/Eo, so
that to a first approximation

P~ cosh —A —sinh —A tanhm TE
2 2 p (14)

where A= VOT/Eo is the adiabaticity constant anticipat-
ed from a linearization. We will only obtain the Landau-
Zener result if we have the additional constraint

(15)

so that the hyperbolic tangent becomes close to unity.
This constraint will be broken if either the linear region is
too narrow or the energy separation of the two levels is
too small. As we have already taken the size of the cross-
ing into account, it seems that a small time scale T must
be having some other effect.

The resolution of this problem lies in the fact that
short pulses tend to generate nonadiabatic transitions.
Thus if the rise of the secant pulse is too sudden, the
Landau-Zener result is not obtained because of nonadia-
batic transfer prior to reaching the crossing region. This
transfer ensures that when we do reach the crossing re-
gion, the initial conditions for the Landau-Zener model
have not effectively been met; in the Landau-Zener model
we expect to have adiabatic following until we reach the
crossing region. If another model is going to converge on
the Landau-Zener limit, it should approach the crossing
region in an adiabatic manner, as happens in the
Landau-Zener model.

We can gain some qualitative insight into this by con-

sidering yet another analytically solvable model, the
Rosen-Zener model [11]. The model is defined by having
atomic energies that are constant while the coupling fol-
lows a secant pulse as shown in Fig. 1(c). Thus we have

a=E0

V = Vo sech(t/Tz ) .
(16)

In this case there is no crossing and the transfer of proba-
bility from one level to the other is caused entirely by
nonadiabatic effects from the coupling. Because of this,
there is no Landau-Zener limit to this model. The exact
solution shows that the final probability of remaining in
the level 1 is given by

sin AT& VP=1-
cosh m TzEp

(17)

To show that adiabatic following takes place up to the
crossing, we should be interested in the nonadiabatic
transfer near t =0, so that only the rising part of the
secant is considered. However, the probability at t = ~
does give a qualitative result, even though it contains the
effects of both the rising and falling parts of the pulsed
coupling. We can see that a condition like Eq. (15) is
sufficient to ensure that the Rosen-Zener probability P in
Eq. (17) is close to unity. [We do not concern ourselves
with the other possibility in Eq. (16), namely that
sin m. Tz V &&1. Such a condition would either mean that
the coupling was very small or that the precessions of the
Bloch vector, having been caused by nonadiabatic effects,
just happen to result in no transfer. This is the case with
2m. , 4m, 6ir, etc. pulses, which are not adiabatic. ]

So far as the two-time-scale model is concerned, we
may conclude that we expect to find the Landau-Zener
result as long as conditions (11) and (15) are satisfied.
From the Rosen-Zener model we may see that the time
scale in Eq. (15) should include T&. Whether Eq. (15) also
needs to be satisfied with T replaced by T, is a question
that remains to be answered.

In order to see what happens in practice, we show in
Fig. 2 how the probability transfer in the two-time-scale
model can be approximated by results from two other
models and for four different values of T,Ep. The region
delineated by the solid line belongs to the second
Demkov-Kunike model, which we shall discuss further
shortly. The region that is closely approximated by the
Landau-Zener model is shown above the dotted line. We
have determined this region by evaluating the fraction
AP/P, where P is the numerically calculated probability
from the two-time-scale model, and AP is the difference
between P and the Landau-Zener prediction Eq. (9). The
dotted boundary marks where the relative error is small
and b,P/P = 10 . We note that as Vo~O, both the nu-

merical P and the Landau-Zener prediction approach the
same value of unity. This means there is a perfect agree-
ment in that limit, and there may be other accidental
agreements such as the one leading to the sharp spikes
seen in Fig. 2 when T&Ep=0.01.

The Landau-Zener region extends over a wide range of
Tz but within small values of Vp. For small values of Tz
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ability P shows no oscillations as a function of its parame-
ters. The two-time-scale model can go over into the DK2
model if there is an adiabatic following of the secant
pulse and if the pulse is broad compared to the time scale
of the hyperbolic crossing in the two-time-scale model.
For the former condition we have the same constraint on
T2 as we found in the Rosen-Zener model. That the
pulse be broad simply requires

T2 ))Tj (20)
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the second part of the bound (11) involving T2 restricts
the Landau-Zener region to a steep boundary. As T2 in-
creases, the boundary is affected by the first part of Eq.
(11), which constrains Vo to small values. Condition (15)
with T, is the reason for the smallness of the Landau-
Zener region when T,Ep =0.01and T&Ep =0.1.

The region marked by the solid curve on Fig. 2 belongs
to the second model for which Demkov and Kunike also
found an analytic solution [9]; we shall call it the DK2
model. The figure shows that the DK2 model generally
provides a better description of the final probability than
the Landau-Zener model. It retains the time dependence
on the diagonal part of the two-time-scale Hamiltonian,
rather than on the off-diagonal part, and is defined by

FIG. 2. This figure shows regions over which the Landau-
Zener model and the DK2 model [defined in Eq. (18)] may be
used to approximate the final probability in the two-time-scale
model. The four parts of the figure show four different values of
TIED ~ In each case, the DK2 mode1 gives a good approxima-
tion to the fina probability above the solid line, and the
Landau-Zener model gives a good approximation above the dot-
ted line. The lines show where bP/P = 10 ', P is the probabili-

ty in leve1 1, and hP is the difference between this probability
and that found from the model being compared.

This latter condition is satisfied over most of the regions
shown in Fig. 2. The former condition, mT2Ep &&1, is
also mostly satisfied in Fig. 2. However, the DK2 region
shown for T,Ep =0.01 hardly satisfies this condition and
is thus reduced to a small area where the agreement ap-
pears accidental. The peaks seen in the DK2 boundary
for T,Ep=0.01 and T&Ep=0. 1 are coincidences caused
by a crossing of the DK2 result with the result from the
two-time-scale model. The same relative criterion
hP /P =10,was used to determine the DK2 boundary
as was used for the boundary of the Landau-Zener re-
gion. The irregular behavior seen when T,Ep=10.0
occurs because P itself has become quite small (around
10 —10 ) and the comparison becomes diScult.

That the two-time-scale model can mimic the DK2
model is illustrated in Fig. 3 where we can see the proba-
bility in level 1 as a function of time. Three cases are
shown where there is nearly complete transfer of proba-
bility. In Fig. 3(a) condition (20) is satisfied and the two
time scales are well separated. For tEp ~ 0 the probabili-
ty changes smoothly and slowly because of the adiabatic
following. The behavior reflects the secant time depen-
dence of the pulse shape. However, as the system ap-
proaches the crossing there is some nonadiabatic transfer

(a)

~mw~mww~wwmW

a =Eo tanh(t /T, ),
V= Vp,

(18)

as illustrated in Fig. 1(d). This model is not a limit of the
two-time-scale model. While Eqs. (6) do formally go over
into Eqs. (18) in the limit Tz~ oo, the two models can
never have comparable initial conditions. This is because
the DK2 model always starts with a finite coupling at
t = —ao and in an initial adiabatic state, whereas the
two-time-scale mode1 starts with zero coupling. The
treatment of Demkov and Kunike [9] gives the final tran-
sition probability in the adiabatic basis as [Eq. (A17) with
a =O, b =Eo,c = Vo]

0

0.5—

0
0

o

(c)

20

sinh ~T&EpP=
sjnh~[~T/(E + V ) ]

(19)

Unlike the DK1 and Rosen-Zener models, the final prob-

FIG. 3. The time development of P, when Vp/ED=5. 0 and
(a) Tl Ep =0.01 THEO =3 ~ 0 (b) Tl Eo =0.2 T2EO =2.0' (c)
T, Eo =0.5, T,EO =3.0. The final probability is near to that
given by the DK2 model in each case.
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resulting in the oscillations and the finite value of P& at
the end. The oscillations die out as the coupling between
the levels disappears. For this reason the diabatic and
adiabatic states become the same and the DK2 result Eq.
(19) (given in the adiabatic basis) applies. It accurately
predicts a value of P=0.038 in Fig. 3(a). In Figs. 3(b)
and 3(c) we have increased the value of T, ; this results in

a smoother time dependence of the energy and in increas-
ingly adiabatic transfer. Thus the amplitude of the oscil-
lations decreases as we increase T, . However, in Fig. 3(b)
we have slightly reduced Tz, so that the condition
77T2Ep && 1 is encroached upon. The secant pulse now
rises suSciently rapidly to cause some nonadiabatic tran-
sitions prior to reaching the crossing, which results in the
very small ripples seen for tEp ~0. This means that the
initial condition for the DK2 model, i.e., an adiabatic
eigenstate, is no longer met and the transfer is not quite
given by the DK2 formula.

We can find Landau-Zener behavior as a limit of the
DK2 model. If the constraints (11) are applied to the
DK2 result Eq. (19), P reduces to the Landau-Zener tran-
sition probability, as it did in the DK1 case. This is why
the DK2 region in Fig. 2 generally encompasses the
Landau-Zener region. It extends further outwards to
large V&, because the model still applies even if Eq. (11) is
violated, provided that Eq. (15) (with T~T2) and Eq.
(20) are not. This is because the crossing region in the
DK2 model may be larger than the time scale T, . As a

0 1
It [

2 3 4 5
E

V/Ã/ÃÃ/Ã/Ill// 10-2~DWEXEEXEEEEÃEPZ~
'
10

10

0.1 10 10

FIG. 4. This diagram shows how the final probability may be
characterized over a region of the parameter space with

TI Eo =0.1. The axes for Vo /Eo and T&EO are to the left-hand
side and above, respectively. The numbers displayed on the
right-hand side and below are values belonging to the contour
lines. The contours themselves are found by taking peak values
when oscillatory behavior is present (in regions A, B, C, and D).
The computational precision prevents any designation to the re-

gion in the bottom right-hand-side corner. The rectangle near
the top left-hand-side corner shows the area covered by Fig. 6.
The black dot marks the exceptional point discussed in the text.
Regions A and B exhibit behavior related to the DK1 model.
Regions C and D show complex oscillatory structures that do
not belong to any simple model, but that may be partially de-
scribed using the methods of Sec. III.

0.8
0.6
0.4
0.2

P 1 —.

0.8

0.6
0.4

&0~F, = IO.O-

0 0.2 0.4 0.6 0.8 1

T2 E0

FIG. 5. This figure shows the final probability for the quite
small value of Tl Ep =0.01 and two large values of Vp/Eo ~ The
oscillating solid line shows the numerical result from the two-
time-scale model, and the dashed curve that nearly matches the
envelope of the oscillations is the envelope found in the DK1
model [i.e., the secant part of Eq. (21)]. The closely fitting dot-
ted curve comes from the modified DDP treatment, and is dis-
cussed in Sec. III.

result, we may say that the DK2 model has a wider appli-
cability than the Landau-Zener model.

In Fig. 4 we show the different types of behavior of the
two-time-scale model as a function of the parameters
T2Ep and Vo /Eo. The parameter T, Eo has been fixed at
the nontrivial value of 0.1; for higher values of T&Ep we
find that the interesting effects are lost. The DK2 region
is shown over a wider range of Vo/Eo than in the corre-
sponding part of Fig. 2, allowing us to include other
features of the model. We have omitted the Landau-
Zener region from the diagram because it is quite small
and lies within the DK2 region. The region marked
P &10 indicates where the final probability was so
small that we could not make a reliable comparison be-
tween the numerical result and the analytic formulas.
However, the trends from the other parts of the diagram
are clear.

The vertical wedge A shows the region where the DK1
model is found to be applicable for a tolerance
b,P/P=0. 01. This region naturally surrounds the line
given by T2 = T& where the DK1 model is a special case
of the two-time-scale model. The DK1 model is still
applicable because differences in time scales have no ap-
preciable effect there. As we noted in Ref. [3], the DK1
model has an exceptional point when Ep= Vp, where if
we transfer to an adiabatic basis we will find the Rosen-
Zener equations. This special point is marked with a
black dot in Fig. 4. We will discuss the adiabatic basis
further in the following section.

In the region marked 8 we find oscillations in the final
probability both as a function of T2Ep and Vp/Ep. The
amplitude of the oscillations, which has been approximat-
ed by the contour lines, has an almost exponential falloff
as a function of T2Ep. This behavior is well described by
an application of the DK1 formula Eq. (13),
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cosh AT&(Ep —Vp)'P=
7

cosh 7TT2Ep
(21)

which includes the oscillations as a function of Vp/Ep
and T2Ep, and their amplitude as a function of T2Ep.
The applicability of this equation at low T,Ep is shown
in Fig. 5 where Eq. (21) gives the secant fit to the en-
velope of the oscillations as a function of T2Ep ~ The fit is
not so good as Vp/Ep decreases, which corresponds to
moving towards the region C in Fig. 4.

Close to the boundary of regions B and C half the os-
cillations disappear as may be seen in Fig. 6. This figure
shows the probability P as a surface plot in a portion of
the (T2Ep, Vp/Ep) parameter space represented by the
rectangle on Fig. 4. Because of the suppression of half of
the oscillations the ripples in Fig. 6 show alternating high
and low maxima in the same way as was seen in Fig. 5 at
lower T,Ep. The ripples turn around a corner as they
follow the contour lines in Fig. 4. Eventually, the
remaining oscillations also disappear as we approach the
DK2 region. This corresponds to moving between the C
and D regions in Fig. 4. A11 the ripples disappear in re-
gion D because the DK2 expression shows no oscillations
as a function of its parameters.

In Fig. 7 we see the probability P as a function of
Vp/Ep. Three different values of T, have been chosen to
illustrate the different behavior for T, & T2 and T, & T2.
For large Vp/Ep the oscillations reach a fixed amplitude
and period in each case. However, for smaller Vp/Ep we
see different qualitative behavior. There is an enhance-
ment of probability in Fig. 7(a) where T, ) T2. In Fig.
7(b) we have T, = T2 and the DK1 solution (13) applies
showing an initial secant behavior followed by oscilla-
tions with a constant amplitude when Vp) Ep. In Fig.
7(c) T, (T2, and we see an alternating suppression and
enhancement of the oscillations because of the different

(b)

(c)

0 10 20 30

p/Ep

FIG. 7. This figure shows P as a function of the pulse
strength Vp/Ep. Exhibited are three different choices of param-
eters, and therefore three different types of envelopes for the os-
cillations. The time scales are T&Ep=0. 5 and (a) T&Ep=0.9;
(b) T]Ep =0.5 (the DK1 case); (c) T&Ep =0.1. The dashed hor-

izontal line marks the limiting amplitude in the DK1 model.

places in Fig. 4 where the oscillations die out. We shall
try and explain these features in Sec. III.

We can gain further understanding of the two-time-
scale model by using the area theorem I4, 12], which be-
comes applicable if the coupling totally dominates all
other effects. The theorem may be obtained in the fol-
lowing way. First, we use the equation of motion Eq. (3)
to form the second-order differential equation for C,
only:

C] V dC]
2 2+ V +a —ia+ia —C] =0 .

dt2 V dt V
(22)

0

oe
o6

g 0.
2

0 0

FIG. 6. This surface plot shows the value of the probability P
over a portion of Fig. 4. The region selected is marked with a
rectangle on Fig. 4 and shows nontrivial oscillations that disap-
pear as the DK2 region is approached.

C, (t)=-cos8(t) . (23)

The function 8(t) is half the pulse "area" and is given by
the integral

8(t) = f V(t')dt' . (24)

In the case of the two-time-scale model we find that as
g —+ oo,

8~ Vp f sech (t'/T2)dt'=mVpT, , (2.5)

which leads to the probability of finding the system in the
original level 1,

P=cos m VpT2 .2 (26)

Equation (26) shows oscillations as a function of Vp and

Then if we let a, a~0 and use our initial conditions, we
may obtain the solution to this equation (omitting an
inessential phase factor) as
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T2 similar to those seen in Fig. 7. However, the ampli-
tude of the oscillations predicted by the area theorem is
always unity, and so does not, in general, match the be-
havior of the two-time-scale model. In the case of the
DK1 model, when Eo/Vo~0 in the exact result (13), we
find that

2cosa.TVo
P —+

cosh1T TEp
(27)

So we can only obtain the area theorem prediction [Eq.
(26) with T2~Tj if we have rrTEo &&1. Interestingly,
this condition is precisely the reverse of Eq. (15), the con-
straint on adiabaticity in the coupling.

The region where the area theorem is applicable is lim-
ited to small T2Ep and large Vo/Eo in the parameter
space. However, this is because it gives the wrong ampli-
tude for the oscillations. In general we find that the area
theorem gives the positions of the oscillations very well if
Vo/Ep » 1. This can be seen in Fig. 8 where the dotted
curves show the positions of the zeros of final probability
as predicted by Eq. (26). These are curves for which
2 Vp T2 is an odd integer (though for clarity some of the
curves have been omitted). The fit to the troughs in prob-
ability, indicated by the solid contour lines for P=0.05,
is very good. We note that the DK1 expression is no
longer useful at such a high value of T,Eo. For
Vo/Eo & 1 the amplitude of the oscillations in the DK1
model is sech n TzEc [from Eq. (21)], and does not de-
pend on Vo/Eo. The vertical line in the figure shows
where this amplitude lies at the level of the contour,
P=0.05. If the DK1 expression were applicable, the
solid contours would not pass to the right of the line as
the oscillations would have insufficient amplitude in that
region.

III. ADIABATICITY AND THE
DYKHNK-DA VIS-PECHUKAS TREATMENT

U(r)H(t)U (t)=
0

(28)

where 8 is the quasienergy defined by

e(t)=(a + V )' (29)

The energy levels in the new basis will not cross, unless it
happens that a(t)= V(t)=0 H.owever, we will be in-
terested in crossings in the complex time plane. The uni-

tary transformation required to carry out the diagonali-
zation is

cos8/2 —sin8/2
sin 8/2 cos8/2 (30)

with

tan8= —V(t)/a(t) . (31)

The new basis states 4 are given by

4(r) = U(r)% (r), (32)

and they will obey a Schrodinger-like equation of motion

.d4
dt

iy—
4(t) . (33)

When we look at the behavior of our model systems in
the adiabatic limit, it is useful to consider the instantane-
ous eigenstates of the Hamiltonian Eq. (1). These states
form the adiabatic basis. To transfer to that basis, we
consider the unitary transformation U ( t) that will instan-
taneously diagonalize the Hamiltonian H (r) so that

The time-dependent parameter y is the nonadiabatic cou-
pling,

2- 1d0 1 Va —Vay=
2 dt 2 a2+ V2

(34)

4
Vo(

Eo
6-

8-

10-
0

T2 Eo

FIG. 8. This contour plot shows the single contour where
P =0.05 for the parameter T,Eo=10.0. The comblike struc-
ture occurs because of oscillations in the probability as a func-
tion of the other parameters. The dotted lines are simple hyper-
bolas and have been determined from the area theorem. They
show a good fit to the valleys in the probability surface. The
vertical line would indicate the rightmost limit of the contours
for Vp/Eo ) 1 if the DK1 model were applicable. In fact, it is
not applicable because of the high value of TI Eo.

If the nonadiabatic coupling is very small, the new
basis will be nearly diagonal and the two states are almost
uncoupled. If they were uncoupled it would be easy to
solve the equations for the time dependence. Berry has
extended this idea by considering successive transforma-
tions through a series of superadiabatic basis until the
coupling does become small [13]. However, in general
such a sequence is not expected to converge unless we are
at the adiabatic limit, in which case the coupling y can
already be neglected in Eq. (33).

As long ago as the 1960s Dykhne had developed a non-
perturbative method for evaluating transition probabili-
ties in the adiabatic limit [14]. Dykhnes method em-

ploys the analytic continuation of the quasienergies into
the complex time plane. He has shown that the adiabatic
transition probability depends only on an integral of the
quasienergy to a zero near to the origin on the complex
plane. His result may be expressed as
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P = g exp(ib, '"~) (36)

where b'"' is the integral of the quasienergy from the ori-
gin to the nth zero, which is denoted as t'"',

(n)~'"'=2f @(z)dz .
0

(37)

In general, we shall refer to the use of these nonpertur-
bative methods as the DDP approach (after Dykhne-
Davis-Pechukas). The coherent sum in Eq. (36) means
that interferences can occur between contributions from
the zeros. This feature can be interpreted as leading to
the oscillations that may be found in the DK1 result Eq.
(13). In that model there is a whole series of pairs of
zeros in the complex plane. As we discussed in Ref. [3]
these occur at the times

r'"'=i (n + —,
' )n T+ T arcosh( Vo/Eo), (3g)

where n is an integer. Thus we see that for Vo &Eo the
zeros are to be found symmetrically placed in pairs
around the imaginary axis. As Vo is reduced, the zeros
move directly towards the imaginary axis where they
meet 'f Vo =&o- We then have the exceptional point dis-
cussed in Ref. [3]. Further reductions in Vo result in

pairs of zeros moving away from each other along the
imaginary axis. Eventually, as Vo~0, we find one zero
near the origin (in the upper half-plane), and a new pair-
ing of zeros around each of the poles on the imaginary
axis.

To evaluate probability (36) for the DK1 model, we
keep only the first two zeros in the upper half-plane be-
cause for large Vo these are at equal distances from the
real axis. The integral of the quasienergy (37) is found to
be [3]

'=~7 [iE,+( V', E',)'"]—(39)

P=exp —4lm z dz
0

where t, is the position of the zero, which must be in the
upper half-plane. This zero is typically at a square-root
branch point in the adiabatic energy surface and may be
regarded as a complex crossing point. The probability P
in Eq. (35) is actually defined to be the transition proba-
bility in the adiabatic basis, unlike the definition of P in
Eq. (5). However, this makes no difference with most of
the models considered in this paper because the adiabatic
and diabatic states are the same when t ~+ ~. The ex-
ception is the DK2 model which has both a finite energy
in the Hamiltonian and a finite coupling Vo as t ~+ 00.
We note that the probability P does not depend on the
coupling y(t), a fact which is connected to being in the
adiabatic 1irnit.

Dykhne's work was later treated more rigorously by
Davis and Pechukas who also suggested the idea of in-
cluding contributions from more than one of the zeros in
the complex plane if they are the same distance from the
real axis [15]. Davis and Pechukas never gave any pre-
cise details of how to include additional zeros. However,
we have suggested that the extension of Dykhne's formu-
la could take the form [2,3]

for these zeros. This then leads to a probability

P = [2 exp( n—TE. o) cosh[a. T(EO —Vo)' ]] (40)

6 = [ Vo+Eo tanh (t /T) ) ]'~

and the complex crossing times are found at

t'"'=iT, [n +7rract an(VO/Eo)] .

(41)

(42)

We see that, unlike the DK1 model, these zeros are re-
stricted to the imaginary axis for all values of the param-
eters. For low Vo they lie in pairs between the poles in
the quasienergy and as Vp is increases, they move to-
wards the poles.

To carry out the DDP treatment, we consider only the
single zero that lies between the origin and the first pole
on the upper half-plane. In this case we find that the in-
tegral of the quasienergy 6' ' is a purely imaginary quan-
tity and in Appendix 8 we show that

S"'=i~&., [(E'+V')'" —E, ] . (43)

The result for the DDP probability is then found from
Eq. (36),

P=exp[ 2~T, [(Eo+—Vo)' —Eo] J . (44)

As in the DK1 case, we find that this is very close to the
exact result. If we expand the two hyperbolic functions
in Eq. (19), we obtain Eq. (44) by retaining only the first
terms. The DDP result, like the exact result, shows no
oscillations because the complex crossing point yields a
purely imaginary quasienergy integral. As in the DK1
case, the Landau-Zener result is recovered if Vo/Ep~0,
which corresponds to the single zero moving close to the
origin in the complex plane.

The quasienergy of the two-time-sca1e model is consid-
erably more complicated than the DK1 and DK2 models.
It has many poles on the imaginary axis of the complex
plane, and it seems impossible to carry out the integra-
tion to the zeros by analytic methods, as we did with the
DK1 and DK2 models. This means that we have to
determine both the positions of the zeros and the integra-
tion of the quasienergy numerically. This may seem a lit-
tle ironic; after all, why not simply carry out the numeri-
cal integration of Eqs. (3)'? However, we are interested in
carrying out a nontrivial test of the DDP method as well

which is remarkably close to the exact result Eq. (13).
The difference is found in the factor 2exp( mT—EO),
which is the first term in the expansion of sech(m. TEO).
The above result gives the correct behavior of the oscilla-
tions apart from an error in the amplitude. The oscilla-
tions themselves are seen to arise from the different signs
of the real parts of the integrations to the zeros.

The Landau-Zener behavior discussed in Eq. (14) is
found when there is a zero very close to the origin. The
behavior of this zero dominates and it reproduces the
Landau-Zener result (9); the Landau-Zener model itself
has only a single zero in the upper half-plane.

We now turn to the DK2 model, where the quasiener-

gy is
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as determining the adiabatic behavior. It may also be
noted that as the adiabatic limit is approached, it can be-
come quite difficult to carry out the numerical integration
directly, because of the limited precision of computers.
However, in that case it may still be feasible to carry out
the numerical procedures for the DDP method.

The arrangement of the poles and zeros depends con-
siderably on the relative sizes of the time scales T& and

T2, as well as the coupling parameter Vo/Eo. If T, & T2
we will have a pair of zeros before the first pole for low
values of Vp/Ep ~ As Vp/Ep is increased, these zeros
move away from the imaginary axis and along curved
paths that eventually are parallel to the real axis in the
fashion of the DK1 model. Figure 9 shows several exam-
ples of this behavior; the data were generated by numeri-
cally determining the zeros in the quasienergy. In gen-
eral there are an infinite number of pairs such as this, and
the limiting value of the imaginary part of the position of
the zero tends towards (n+ ,'}m.T2, f—or integer n Ho.w-

ever, not all the zeros move off the imaginary axis in this
way. Some may remain on the axis, where they move
from near one pole to near an adjacent pole as Vo is in-
creased.

If we now change our regime to T& &T2, the zero
nearest the origin is found to be trapped before the first
pole and is constrained to lie on the imaginary axis. Fur-
ther, if T, «T2, there are many zeros near the origin
that lie on the axis and the situation very much resembles

the DK2 model. So it is no surprise that this is the pa-
rameter range where we found in Sec. II that the DK2
model applied. However, if we go far enough up the
imaginary axis, we will eventually find a pair of zeros of
the DK1 type; that is, a pair that may leave the axis as
Vo /Eo is increased.

Figure 10 shows three examples of this. The two solid
curves and the horizontal line show the tracks of pairs of
zeros as Vo /Eo is changed. For the lower curve,
T~ =0.42 T2, and we see the behavior of the third and
fourth zeros on the complex plane. These zeros lie above
the first pole. The first and second zeros are trapped
below and above the pole, respectively. On the upper
curve, T, =0.88Tz, and we again see the behavior of the
third and fourth zeros, but this time they lie above two
poles. The second zero is trapped between the poles, and
the first zero lies in front of the poles. The horizontal line
shows a somewhat exceptional track. If T2 =2NT„
where N is an integer, we find that some of the zeros
move along straight lines as in the DK1 case, but they
can never reach the imaginary axis except in the limit
Vp/Ep ~0.

The examples of Fig. 10 are cases where we have one
zero near the origin and two other off-axis zeros nearby.
This is not a situation we have met before in the Landau-
Zener, DK1, or DK2 models. In carrying out the DDP
integrations we have included contributions from all
three zeros when they are present (i.e., for T& (T2}.

2

1.6-
T&)T2 2

1.8-

0.8-
16

0.4-

-3 -2 -1 0 1

Re(t, )/ T2
2 3

1.4-

-2 0 1

Re(te)/ T2
FIG. 9. The zero structure of quasienergy in the upper half

of the complex time plane when T& & T2. The zeros move in
pairs along one of the solid lines towards the imaginary axis as
Vp/Ep decreases. The dotted lines show the tracks of the zeros
if y= T& /T2 is changed with Vp/Ep fixed. If y is reduced to-
wards unity, the zeros approach the horizontal line for which
Im(t, /T, ) =m. /2. The parameters for the three solid curves are
y=5.0, 2.0, and 1.2, from the lower to the upper curve. The
markers on them are for selected values of Vp/Ep, namely + for
5.0, + for 3.0, 0 for 1.0, and X for 0.5. We note that for the last
case, when y=1.2 and Vp/Ep =0.5 both the zeros marked X
lie on the imaginary axis, but only the lower one is shown. The
three asterisks that lie on the imaginary axis correspond to
Vp /E p

=0. 1 and the three values of y. The black dot at the
crossing of the horizontal and vertical solid lines shows the po-
sition of the pole at t, /T, =i ~/2.

FIG. 10. The zero structure of quasienergy in the upper half
of the complex time plane when T, & T2. The zeros move in
pairs along one of the solid lines towards the imaginary axis as
Vp /E p decreases. The dotted spirals show the tracks of the
zeros if y = T, /T, is changed with Vp/Ep fixed. If y is reduced
towards zero, the tracks approach the horizontal line for which
Im(t, /T2) = n./2. The parameters for the three solid curves are
y=0.42, 0.5, and 0.88, from bottom to top. The markers on
them have the following associations with selected values of
Vp/Ep + for 5.0, X for 2.0, 0 for 1.0, and + for 0.5. The sym-
bol + is also used for Vp/Ep=0. 1 near the imaginary axis.
When y=0. 88 the + lies on the axis. The upper black dot is
the pole at t, /T2=in. /2 and the lower dot is the pole at
t, /T, =in. /2 when y=0. 88. For the other values of y this
lower pole does not appear on the figure.



POPULATION TRANSFER IN A LEVEL-CROSSING MODEL. . . 383

Zeros that hide behind poles have not been included.
From the symmetry properties of the quasienergy we can
show that for the zero lying on the imaginary axis the 6
integral Eq. (37} must be imaginary; we will write it as
6' '=id, . The integrals for the two off-axis, or DK1-
type, zeros will take the form

a'+'=+a„+is, . (45)

If we use these expressions we find that the probability
Eq. (36) becomes

P = [ exp( —6; )+2 exp( —b, ; ) cosh„] (46)

For large Vo/Eo we find that b,„changes rapidly, while

6, and 6; change slowly. This means that we obtain a
double-envelope function that oscillates between zero and

[ exp( —6; )+2 exp( —5;}], and between zero and
[exp( —4;)—2exp( —5;)] in the manner of the exact
behavior seen in Figs. 5 and 7(c). For very large Vc/Ec
the two envelopes merge because 5; becomes large. By
evaluating the functions b'"' numerically we can obtain
quite a good match between Eq. (46) above and the exact
result, provided that P (&1, and especially for large
Vo /Eo and large T2Ec. If T, & T2 we simply omit the
exp( b; ) term as—the third zero is not present.

%e have also been able to improve on the result by
means of two modifications to Eq. (46) above. The first
change is strongly suggested by the comparison of the ex-
act and approximate DK I results, namely Eqs. (13) and
(40). We replace the factor 2 exp( —b, ; ) by the hyperbolic
secant function of which it is a limit: sech(b, ;). The
second change is to replace the first term in Eq. (46) by
the factor

P=I sinh(mT, EO)cosech [nT, (Eo+Vo)'~ ]

+sech(b; ) cosh„j

0.45 Re (t, EO)

O

This gives a reasonable approximation to the exact be-
havior over quite a wide range of the parameters. For ex-

ample, in Fig. 4, it turns out that there is a good fit for
Vo/Eo&3, which becomes better as T2EO increases.
And in Fig. 5, the dotted line shows a close match be-
tween the numerical data and Eq. (47) with b, ; and b,

„

calculated using the DK1 model. This demonstrates a
good result for T2Eo smaller than unity, as long as

Vo/Eo is large and T, ((T2. For small P the double en-

velope structure is reproduced quite well.
In Fig. 11 we see that if we have a large value of

Vo/Eo, the dotted line obtained from Eq. (47) follows the
exact result closely. This may be compared to the dashed

sinh(n T~EO)cosech [n Ti(EO+ Vo)' ],
suggested by the exact result for the DK2 problem in Eq.
(19). Thus, on using this prescription, we obtain

.5

T2 Eo

2
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FIG. 11. This figure shows a comparison between the numer-

ical result for the two-time-scale model {solid curve) and two

types of DDP calculation. The dashed curve shows the DDP
calculation given in Eq. (46), and the dotted curve the result
from the modified DDP calculation of Eq. (47). The latter gives

a somewhat better fit. The parameters are TIEp=0. 1, and (a)

T2Ep =0.4 (b) T2zp = 1.0.

FIG. 12. This figure shows a comparison between final prob-
abilities calculated from the two-time-scale model, the DK1
model, and the DDP calculation in a case where we consider
two complex crossing points. The parameters are
Vp/Ep=T, E0=5.0. In {a) we show the track of the zero (or
crossing point) in the first quadrant of the complex plane and as
a function of T2Ep. The solid curve shows the exact result, ob-
tained by numerical integration, and the dashed line shows the
linear track predicted by the DK1 model where Ti follows T2.
In (b) we see the integrals 6, (upper pair) and 5; (lower pair).
The values can be read from the right-hand-side scale, and again
the numerical result is shown as the solid curve and the dashed
line shows the analytic DK1 result. In (c) the oscillating curve
is the numerical result for the probability and the remaining
curves are approximations to the envelope of the oscillations.
The DK1 envelope is shown as the dotted curve, the straightfor-
ward DDP envelope [Eq. (46) with b, set to zero] is shown as
the dashed curve, and the modified DDP envelope [Eq. (47) with

5, set to zero] is shown with a solid line. In the latter case, if
the oscillations are included (6„is used as computed) we find a
near-perfect fit where the dim'erences cannot be seen by the eye.
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line in the same figure, which shows results obtained by
using Eq. (46). In Fig. 11(b}we can see that by increasing
T2Ep the approach to the exact result is improved, and
the staircase structure indicating a strong mixture of the
DK1 and DK2 contributions is reproduced quite well.
Usually, when Eq. (47) starts to be a worse approximation
than Eq. (46), we are already well within the region where
they both cease to be useful.

Figure 12 shows a case where the fit of Eq. (47) is so
good that the difference can hardly be seen. Because
T, ) T2 only the latter part of Eq. (47) is used, resulting
in the single-envelope structure that resembles the DK1
model. This is because both the track of the zeros in the
complex plane and the 6 integrals are close to the DK1
model, as may be seen in Figs. 12(a) and 12(b}. However,
both the DK1 probability and the calculation from Eq.
(46) give poor results. To make a comparison, we have
plotted only the envelopes of the results from these calcu-
lations (as the dotted and dashed curves). These may be
compared to the envelope from Eq. (47) (shown solid),
and to the exact numerical data.

As shown with the examples above, Eq. (47) has quite a
wide applicability. This suggests that, for other models,
it may be possible in the future to improve on the general
formula of Eq. (36).

IV. CONCLUSION

We have examined probability transfer in the two-
tirne-scale model over a wide range of parameters and
have discovered several layers in the understanding of its
behavior. At the simplest level, we can approximate the
model by the exponential behavior of the Landau-Zener
model, or, for different parameters, by oscillatory behav-
ior characteristic of the area theorem or the Rosen-Zener
model.

At the next level of understanding, we can approxi-
mate the model behavior by using the 6rst and second
Dernkov-Kunike models. These apply to mutually ex-
clusive areas of the parameter space, and contain within
them the Landau-Zener model and the area theorem re-
sult. We have been able to show why the second
Demkov-Kunike model is applicable through a simple in-
tuitive argument, and further support for both cases
comes from the DDP analysis in the complex plane.

At the innermost level of our understanding, we per-
ceive that the Dernkov-Kunike models are applicable be-
cause they provide a sequence of complex crossing points
that approximate the real situation in the two-time-scale
model. We have extended the idea in two ways. First,
we have considered a DDP analysis with three complex
crossing points and have found this to be successful in
describing features of the model not covered by the
Demkov-Kunike models. Second, we have discovered an
extension of the DDP analysis which, at least in the two-
time-scale model, provides an excellent account of the
probability transfer. The extension suggests that the
two-time-scale model can be regarded as a coherent su-
perposition of both the Demkov-Kunike models over a
large part of the parameter space.
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a(t) =a +b tanht/T,

V(t)=c secht/T . (A 1)

When a and V are inserted into Eqs. (1)—(3) [or Eq. (22)]
we obtain

dC) 1 t dC) 2 2g+—tanh — + c sech —+ a+b tanh—
T T dt T T

'2

. 1+i—a tanh —+b C =0 .

If we substitute
(A2)

tanht /T =2z —1

into Eq. (A2) we obtain the Gauss equation,

(A3)
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APPENDIX A: THE DEMKOV-KUNIKE SOLUTIONS

C) 1 1+——+
dz2 2 z z —1

T (a b) i (a —b)/T— (a +b)2—+i(a +b)/T+ +
dz 4 z' (z —1}

+2(a b+ 2c +ib /—T)2 2 2

z z —1
Ci=0. (A4)

If one sets for C~ the ansatz
—iT(a —b)/2( 1 )iT(a+b)/2z 7 (A5)

then u (z) has to satisfy the hypergeometric equation. The initial conditions are given at t ~—~, that is at z =0, so the
general solution is constructed in the vicinity of that point:
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u (z) = AF(iT [b +(b —c )'/ ],iT [b —(b —c )' ];—,
' —iT(a —b);z )

+Bz) /2+iT)a —b)F( —+ lT [a +(b c 2)1/2] ) + l7 [a (b 2 c 2)1/2].
I + l7 (a b);z ) (A6)

where A and 8 are arbitrary constants, and F(k, i;I;z) is the hypergeometric function. Inserting u (z) into Eq. (A5)
with the initial conditions Eq. (4), we will find

(z) =+2 / T(a'—b)/2( 1 z)iT)a+b)/2F(lT [b +(b2 c2)1/2], l7 [b (b c )1/2]. ) lT(a b);z ) (A7)

With the mutual relations between the solutions of the hypergeometric equation in the vicinity of the points z =0 and
z = 1 we obtain

C (z)=+[z —iT)a —&)/2(i z)iTia+b)/2G F(1T[b+(b2 c ) ] 17 [b (b c ) ]. +17 (a +b) 1 z)
—iT(a —b)/2( 1 }1/2—iT(a +b)/2G

2

XF( ,' iT—[a— (b ——c )' ], ,
' iT—[a—+(b c)' —];=.' +iT(-a+b);1 —z)} . (A8)

Here,

I ( ,' iT(a———b))I ( —,
' —iT(a +b))

I ( ,' i T [a——+(b c)'—/ ])I ( —,
' —iT [a —(b2 c)'/—2])

I ( —,
' —iT(a —b))I ( ,' iT(a——+b))

r(1T[b+(b' c')'"—])r(tT [b (b' —c')'"—])
'

(A9)

(A10)

where I (k) is the gamma function.
Hence, from Eq. (AS), and taking into account the fact that (i) if a ) b there is no crossing of terms in the absence of

the interaction, and (ii) if a (b the crossing exists, we obtain for the final population of level 1

P='
sinhn T [b +(b c)' ] s—inhm T [b —(b —c )' ]

cosh' T(a +b) cosh@ T(a b)—
coshmT[a+(b c)' ]c—soho T[a —(b —c )' ]

cosh'. T(a +b) coshnT(a b). —

a)b

a&b .
(Al 1)

In the second Dernkov-Kunike model (DK2 model) we
have

i dC
C =—

c dt
(a + b tanht/T)

c 1
(A14)

a(t)=a+b tanht/T,

V(t)=c,
(A12)

In Eq. (A13) we may now make the substitution Eq. (A3)
that we previously used in Eq. (A2). This time we obtain
a Gauss equation with the solution

+c +ib(1 —tanh t/T)]C1=0, (A13}

where c is a constant. The calculation of the level popu-
lations is carried out in the same way as previously. This
time by substituting Eq. (A12) into Eqs. (1)—(3) or (22) we
will find equations for C& and C2 in the form

d Ci +[(a+b tanht/T)
dt

iE T/2 iF,T/2.
(A15}

where instead of the parameters a, b, c we have
E, =i[(a —b) +c ]' i, E, =i[(a+b) +c ]' i), and b
The function U (z) is a solution of the hypergeometric
equation.

In this case, the initial condition have to be set in the
adiabatic basis, and this involves a mixture of C, and C2.
We will then obtain

—iE T!2 iE T/2 ET 1,T
C, =Bz ' (z —1) ' F 1+ ( E+E +2b), ( E+—E, —2b) 1 i—TE„z— (A16)

where

B=")/(E,+E,—2b)(E, E, +2b)/8bE, —
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is a constant.
By using Eq. (A14) we obtain the function C~. Then on using the initial conditions given in the adiabatic basis we

finally obtain, from both C& and C2,

sinh[m'T(E, E—, +2b)/2] sinh[rrT(E, E—, +2b)/2]
sinhm. tE, sinhm TE,

(A 17)

This is the DK2 solution, given in the adiabatic basis.
We note that in this case the adiabatic states do not cor-
respond to the diabatic states when t~+~. This is
quite different from the DK1 model.

tanx' '= V0~Eo . (B3)

If we now set C =1+(E&&/Vo) and D =1—C we find

that

t' '=iT, arctan (Vo/Eo) (B1)

APPENDIX 8: THE INTEGRAL 6,' '

FOR THE DK2 MODEL

The integral is to be taken from the origin to the first
complex crossing point

x'0'=2jT V sec~ 1 C2 sjn2~ 1/2

0

and thus (see, e.g., Ref. [16]),

D (1—C sin x)'~ +D sinx

(1—C sin x)' Dsinx—
x =x'0'

(B4)

(0)

b, 'o)=2iT, I (V E tan x—)'~ dx,
0

with

(B2)

as given by Eq. (42). By changing the integration variable
to the imaginary time x = it/T, w—e find that Eq. (37)
takes the form

+C arcsin ( C sinx )
x=0

(B5)

(B6)

Using the fact that sinx' '= Vo/( Vo+Eo )'~ we will now
obtain the result, Eq. (43),
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