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Onset of convection in binary gas mixtures: Role of the Dufour effect

W. Hort
Institut fiir T'heoretische Physik, Universitiit des Saarlandes, D 660-0 Saarbriicken,

Federal Republic of Germany

S.J. Linz
Institut fiir Theoretische Physik, Universitiit des Saarlandes, D 660-0Saarbrucken,

Federal Republic of Germany

and Department ofEngineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208

M. Lucke
Institut fiir Theoretische Physik, Universitiit des Saarlandes, D 6600-Saarbriicken,

Federal Republic of Germany

(Received 12 August 1991)

The stability behavior of the conductive state of binary gas mixtures in the Rayleigh-Benard setup is

significantly altered in comparison to binary liquid mixtures due to their different thermodynamic and

transport properties. In particular, the Dufour effect influences dramatically the topology and the ex-

istence ranges of the oscillatory and stationary instabilities for Dufour and Lewis numbers that are typi-

cal in gas mixtures. We present a detailed investigation of the changes of the stability properties for
several types of boundary conditions including the realistic no-slip, impermeable ones.

PACS number(s): 47.20.—k, 47.10.+g, 47.25.—c, 51.30.+ i

I. INTRODUCTION

During the past few years the investigation of convec-
tion in binary Quid layers driven by an external tempera-
ture gradient has evolved to one of the most intensively
studied branches of modern hydrodynamics [1—34]. But
up to now most work done in this field has been con-
cerned with binary liquid mixtures, perhaps since the
Quids used most often in experiments are ethanol-water
[2—10] and He- He mixtures [11—13].

Convection in binary Quid mixtures is governed by the
time evolution of velocity, temperature, and concentra-
tion fields [35,36]. These fields are coupled via buoyancy,
convective transport, and diffusive heat and concentra-
tion currents. For example, temperature Quctuations are
driven in general by heat as well as by concentration
currents. In liquid mixtures the contribution from the
concentration current to the driving of temperature Quc-
tuations is small in comparison to the heat current and
can be neglected in that case.

Recently the drastic inQuence of concentration
currents on temperature Quctuations in gas mixtures was
recognized in a system [31] where instead of an external
temperature gradient an external concentration gradient
is applied. After that we have shown [32,33] that also
binary gas mixtures in the Rayleigh-Benard setup should
display convection properties that differ significantly
from those in liquid mixtures. These changes arise from
the different physical properties of gases and liquids, i.e.,
their different transport and thermodynamical
coefficients. Since the concentration diffusion constant D
(the thermal diffusivity tt) of gas mixtures is typically 10
times larger (10 times larger} than in liquids the Lewis

number L =D/tc of gas mixtures is about 10 times
larger than the corresponding one in liquid mixtures.
Thus in gases the Lewis number is no longer a small
quantity like in liquids where L =10,but of the order
1. Even more important are the changes in the Dufour
effect: The coupling strength of the diffusive concentra-
tion current into the temperature field equation measured
by the product of the Lewis number I (a transport quan-
tity) and the Dufour number Q (a thermodynamic quanti-

ty explained in Sec. II B}is about 10 times larger in gases
than in liquids. Thus the Dufour effect can in general no
longer be ignored in gases. Earlier work [15—17] done
for idealized free-slip, permeable (FSP) boundary condi-
tions on the inQuence of the Dufour effect was partly con-
cerned with liquid mixtures and there the negligibility of
the Dufour terms was shown. Recently Stein [37] has
presented results for realistic no slip, impermeable (NSI)
boundary conditions, which were obtained by a sine
series expansion.

In Ref. [32] we have reported some changes of the sta-
bility properties of the conductive state in gases for FSP
boundary conditions and Dufour and Lewis numbers that
we estimated to be realizable in gas mixtures that were
likely candidates for experiments. For FSP conditions
the linear stability analysis can be done exactly in full
analytical detail in the presence of the Dufour effect.
Figure 1 summarizes for the FSP case and a Lewis num-
ber L =

—,
' the characteristic changes with increasing the

Dufour number Q from zero up to a value of Q =12.
The solid (dotted) lines in Fig. 1 denote the stationary (os-
cillatory) stability threshold of the conductive state as a
function of the separation ratio P [18]which is defined in
Sec. IIB. For Q =0 (no Dufour coupling} there are no

45 3737 1992 The American Physical Society



O'. BORT, S. J. LINZ, AND M. LUCKE

Oo
CL

CL
Il

L

t.

10—

0--
1O—

5

I I
I

I

~ ~ ~ ~

~ ~ I I

Q=O—
part 8 we present for the Rayleigh-Benard setup our
scaled Oberbeck-Boussinesq equations and in part C the
linearized equations. Finally we estimate in part D the
magnitude of the physical parameters, in particular the
Dufour number, in gas mixtures.

A. Governing equations

The hydrodynamic equations for the fields of velocity
u, temperature T, concentration C, and mass density p
describing convection in binary Quid mixtures are
[35,36,38]

0—
10— p(B, +u V)u= —Vp+pg+V. o', (2.1a)

a
O

U
(D

5
FSP
O=l

L =1/2:

c p(B, +u V)T=e+[p —T(ap/dT)„]V. J, —V J, ,

(2.1b)

0 s

-09 0.0
p(B, +u.V)C = —V J, ,

a,p+V (pu)=O.

(2.1c)

(2.1d)

FIG. 1. Reduced stability thresholds r,'„, (solid lines) for sta-
tionary and r,'„(dots) for the oscillatory onset of convection vs.
separation ratio P for different Dufour numbers Q. Horizontal
boundaries are FSP (cf. Sec. IIIA) with R, =(27/4)~. The
Lewis number L = —' and the Prandtl number cr =1 are typical
for gas mixtures.

topological changes of the stability diagram in compar-
ison to liquid mixtures with small L. Only the
codimension-2 (CT) point [18] is shifted to more negative

g values due to the higher Lewis number. Increasing the
Dufour coupling to a value of Q =6 leads mainly to a
wandering of the CT point to more negative g and to a
strong stabilization of the conductive state in the range
where an oscillatory instability exists. Further increasing
to Q = 12 shows that then also the stationary instability is
influenced significantly by the Dufour effect: for not too
large negative P there is a destabilization with a
minimum in rs„, at 1(

= —0.5. On the other hand, the os-
cillatory instability line is shifted to much higher Ray-
leigh numbers and its existence range is strongly dimin-
ished so that it can no longer be seen in Fig. 1.

In this paper we want to give a fuller account of the
linear stability properties for different boundary condi-
tions. Our paper is organized as follows. In Sec. II we
review the basic equations governing convection in
binary mixtures in the Rayleigh-Benard setup. Section
III presents analytical calculations of the stability proper-
ties for idealized free-slip permeable and impermeable
boundary conditions. In Sec. IV the full numerical stabil-
ity analysis for realistic no-slip boundary conditions is
discussed. There we also discuss the stability behavior of
the conductive state for heating the Quid layer from
above. Section V summarizes our results. In the Appen-
dix we give an ideal-gas approximation to calculate the
Dufour number and estimate when the compressibility of
the gas mixture inQuences the stability behavior
significantly.

II. SYSTEM

In part A of this section we review the basic equations
[35,36,38] describing convection in binary mixtures. In

dS e= jdV gJ F+-
dt i=1

(z.za)

where Ji are the above two diffusive currents and F; the
associated generalized forces driving the currents. They
couple via linear Onsager relations:

2

J;= g LkFk .
k=1

(2.2b)

The Onsager coeKcients I.;k are for time-reversal invari-
ant forces F, symmetric, L;k =Lk;. Thermodynamic con-
siderations based on entropy growth processes show that
the generalized forces for binary mixtures are

F =V — andF = —V
1

e C (2.3)

With the local chemical potential p(T,p, C) depending on
temperature, pressure, and concentration, its gradient is
given by

vg —— a
ar, VT+ '

T&p

Bp

C, T

Thus the currents can be written as

Bp Bp
T +P

T,p C,p

J, AVT, (2.4a—),
J, = pD [VC+kz(V T/T—)+kp(vp/p. )) . (2.4b)

The coe%cients k T, A, , D, and k are the

Here p is the pressure, e the energy dissipation rate, g the
gravitational acceleration, cr' the viscosity stress tensor
[35], c the specific heat at constant T, p, and C, and p
the chemical potential [35] of the binary mixture. The
diffusive currents of concentration and energy J, and J,
are obtained from Onsager*s theory of linear nonequili-
brium thermodynamics. There one can show that the en-
tropy production rate dS/dt is given by the volume in-
tegral
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thermodiffusivity, the heat conductivity, the concentra-
tion diffusion coefficient, and the barodiffusion coefficient.
They are combinations of Onsager coefficients and
derivatives of the chemical potential and are experimen-
tally accessible [35].

The fact that a temperature gradient drives according
to (2.4b) a concentration current is the Soret effect. The
concentration current J, drives according to (2.1b) tem-
perature fluctuations directly and indirectly via J, (2.4a).
These couplings are the Dufour effect. The sum of these
contributions to the right-hand side (rhs) of (2.1b) yields
the term kr(ap/aT)c V J, . Its size in liquid mixtures is
small compared to the Fourier contribution A, V' T, but
not in gases.

B. Oberbeck-Boussinesq approximation

The system we discuss in the following is a horizontal
binary fluid layer of vertical extension d. Perfectly heat
conducting boundaries impose a temperature difference
hT between the bottom To+ET at z = —d/2 and the
top To at z =d/2. We restrict ourselves to a situation
where the fields T, C, and p in the fluid layer deviate only
slightly from their reference values, say, at the top plate.
These reference values are marked by an index 0 in the
following. Then the Oberbeck-Boussinesq approximation
may be used where the spatiotemporal variation of all
transport and therrnodynarnic coefficients is neglected by
evaluating them for the reference values. Furthermore,
the deviation of the total mass density from the reference
state may be ignored except in the vertical buoyancy
force density pg. There, for small deviations of T, C, and

p one can expand the equation of state

(2.7)

can be positive or negative while the Dufour number
' 0

Toa ap
c P2 aC

(2.8)

C. Linearization around the conductive state

In the motionless conductive state (marked in the fol-
lowing by the index "cond") u is zero. The temperature
and concentration fields are stationary, horizontally
homogeneous, and depend on z only linearly. Since the
boundaries at z =+—,

' are impermeable the conductive
concentration current J,"" has to be zero there. The
structure of the conductive fields then enforces that the
current vanishes globally in the conductive state

J " = LV(C„„d—QT„„d)=0—. (2.9)

So the vertical concentration stratification is tied to that
of the temperature via the Soret effect. The conductive
profiles

is always positive [35]. Since in gas mixtures the
barodiffusion contribution is only of importance for sepa-
ration ratios of the order 10 we will ignore it in the fol-
lowing.

Note that the Dufour terms enter into the temperature
field equation (2.6b) via a "diagonal" coupling to V T
with strength QL g and via an "offdiagonal" coupling to
V C with strength QLQ. —

p=po[1 —a(T —To) —p(C —Co)+g(p —po)] . (2.5)
T„„d(z)—To =R (-,' —z),

C„„d(z)—C = —R fz

(2.10a)

(2.10b)
Here the thermal and solutal expansion coefficients
are defined by a = —( I /po }(ap/a T)c and P
= —( I/Po)(aP/aC}r, resPectively. The comPressibility
coefficient y=(1/po)(ap/ap)c z. is small in liquid as well

as in gas mixtures (cf. Appendix) and will be ignored in
the following. Finally the energy dissipation e can be ig-
nored.

We reduce lengths by d, times by d /~, temperatures
by av/agd, concentration by ~v/Pgd, and p/po by
tc /d where v is the kinematic viscosity. Then the field
equations (2.1) read in the Oberbeck-Boussinesq approxi-
mation

(a, +u v)u= —v(p+gz)

+e,o(T —To+C —Co)+oV u,

are not influenced by the Dufour effect. Here To is the
reduced temperature at the top boundary and the Ray-
leigh number

3
CEgd

KV
(2.10c)

is the reduced temperature difference across the fiuid lay-
er. C is the reduced mean concentration and

CO=C —Rg/2 is the concentration at the top. The
Soret induced concentration difference between top and
bottom, b, C = —R g, and Co depend on the product R g.

To discuss the stability of the conductive state we write
down the linearized equations for the deviations from the
conductive state

(2.6a)

(a, +u.V )C =L V (C @T), —
V.u=0 .

(2.6c)

(2.6d)

(a, +u V)T=(l+QLP )V T QLQV C, (2.6b}— (a, —av')v'~ =a[a„'+a,'](e+c),

a, O=Ric+(1+LQQ )V28 LQPV c, —

a,c =Rgic+LV (c $8), —

(2.11a)

(2.11b)

(2.11c)

Here we have introduced the Prandtl number o =v/K,
the Lewis number L =D/K, and the dimensionless gravi-
tational constant g =gd /K . The separation ratio

where 0= T —T„„d,c =C —C„„d, and m is the vertical
component of the velocity u. Here we have taken twice
the curl of (2.6a) using (2.6d).
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D. The Dufour number

To get a feeling for the magnitude of the Dufour num-
ber Q we estimate its value for typical liquid and gas mix-
tures. Estimates [22] for ethanol-water mixtures at room
temperature show that a=3X10 /K, P=0.2, c~=4
W sec/(g K), and (Bp/BC) z. —-3.2 X 10 cm /sec leading
to a Dufour number Q =0.1. In contrast to that for gas
mixtures a= 1/(273 K), P=0.2, c =I W sec/(g K) and
(ap/aC)rp -—10' cm2/sec2 are typical leading to a
Dufour number Q =10. Thus the Dufour number in gas
mixtures is about 10 times larger than in liquid mixtures.
This is basically caused by the fact that the thermal ex-
pansion coefficient a entering quadratically into Q is ten
times larger in gas mixtures than in liquids. Since the
diffusion coefficient D is about 10 ' cm /sec in liquids
versus about 10 ' cm /sec in gases and the thermal
diffusivity Ir is about 10 cm /sec in liquids in compar-
ison to about 10 ' cm /sec in gases, the Lewis number in
gases is 10 times larger in gas mixtures and of the order
1 and thus no longer a small quantity.

Since the Dufour contributions in the temperature field
equation (2.11b) are proportional to QLQ the Dufour
effect is for the same fixed f about 10 times larger in gas
mixtures than in liquid mixtures and no longer negligible
if the absolute value of g is not too small.

III. ANALYTIC STABILITY ANALYSES

Here we present two analytic approaches to study the
changes due to the Dufour effect using two different
idealized boundary conditions on the convective distur-
bances. The purpose of this section is twofold. On one
hand we show that the main changes can be understood
by these idealizations; on the other hand one can identify
by comparing with the full numerical treatment for real-
istic boundary conditions in Sec. IV which boundary con-
ditions are responsible for additional qualitative changes.

A. FSP boundary conditions

Free-slip permeable boundary conditions on the devia-
tions from the conductive state are the most idealized
ones, but on the other hand the easiest ones to calculate.
They are defined by

w =B,w=0=c =0 atz=+ —,
' . (3.1)

With c =0 at the boundaries there can be vertical con-
centration gradients and with it vertical concentration
currents through the top and bottom boundaries —hence
the name permeable. The stability analysis can be carried
out in full exact analytical detail. The solution for distur-
bances, e.g. , with lateral wave numbers k„=k, k =0 is

w (x,z, t ) = [w ( t )e '""+c.c. ]&2 sine. (z —
—,
' ),

8(x,z, t) = [8(t)e'"'+c.c. ]&2 sinn(z —
—,
' ),

(3.2a)

(3.2b)

c (x,z, t) = [c(t)e'""+c.c. ]&2sinn(z —
—,') . (3.2c)

r„„(k)=(Q /k )r,'„, , (3.3a)

1

(1+P)(1+Qg ) +P/L
(3.3b)

(ii) Oscillatory instability. There is a Hopf bifurcation
threshold with oscillatory growth of the convective dis-
turbances (3.2) at

It fulfills the boundary conditions (3.1) as well as the
linearized equations (2.11). Insertion of (3.2) into (2.11)
and performing standard stability analysis leads to the
following stability thresholds.

(i) Stationary instability. The conductive state loses its
stability against monotonous growth of the convective
roll pattern (3.2) at the reduced threshold

r„,( k ) = (g /k )r,'„,
1 L(1+Qf )[o(o+2)+L+Lo(1+Qg )]+o +o+L

CT 1+(1+/)o
with frequency

co(k)=q a),

as long as the square of the Hopf frequency

4L [I+o(1+QQ )][Q+L(1+/)(1+Q$2)]+og[1+LQQ(1+/)]
c 4 1+(1+/)o

(3.4a)

(3.4b)

(3.5a)

(3.5b)

is non-negative. Here we have reduced by critical quanti-
ties in the pure fluid /=0 with FS boundaries

r =R/R, , R, =27m. /4, (3.6a)

For the oscillatory as well as the stationary thresholds

k=k/k, , k, =m/&2, q =(k +m)/[(k, ) +n. ] . .

(3.6b)

I

in mixtures the critical wave numbers are independent of
L, g, Q, and cr and coincide for FSP boundaries with
the critical wave number in the pure Quid k,„
=k;„,=k, =sr/&2 Setting Q =0 .the results [1,18,36]
without the Dufour effect are obtained. The critical
values r,'„, and r'„are shown in Fig. 1 for a gas mixture
of o =1, I.=—,', and three different Dufour numbers as a
function of f. When the system is heated from below a
stationary instability exists whenever g) 1i,t„with 11,"t„
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given by the zero of the denominator of (3.3b}. A large-Q
expansion shows [32] that r,'„, diverges

at 1(s«,(Q »1)= —1+(LQ) '+0(Q) . Note that

g,"„,& —1 for finite Dufour numbers. From (3.3b) one
immediately reads off that the incorporation of the
Dufour effect QAO diminishes the stationary stability
threshold r,'„, for fixed g and L in comparison to the case

=0.

r,'„,(Q &0) &rs«, (Q =0) . (3.7a}

While r,'„,(Q =0) decreases monotonically from + ~ at
tp,«,(Q =0)= L /(—L + 1) to zero at 1f -+ ~ the behavior
is different if Q & 3(1+1/L). Then r,'„, develops a max-
imum and a minimum at

' 1/2

1+ 1—1 3(1+L)

as shown in Fig. 1 for L =
—,
' and Q =12. With increasing

Q the maximum (minimum} approaches /=0 (1( = —
—,')

and leads to a strong destabilization of the conductive
state.

When the system is heated from above, i.e., r (0, one
has to distinguish between the case P & —1 and the case—1 & g& Ps«, . From Eq. (3.3) one reads off that in the
former (latter) case the absolute value of r,'„, is dimin-
ished (enhanced) by the Dufour effect, implying a desta-
bilization for f& —1 (stabilization for —1 &f &P„„).
For f= —1 the Dufour effect has no influence on the sta-
tionary stability threshold, since there r,'„,( g= —1)= L. —

Let us now turn to the oscillatory instability. For FSP
boundary conditions the lower bound of existence of os-
cillatory instabilities where r, and co, diverges is not
changed by the Dufour effect and is given by
f," = —(1+1/o ). In the case Q =0 there is a single CT
point [18] at gcT= —( I+g ) /(1+0 +L '+0 /L
+cr/L ) at which the frequency co, vanishes and simul-
taneously r'„, =r,'„,. For finite Q, however, fcT is deter-
mined by the zeros of a fifth-order polynomial in f. Thus
depending on Q more than one CT point can exist, e.g.,
three, and there can be several ranges where oscillatory
instabilities can exist. Moreover one can read off from
(3.4) that for any fixed L,f

r,'„(Q &0)&r,'„(Q =0) . (3.7b)

Thus the conductive state is always stabilized against os-
cillatory convection by the Dufour effect, the stronger the
larger Q. In the limit Q~ ~ r'„, diverges for all g with a
positive co, . For large Q one can show that there is a sin-
gle CT point at gcT= —1+(LQ) '+0(Q) z and
rcT =L Q +0 (Q). But more importantly, fcT is always
bigger than P„„since from the large-Q expansion follows
[32]

pcT f «=L Q +0(Q } .

Therefore also for large Q there exists always a g range
where the oscillatory threshold lies below the stationary
one. Only in the limit Q ~ 00 does this range disappear.

B. FSI boundary conditions

With free-slip, impermeable (FSI) boundary conditions
for the convective perturbations

w =B,w =8=3,(c —$8}=0 at z =+—,
' (3.8)

the vertical concentration current through the boun-
daries is enforced to vanish. So FSI conditions are more
realistic than FSP but still not fully realistic. It was
shown earlier [21] that the impermeability has a drastic
influence on linear as well as on nonlinear convective
properties. Here we present an analytic stability analysis
including the Dufour effect that is in contrast to the FSP
case only approximate. It is based upon the trial func-
tions [21]

w (x,z, t)= [w(t)e'""+c.c. ]v'2 sinir(z —
—,
' ),

8(x,z, t) = [8(t)e'""+c.c. ]&2sinn(z —
—,
' ),

g(x, t }=g(t)e'""+c.c.

(3.9a)

(3.9b)

(3.9c)

which fulfill the boundary conditions, but solve the basic
equations only approximately.

In writing down (3.9c) we have introduced the field

g=c —$8, (3.10)

whose z derivative has to vanish at the impermeable
plates. Using (3.10) the linearized field equations (2.11)
now read

(8, —OV )V w=o(B„+8 )[(1+if)8+(],
(8, V)8=Rw LQ—QV g, —

[8, L(1+Qg }V ]g= —P—V 8

(3.11a)

(3.11b)

(3.11c)

with the boundary conditions (3.8). Two remarks are in
order. First, by introducing the g field g appears explicit-
ly in the buoyancy in (3.1la). Second, the Dufour effect
now enters not only in the 8-field equation via LQQV /-
but also in the g-field equation. There it changes the
"difFusion constant" of the g field from L for Q =0 to
L(1+Qf ). Thus large Dufour numbers Q and not too
small 1( can significantly enhance this effective Lewis
number L (1+Qg ).

For FSI boundary conditions (3.8) the stationary stabil-
ity threshold evaluated for the perturbation fields (3.9)
reads

A finite Dufour effect leads to a diminishing of the oscil-
latory range but not to a vanishing.

Also for a Lewis number I. = 1 an oscillatory threshold
exists in any case whether Q =0 or finite. This indicates
that the argument [39] that oscillatory convection is basi-
cally caused by the difference of thermal and concentra-
tion diffusivities is incomplete. Instead it is the Soret in-
duced offdiagonal coupling of the temperature and con-
centration modes that lead to an oscillatory dynamics.

As we show in Sec. IV the main topological changes of
the stability curves induced by the Dufour effect are
recovered qualitatively also. for realistic no-slip boundary
conditions.
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r„„(k)= 1+Qf (1—8/2)
k (1+/)E(1+Qg )+8//m.

(3.12)

Here r, k, and Q are reduced as in (3.6) by the FS critical
values of the pure Quid. Furthermore

15

o 10
CL

cr 5
II

0

~ ~ ~
I

a a ~ ~
I

a

Q =20:

k L .
2+k

(3.13)

g,"„,(Q»1)= —I+(8/~ )(EQ) '+0(Q ), (3.15)

differing only slightly from the FSP case. In the Q~ ao

limit r,'„,diverges at f= —1, is equal to 1 at /=0, and is

r,'„,=(1—8/n. )/(I+/) elsewhere. Thus the Dufour
effect leads to a strong downward shift of the stationary
threshold r'„„as with FSP boundary conditions.

Within the FSI approximation information about the g
dependence of the critical wave numbers can also be ob-
tained. The critical wave number of the stationary insta-
bility k,'„, decreases for Q =0 monotonically from ae at

g(Q =0, ks'„, = ~ ) = L/(L +8/m —) to zero at

P(Q =O, k,'„,=0)= L l(L —16/6—) (if L & 16/n. ) and
remains zero for larger g. However, for finite Q the
curve k,'„, is no longer monotonically decreasing with in-

creasing g. The equation (k;„,) =0 is a polynomial of
order three and has for small Q three real roots. One of
these roots lies for all Q &0 in the range P& —1. The
other two in the range P& 0 shift together when increas-

The FSI critical wave number of the stationary instability
depends, in contrast to the FSP result, on f, L, and Q:

z (1+/)L (1+Qf ) 16—$/n.
( I+/)L (1+QP )+8//m.

By setting Q =0 we recover the formulas of Ref. [21].
The behavior of the FSI critical stability curve r„„is
very similar to the FSP case: For Q =0 it diverges at

E/(E—+8/n ) and decreases monotonically with
increasing f (Fig. 2; Q =0). With increasing Q the diver-
gence shifts to smaller 1(a and the curve changes its shape
(Fig. 2; Q=5). By further increasing Q the stability
curve is no longer monotonic. It develops a local max-
imum and minimum (Fig. 2; Q =10). More enlarged
Dufour numbers Q lead to an accentuation of this behav-
ior (Fig. 2; Q =20). A large-Q expansion shows that the
stationary stability curve diverges at

1.0

II
&~ 0.5

]0-

5—

0
-1.0

a I s s s ~ I

-0.5 0.0
s a a ~ I a a a i I

-0.5 0.0
a a a a I a s s s I

-0.5 0.0

FSi
Q=1
L=1

a a s a I a a a 'a

-0.5 0.0

ing the Dufour number until they coincide and create a
double root. For larger Q then, there remains only the
root in the range g& —1. However, in the positive-g
range the curve k,'„,(g) develops a minimum after the
two roots have coalesced. This minimum approaches
zero in the limit Q ~ ao. For the gas mixture with L = 1,
o =1 in Fig. 2 the minimum lies at /=0. 19 for a Dufour
number Q =20. If we further increase the Dufour num-
ber then the curve k,'„,(P) develops for Q =27 a saddle
at lt = —

—,'. Thereafter there appears an additional
minimum (maximum), which in the limit Q~ ao moves
towards f= —

&
(/=0). In this limit k,'„, diverges at

f= —1 and is k,'„,=1 elsewhere. The large-Q expansion
shows that the divergence of k,'„,at

f(k;„,~De )= —1+(8/m. )(LQ) '+O(Q ) (3.16)

lies at smaller values than the divergence of r,'„, since
L &E.

In case of the oscillatory instability the conductive
state loses its stability at

FIG. 2. Stability properties of a gas mixture (L =1, o = 1) vs
separation ratio g for different Dufour numbers Q. The station-
ary (solid line) and oscillatory (dotted line) stability thresholds
r,'t f and r,'„, the corresponding reduced critical wave numbers
k t t and k „„and the Hopf frequency co, are determined ap-
proximately for FSI boundaries (cf. Sec. III B) for which
R, =(—')~ and k =~/&2.

r„,(k)= (1+o )[I+L(1+QQ )][1+L(1+Qf)/o] LQQ (8/m. )[1+—cr+L(1+Qf )]
k (1+f)(1+o) 8$/n— . (3.17)

as long as the square of the Hopf frequency

co (k)H g 2 2 (8/m- )f[1+L(1+QQ )][o+L(1+Qf )]
(1+P)(1+o ) —Q8/H

LQQ2(8/m )o[(8/n )g+(1+/)L(1+Qf )]
(1+g)(1+cr ) —f8/m

(3.18)

is on-negative. Here r= 1/[(k, ) +0]. The critical wave number k;„ofthe oscillatory instability is Q and t/i depen-

dent and can be determined as the real root of
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0=(k' ) t[I+L(1+Qg )][I+L(1+Qg )/cr] —LQI( (8/m )[1+L(l+QQ )/(I+cr)]J

+(k'„, ) [3+2L (1+Qf )(1+1/o )+L (1+QI( ) /o L—QQ (8/m)[. 2+L(1+Qf )!(I+o)]]—4 . (3.19)

IV. STABILITY PROPERTIES OF THE SYSTEM
WITH NSI BOUNDARY CONDITIONS

No-slip, impermeable boundary conditions

w =t),w =H=t), (c —$8)=0 at z =+—, (4.1)

are the most realistic ones with respect to the experimen-
tal setups of Refs. [1-13]. With this kind of boundary
conditions the stability analysis has to be done numerical-
ly to get exact solutions. We have determined oscillatory
and stationary stability thresholds r,'„, r,'t&„ the corre-
sponding reduced critical wave numbers k,'„,k,'„, and
the Hopf frequency co, for several parameter values by
applying a standard shooting method [33]. Within this
method Eqs. (3.11) were solved for marginally stable con-
vective perturbations of the conductive state at threshold
that have the form

f (x,z, t }=f(z)e '""e' ' (4.2}

appropriate for straight parallel rolls with axes in the y
direction. The NSI critical values have been reduced
throughout this paper by the NS critical values of the
pure Quid, R, = 1707.762 and k, =3.11632, respectively.

Here we present in detail results for Lewis numbers
L =

—,', L =1 and the Prandtl number o.=1 which is typi-
cal for gas mixtures. We discuss heating from below, i.e.,
r )0, as well as heating from above, i.e., r & 0.

While Eq. (3.19} is analytically solvable, we have ana-
lyzed it numerically by a Newton method. In the limit
Q~ ao the critical wave number k,'„vanishes. A strik-
ing difference in comparison with the FSP case and with
the FSI case without Dufour effect where k,'„=1 is the
fact that k'„, decreases with growing Q and decreasing P
as shown in Fig. 2. This implies large wave-number gaps
k,'„,—k'„, at those g" where r,'„,=r'„,

We should like to mention that the degeneracy of the
FSP CT point is lifted already for Q =0 by impermeable
boundaries [21]: the intersection point It

' where
r,'„,=r'„, does not coincide with the end point P',"„ofthe
oscillatory threshold r,'„where the Hopf frequency co,
vanishes. Only by fixing the wave numbers k„, and k„„
to be the same, say kcT, does one get a true CT point
with r„„(kcT)=r„,(kcT) and to(kcT)=0.

The divergence of the oscillatory stability threshold
r,'„ is not affected by the Dufour effect. It remains at
f,"„=—(1+o)/[1+o —(8/n )]. But in the whole ex-
istence range of the oscillatory instability the Dufour
effect leads to an enhancement of r,'„(cf.Fig. 2). While
the FSI displacement of the end point g',"„with increas-
ing Dufour number is not as large as for FSP boundary
conditions, the enlargement of r,'„and the depression of
r,'„, shifts the FSI intersection points g" to much smaller

f values (Fig. 2).
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FIG. 3. Exact stability properties of a gas mixture (L = ~,
cr= 1}for different Dufour numbers Q. The critical values for
the onset of stationary (solid lines) and oscillatory (dots) convec-
tion are calculated for realistic NSI boundaries (cf. Sec. IV) with
a shooting method. The thresholds r,'„„r,'„and wave numbers
k„„,k, are reduced by the critical values Ra=1707.762 and
k, =3.11632 in a pure fluid.

A. Heating from below

In Fig. 3 we show for a gas mixture with L =
—,', 0.=1,

and Dufour numbers Q =0,5, 10,20 the critical values as
a function of the separation ratio P. Without the Dufour
effect Q =0 the curves show similar behavior as in liquid
mixtures [23,24] with a small L. Here, however, as a re-
sult of the large Lewis number, the intersection of r,t
and r„, is shifted to a more negative separation ratio
f'= —0.08 and the wave number gap is larger there,
hk, (g')=0.2. Increasing the Dufour number to Q =5
again shifts the divergence of r,'„, to a more negative P
and bends r„,upward leading to a destabilization (stabil-
ization) of the conductive state against stationary (oscilla-
tory) perturbations as for the idealized boundary condi-
tions discussed in Sec. III. However for the NSI condi-
tion the critical wave number of the oscillatory instability
is now no longer a monotonous function of g. It de-
creases for small ~g~, develops a minimum at tt = —0.75,
and then increases for more negative g. On the other
hand, k;„, begins the development that can be seen al-
ready in the FSI approximation. By further increasing of
the Dufour number to 10 or 20 r,'„, develops a local
minimum and maximum. To illustrate this behavior we
show in Fig. 4 the stationary stability threshold as a func-
tion of g for Q =0,2, 4, . . . , 20. For Q =12 the curve
has just formed a minimum-maximum pair. For
Q =20 the minimum (maximum} lies at
—0.58( I(t,„=—0. 12).

The bending down of r,'„, and the slight bending up of
r,'„ leads to multiple intersections of the two stability
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FIG. 4. Reduced stationary stability threshold of a gas mix-

ture (L = —', o.=1) for NSI boundary conditions. The Dufour
numbers Q =0,2, 4, . . . , 20 increase from right to left. Increas-
ing Q shifts the divergence r,'„, to smaller i/ and strongly desta-
bilizes the conductive state Al. l curves go through /=0, r =1
where the Dufour effect vanishes.

curves, e.g. , three if Q is not too large. In Fig. 5 we have
plotted the separation ratio of the intersections
against the Dufour number Q. For small Q there is only
one intersection. Then, for Q =9.3, rsa, a intersects r,'„at
1/j*= —0. 12 and touches it at p* = —0.48. For larger Q,
e.g., Q =10 (Fig. 3), there exist three intersection points.
Further increasing of Q pushes the two intersections at
larger i/a values together until they coincide at Q =11.4
and I(*=—0. 19, i.e., r,'„, again touches r,'„. For larger

Q only the intersection at more negative 1( remains (cf.
Figs. 3 and 5, Q =20).

Also the Hopf frequency as a function of I(a undergoes
a striking development shown in Fig. 6 for Q
=0,2, 4, . . . , 20. With increasing Dufour number the
curve co, bends down and develops a minimum (Q =14)
at P= —0.5. Then there exist two separated ranges with
an oscillatory instability, e.g., for Q = 16 one at
—0.33 ~ 1( ~ —0.08 and the other at 1( ( —0.63. Increas-
ing Q (Q =18) leads to a shrinking of the first range
( —0.2 1(

—0. 12) and a shifting to smaller I(a of the
second range (ir'j~ —0.78) until (Q =20) there remains
only the oscillatory range at smaller I((I( ~ —0.83).

The topological changes due to the Dufour effect are
also influenced by the size of the Lewis number. This can
be seen in Fig. 7 where we show for L = I and several Q
the critical values at the different stability thresholds. For
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FIG. 6. Hopf frequency co, vs separation ratio P for the
Dufour numbers Q =0,2, 4, . . . , 20 (from right to left) for NSI
boundaries. Increasing Q leads, via a state with two separated
oscillatory ranges, to a strong shrinking of the I(s range with os-

cillatory instabilities.

Q =0 the topologies of the curves r(g), k(f), and caa(I()

are again the same as in liquid mixtures. But due to the
larger Lewis number the intersection of r,'„, and r,'„ lies
now at the much more negative f'= —0.2 than in the
case of L =

—,
' where It

' = —0.08. Also the wave-number

gap there is enlarged from bk, (L =
—,') =0.2 to

bk, (L =1)=0.3. Thus the Lewis number dependence of
Ak, is no longer linear in I. as for liquid mixtures. In-
creasing the Dufour number to Q = 5 shifts again the
divergence of r,'„, to a smaller I( value. At the same time
the oscillatory stability threshold is bent upward. Both
effects together lead to a downward shift of the intersec-
tion to a smaller 1(*= —0.7 and larger Rayleigh number
r'=6. The critical wave number k,'„of the oscillatory
instability now has a miniinum at I(a= —0.9 and the curve
k,'„,(g) is slightly deformed. The end point of the oscil-
latory threshold is shifted from g;"„(Q=0)= —0. 15 to
i)'joa, (Q =5)= —0.23. After increasing Q to 10 the curve

rs„,(I() has develoPed a minimum at g= —0.5, the oscil-
latory threshold r,'„(P) is bent further upward, and the
intersection point is shifted to 1/a = —0.88, r'=15. The
minimum of k,'„(I(a) is more pronounced and the devel-
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FIG. 5. Separation ratio its* of the intersections between the

oscillatory and stationary stability thresholds r,' and r,'„,vs the

Dufour number Q for NSI boundaries. In the range

9.3+ Q ~ 11.4 the stationary stability threshold intersects the

oscillatory one three times.

FIG. 7. Exact stability properties (solid lines, stationary; dot-

ted lines, oscillatory) of a binary gas mixture (L =1, o.=1) for
different Dufour numbers and NSI boundaries. For Q =20 the
curve co, ia/) drops very sharply to zero (cf. arrow) which was

not resolved numerically.
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B. Heating from above

Let us now briefly discuss the case when r (0. As al-
ready observed for thermohaline convection in binary
mixtures there is also a stationary instability of the con-
ductive state for heating from above if f & 0. In Fig. 8 we
present for L =—,

' the g dependence of this instability.
Within our numerical resolution the critical stationary
wave number k,'«, is zero for all g and Q & 30, for which
we have performed a numerical NSI analysis. The criti-
cal Rayleigh number r„„(dashed line in Fig. 8) is the
same for all Q &30. Thus the Dufour effect has no
influence on the zero wave-number instability for r (0.
But this is no longer true if the geometry selects a finite k
value at the onset of convection. Then increasing the
Dufour number shifts the stability threshold to more neg-
ative P and thus changes the stability of the conductive
state. In Fig. 8 we show with solid lines as a representa-
tive example r„„(k=1)for Q =0, 10,20, 30. Note that
all curves merge at P= —1. Thus we have for g) —1 a
stabilization of the conductive state by the Dufour effect

=0

-1.0
1 1 )I 1

-0.5

1

t"

I

0.0
FIG. S. Reduced stability threshold for the onset of station-

ary convection in a binary gas (L = 2, cr =1) layer heated from
above. The boundary conditions are NSI. The influence of the
Dufour effect on the stability at a finite k is illustrated for
k =k0=3.11632 and several Q values (solid lines). All curves
intersect at P= —1. The critical quantities k;„,=0 and r,'„, are
independent of Q. The dashed line shows r„„(k= 10 ').

opment of k„„(f)as displayed in the FSI approximation
can be observed. The end point of r,'„ lies now at
f;"„=—0.76. Further increasing of Q leads to a general
accentuation of the above-mentioned behavior, thus, e.g.,
for Q =20 the oscillatory stability threshold has moved
out of the g r-range of Fig. 7.

The main topological differences between L =1 and
L =—,

' are due to the different positions of the intersection
points lit* and the different motions of the end points f;"s,
toward negative P as Q increases. For L =1 the end
point P',"„ lies to the left of the g range where r,'„,
displays a minimum-maximum combination. Thus r„,
and rs'„, can intersect only once. For L =

—,
' there are two

separated oscillatory instability branches at large enough
Q while for L = 1 there is only one. Also this difference is
due to the fact that for L =1 the end point g;"„moves
with increasing Q so fast toward negative g that the Hopf
frequency co, (g) cannot develop a minimum and drop to
zero as for L =

—,'.

and for P & —1 a destabilization. At f= —1 the driving

from the temperature field in (3.11a) drops out and the
driving force is only the g field. These features are not
reproduced properly by our FSI approximation since in
the numerator of (3.2) the Dufour contribution is weight-
ed by (1—8/m ). This factor arises from the projection
of the approximated modes.

V. CONCLUSIONS AND PERSPECTIVE

We have investigated the influence of the Dufour
effect, i.e., the effect that concentration fluxes generate
temperature fluctuations on the stability behavior of the
conductive state of binary fluid mixtures in the
Rayleigh-Benard setup. To that end we have applied
three different boundary conditions to the convective per-
turbations of the conductive state: idealized free-slip
permeable boundary conditions, more realistic free-slip
impermeable boundary conditions, and realistic no-slip
impermeable ones. An exact (approximate) analytical ap-
proach was presented for the FSP (FSI) case and then
compared with the exact numerical solutions for the NSI
case which can be taken as quantitative predictions
relevant for experiments.

Our results are as follows. (1) In liquid mixtures where
L = 10 and Q = 10 ' the Dufour effect has no
significant influence on the stability thresholds. They
differ by less than 1%. (2) In gas mixtures where L is of
order unity and Q of the order 10 the stability thresholds
differ substantially in comparison to the case without
Dufour effect, Q =0. We have estimated the size of the
Dufour numbers in gases with an ideal-gas approxima-
tion. It shows that Q can be quite large in dilute mixtures
having a minimum if the concentrations of the two com-
ponents and the particle masses are similar. Calculations
[40] for C2H6-CO& support our estimates. An experimen-
tal determination of the Dufour number would be help-
ful. (3) The changes in the NSI stability properties
caused by the Dufour effect are in detail: (i) extension of
the existence range of the stationary instability toward
more negative g and mainly a destabilization of the con-
ductive state against stationary perturbations; (ii) shift of
the intersection point 1(t* and of the end point g',"„ofthe
oscillatory threshold to more negative P; (iii) diminishing
of the range of the oscillatory instability and stabilization
of the conductive state against oscillatory perturbations;
(iv) existence of separate oscillatory threshold curves for
appropriate L Qparameters. (4-) The analytical FSP re-
sults show largely the same behavior of the stability
thresholds, but no information on the g and Q depen-
dence of the critical wave numbers. This information can
be obtained from our FSI calculations in an approximate
manner as well as the other stability properties. Detailed
discussions with varying Q for two representative Lewis
numbers (L =

—,', L =1) were presented as quantitative
predictions for experiments.

Let us now discuss some experimental implications of
our analysis. The most striking implication of experi-
mental relevance seems to be the drastic shift and the di-
minishing of the oscillatory range to more negative lit.
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Thus, e.g., in gas mixtures with I. = 1, Ir =1, Q ) 5 only a
stationary stability threshold is observable in experiments
that are restricted to separation ratios g & —0.2. But the
knowledge about the accessible g values in various gas
mixtures seems to be limited. A possible way to reach
more negative l(t might be working near a critical point
where the ratio of the expansion coefficients P/a takes on
very large values. Since the Dufour number is propor-
tional to Iz /p, this, however, implies a suppression of
the inhuence of the Dufour effect. Another point which
affects quantitative comparisons of our predictions with
experiments is that the Soret-induced concentration gra-
dient of the conductive state is in gas mixtures bigger
than in liquids [32]. An upper limit [32] for the validity
of the Oberbeck-Boussinesq approximation implies that
too small a height of the convection cell can lead to a
breakdown of that approximation used in this work
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JM =p$/m] —p2/m2, (A6)

where p& and p2 are the chemical potentials of the single
components. In an ideal-gas mixture [35]

Thus the smaller the difference between the masses of the
molecules of the different components the smaller is P
and the higher the Dufour number Q —1/P . Since C is
the concentration of the lighter component in the mix-
ture, i.e., m, & mz, the solutal expansion coefficient of the
ideal-gas mixture is positive, P)0. Moreover P of the
ideal-gas mixture depends on neither the temperature nor
the pressure. For very dilute mixtures C &(1 one finds
P=mz/m, —l.

The chemical potential p in binary mixtures is defined
by [35]

This work was supported by Deutsche Forsch-
ungsgemeinschaft. p; =f;(p, T)+ks T ln

n&+n2
(A7)

APPENDIX: IDEAL BINARY GAS MIXTURES

1. Dufour number

The mass densities of the single components of the
binary mixtures pi and p2 are

p, =Cp and pz=(1 —C)p, (Al)

where p is the total mass density and C the concentration
of the lighter component. The corresponding particle
densities are

Here we co11ect known formulas for the solutal expan-
sion coefficient P and the derivative of the chemical po-
tential with respect to the concentration (BItt/BC)r~,
both entering into the Dufour number Q for ideal-gas
mixtures which will be a reasonable approximation for
real ones. We furthermore estimate the influence of
compressibility on the buoyancy force. Throughout this
appendix we use unreduced quantities with their proper
dimensions.

with i =1 or 2 and f, independent of the concentration.
Using (A2) and (A7) one obtains

()p kg T
I)C r (1—C)m +Cmz C 1 —C

I

(AS)

il I I
] I I I
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I I I
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I I I

/
I I I!I

a4 9 crrl2
Bg 210

Thus (t)p/t)C)r~ grows linearly with temperature and
does not depend on the pressure. Moreover for very
small and very high concentrations, i.e., C~O or C~ I,
(Bp/BC)z z diverges. Since the Dufour number Q is pro-
portional to (Bp/BC)r large Dufour numbers can be
realized in very dilute gas mixtures.

In Fig. 9 we show the ideal-gas approximation for a
representative mixture CzH&-COz (the molar mass of
CzH& is 30 g/mol and of COz 44 g/mol) at a temperature
of about 300 K. The dashed line represents 20P accord-
ing to (A5). Thus P varies nearly linearly between about

p&
n

m,
P2

and n2 =
m2

(A2) 10—

where m, and m2 are the particle masses of components
1 and 2, respectively. Thus the total particle density is

C 1 —C
n =n)+np=p +

1 2

and the pressure p =nk& T is given by

(A3)

0I I I I i I I I J I I
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c,f 3/(gK)]
i i I [ I I

0.6 0.8 ].0

mim2

ksT (1—C)m, +Cmz

with ks denoting Boltzmann's constant. From Eq. (A4)
one obtains the solutal expansion coefficient.

FIG. 9. Thermodynamic properties of gas mixtures. The
solutal expansion coefficient p and (Bp/I)C}r p is evaluated for
ideal-gas mixtures while the specific heat is extrapolated from
Ref. [41]. The resulting Dufour number should be reasonably
realistic for C,H6-CO2 mixtures at room temperature.
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0.475 for small C down to 0.325 for large C. The dotted
line shows (B)M/BC)T, given in units of 109 cm /sec . It
diverges for C~0 and C~ 1 and has its minimum value

of about 2.5 for C= —,'. The specific heat c [given in

units of J/(g K)] is extrapolated from tables and shows for
growing concentrations a slight increase with C from
about 1 J/(g K) to 2.5 J/(g K). The thermal expansion
coefficient a of the ideal-gas mixture is 1/(273 K). The
solid line in Fig. 9 represents half the Dufour number

(2.8) calculated with (A5) and {AS) and the thermal ex-

pansion coefficient a= 1/(273 K) of an ideal-gas mixture.
It shows a similar behavior as (B)u, /BC) T ~. It diverges for
C —+0 and C~ 1 and its minimal value Q =4 at about
C =0.55. The order of magnitude of Q coincides with an
estimate given for typical real-gas mixtures in Ref. [31].
Note finally that the mean pressure does not enter into
the calculation of Q within the ideal-gas approximation.

2. Inhuence of compressibility on buoyancy

The compressibility coefficient y, following from (A4),
is given by

1 3px=
p Bp

(A9)

Thus the smaller the mean pressure the larger the

compressibility coefficient. Pressure gradients in the den-

sity entering the buoyancy term

p =po( 1 ab T——PhC +ybp) (A10)

lead to significant contributions whenever ~ybp ~
is com-

parable with ~ahT~ and ~Pb, C~. The maximum pressure
gradient is given by hp =pgd. Assuming typical values
of x=v= 10 ' cm /sec, d = 1 cm and ET=5 K corre-
sponding to a Rayleigh number R =1700 one finds
~abT[ —10, ~pbC~-lbX10, and ~ybp~-10 . Thus
compressibility in the buoyancy term is of the order of
the concentration contribution in Eq. (A10) if ~g~ (10
But in that case the temperature contribution dominates
the density differences and both other contributions are
negligible.
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