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Transversal convection patterns in horizontal shear flow
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We investigate the influence of a horizontal plane Poiseuille shear flow transversal to the convective
roll chain of the Rayleigh-Benard problem. Using a one-dimensional (1D) amplitude equation and a 2D
numerical simulation of the basic field equations, we study how different boundary conditions at the inlet
and outlet of the channel affect nonlinear convection. If convection is suppressed near the cell apertures,
spatially localized traveling-wave states appear with a uniquely selected bulk wavelength. For convec-
tively unstable parameters this pattern is pushed out of the channel; however, the system becomes very
sensitive to perturbations, and noise-driven structures occur. Phase-pinning boundary conditions lead for
very small flows to stationary roll patterns with a space-dependent wavelength decreasing downstream.
Strengthening the throughflow causes local Eckhaus instabilities, which finally generate a transition to
propagating rolls.

PACS number(s): 47.20.8p, 47.20.Ky, 47.60.+ i

I. INTRODUCTION

The investigation of heated shear ffows has a long his-
tory dating back to the 1920s [1). The original motiva-
tion was geophysical problems like the formation of
cloud streets, sand dunes, or oceanic mountains. Today
this problem reobtains actuality due to its technical appli-
cation in the fabrication of microelectronics involving
chemical vapor deposition [2]. From a fundamental
point of view the combination of the Rayleigh-Benard
problem [3] (thermal instability of a fluid layer heated
from below) with the Orr-Sommerfeld problem [4] (insta-
bility of a shear flow) leads to an interesting nonlinear
pattern-forming system. The basic conductive state is os-
cillatorily unstable with a frequency that is externally
tunable by the strength of the imposed shear ffow.

It has early been recognized [5] that convection in
broad channels heated from below usually appears in the
form of stationary rolls aligned parallel to the
throughflow (longitudinal rolls). Traveling transversal
rolls (axes perpendicular to the shear flow) have been
detected [5,6] in narrow channels, but for small flow rates
only. This is a result of two competing mechanisms:
Perturbations in the form of longitudinal rolls are pre-
ferred by the throughffow, whereas transversal distur-
bances are favored by the inffuence of the lateral channel
sidewalls [4,7]. From the theoretical point of view the
properties of nonlinear convection in heated shear ffows
are hardly examined, so that the knowledge is mainly
based on experiments [8—13] and two-dimensional nu-
merical simulations [14—20] of the hydrodynamic field
equations.

The majority of investigations is occupied with longitu-
dinal convection patterns; only a few articles consider
transversal roll structures. Luijkx, Platten, and Legros

[11]reported transversal traveling roll patterns which did
not fi11 the whole length of the channel. More recently,
such spatially localized structures have been observed in
numerical simulations [19,20]. They are a result [20] of
the convective nature of the primary instability (which is
a common feature of open ffow systems like channel or
pipe flows) and the absolute instability at higher Rayleigh
numbers. Similar patterns also appear in the Taylor-
Couette system with an axial throughfiow [21,22]. In re-
cent experimental work on Rayleigh-Benard convection
with throughffow competition between longitudinal and
transversal rolls [13,23] has been observed; also a super-
position of both structures and more complicated time-
dependent behavior is possible. This competitive dynam-
ics has been investigated by Brand, Ahlers, and Deissler
[24] with a phenomenological model of two coupled am-
plitude equations for transversal and longitudinal rolls
which, however, di6'er from the more rigorously derived
equations [25].

Another kind of transversal convection structure has
been studied by Pocheau et al. [26]. They used an annu-
lar conduit cell with azimuthally opposite Qows in the
two halves of the container. Due to this special geometry
phase pinning occurs at the cell apertures and the system
responds for small throughffow with a stationary de-
formed roll structure.

In the present work we consider transversal convective
structures. In particular we address the question: How
do the boundary conditions (BC) at the inlet and outlet of
the channel affect the nonlinear convection'7 A short
summary of our results has been published earlier [20].
Our investigation is based on two-dimensional (2D) com-
puter simulations of the governing field equations as well
as a 1D amplitude equation. After describing the system
in Sec. II we present linear stability results in Sec. III and
Appendix A. The amplitude equation, its important
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II. THE SYSTEM

We consider a horizontal layer of an incompressible
Boussinesq fluid between two rigid perfectly heat con-
ducting plates at z=0 and 1. The fluid is heated from
below and a lateral pressure gradient drives the
throughflow in x direction. In the absence of lateral
boundaries the basic conductive state is described by a
linear temperature profile

T„„s= To+ Ra(1 —z )

and a plane Poiseuille velocity field

U(z) =6o Rez(1 —z)e„.

(2.1a)

(2.1b)

Here we scaled lengths by d, times by d /z, and tempera-

properties, and derivation can be found in Sec. IV and

Appendix B. Section V discusses different kinds of BC's
at the entrance and exit of the container: Lateral period-
ic BC's are used to simulate a channel of infinite stream-
wise extension. A finite container is investigated with the
aid of convection suppressing BC's; the influence of per-
turbations at the entrance is also studied. Phase-pinning
BC's cause stationary deformed patterns as in the experi-
ments of Pocheau et al. [26]. They are understood in

terms of an inhomogeneous phase diffusion equation. For
each type of boundary condition the outcomes of the am-

plitude equation are directly compared with numerical
simulations of the hydrodynamic field equations. Wher-
ever possible we discuss related experiments. Section VI
gives a summary of our results.

ture by sv/(agd ). The Rayleigh number

Ra=agd b, T/(tv) (2.2a)

is given in terms of thermal expansion coefficient a, grav-
itational constant g, layer thickness d, thermal diffusivity

~, kinematic viscosity v, and the temperature difference

between the plates hT. The second control parameter is

the Reynolds number

Re= Ud/v (2.2b)

proportional to the vertically averaged flow velocity U.

After nondimensionalization one has U =0 Re where the
Prandtl number o =v/ir is a material parameter of the
fluid.

In a laterally unbounded layer linear stability analysis
predicts [27] longitudinal convection rolls to grow first
above threshold. However, in ducts with a small aspect
ratio in y direction sidewall forcing dominates [28,29] and
makes transversal rolls appear [4,7] provided the flow

rate Re is below a certain threshold. To avoid the
mathematical difficulties of a full three-dimensional
analysis we are considering here an idealized situation
where channel sidewalls indeed are necessary to enforce
transversal rolls but where a two-dimensional description
in the x-z plane perpendicular to the roll axes is a
sufficient approximation. Thus we neglect the y com-
ponent of the velocity and take all hydrodynamic fields to
depend on x,z, t only. Then the governing equations for
the convective contributions of temperature 8 and veloci-

ty u=(u, O, w) read

—B,(B„+8, )+e(B„+8, ) —6o Re[2+z(1 —z )(B„+B, ) ]B„

Ra

a„[u (a'„+a,')w —w(a'„+ a,')u ]

(ua„+wa, )e

The continuity equation in the form

B„u+8,w =0

OB
W

—a, +(a„'+a,') —6u Rez(1 —z)B„

(2.3a)

(2.3b)

reflects incompressibility of the fluid. The operator on the left-hand side of (2.3) governs linear stability; all nonlinear
terms are collected on the right-hand side.

III. LINEAR STABILITY

Due to the explicit z dependence of the left-hand side of (2.3) the stability problem is not analytically treatable so that
we solved it numerically by a shooting algorithm. From earlier analysis it is known [27] that lateral throughflow stabi-
lizes the basic conductive state against perturbations in the form of transversal rolls. In the following section we
present how the dependences of the critical quantities can be expanded analytically for a small throughflow rate Re.
Details of this computation are given in Appendix A. Note that the throughflow term in (2.3) breaks the x-reflection
symmetry of the system. Only under simultaneous reversal of the flow direction (Re~ —Re) is the x ~—x symmetry
conserved. Consequently the critical Rayleigh number Ra, as well as the critical wave number k, are even functions of
the Reynolds number, whereas the oscillation frequency co, is an odd one. In Appendix A we derive

1.262+1.392o +128.5o +21.26o +24.59cr

(o +0.5117)

( R )= ' R +O(R )v+0. 5117

(3.1)

(32)
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P(x, z, t)=A(x, t)f(z)e ' ' +c.c. (3.3)

Here P(z)=(u(z), w(z), e(z)) is the complex eigenvector
of the linear stability problem. For the small Reynolds
numbers discussed here P(z) practically coincides with
the (real) eigenfunctions of the Rayleigh-Benard problem.
The amplitude A (x, t ) governing the saturation and
large-scale dynamics of the order parameter is undeter-
mined in the framework of the linear analysis and will be
discussed in the next section.

IV. AMPLITUDE EQUATION

In our system the bifurcation into the convective state
is a forward oscillatory one. Thus in the vicinity of the
bifurcation threshold the governing equation for the am-
plitude 3 (x, t ) is a Ginzburg-Landau equation with com-
plex coefficients

'r ( ),c+,u)„c)A = [p( 1+ic )+g( 1+ic, )c)„'

—y(1+ic2)(A
~ ]A . (4.1)

This equation results from a systematic expansion of (2.3)
around the critical point e, (Re). The expansion parame-
ter is &p, where

Ra e—e, (Re)

Ra, (Re) 1+e,(Re)
(4.2)

where @=Ra/Ra, —1 and Ra, =1707.76 is the critical
Rayleigh number without flow. We do not give here the
expression for k, (cr, Re) since it is rather unwieldy.
Another consequence of the [x~—x ~Re~ —Re] sym-
metry is that only one complex growth exponent belongs
to a perturbation of given wave number k and not a pair
of complex conjugate ones. Accordingly, the most gen-
eral solution for the hydrodynamic fields P=(u, w, 8)
close above threshold of stability is a traveling wave of
the form

0.3366+ 1. 147o + l. 325o

(cr+0.5117)

(4.3)

In a realistic experimental situation, where the channel
is of finite length, one has to dea1 with localized rather
than extended perturbations. Applying the concept of
absolute and convective instability [31] to Eq. (4.1) one
finds that the basic conductive solution A =—0 is convec-
tively unstable if e, & @&e", "" and absolutely unstable if
e&e,""". The borderline between the two subregions is
given by

2
conv pv

4j (1+c )
(4.4a)

ecollv —e + ( 1 +e )pcollv (4.4b)

Obviously e", "')e, for finite throughflow. Using (3.1),
(4.3), and the coefficients [32]

cr+0. 5117 +O(R ~)
19.65o.

go=0. 148+0(Re ), c, =O(Re)
(4.5)

number and actual threshold Ra, (Re). The coefficients
~o, go, and y contain corrections -Re to their Re=0
values. The group velocity v as well as the imaginary
parts c; are odd functions in Re, they grow in lowest or-
der linearly with the flow rate. According to a work of
Newell [30] the linear coeflicients can be expressed by
certain partial derivatives which we recall in Appendix B.
For the coefficients y and cz an extra nonlinear calcula-
tion is necessary. Details of this computation are also
given in Appendix B. Of particular interest for our fol-
lowing discussion is the group velocity v . Its Re expan-
sion turns out to be (see Appendix A)

measures the reduced distance between given Rayleigh we obtain

5.083+33.92o + 109.4o'+ 135. 1cr '+ 79.3o'
1

4 p ~ 4

(o +0.5117)
(4.6)

In Fig. 1 we show e", "' and e, for a Prandtl number
o.=1.

If the control parameters e and Re are such that the
basic state 3 =0 is convectively unstable any localized in-
itial disturbance is carried away by the throughflow so
that rolls cannot grow globally. Leading and trailing
edges of the perturbation propagate in the same direc-
tion, allowing the system behind the trailing front to re-
turn to its basic state. On the other hand, if the system is
absolutely unstable any perturbation grows and expands
everywhere (until nonlinear saturation), since leading and
trailing fronts move in opposite directions. For p & p", "',
or equivalently

uf =—2—[p(1+c, )]'~ ) ug
ko (4.7)
+0

the speed uf [33],with which the edges of a localized per-
turbation propagate in a comouing frame away from the
center, is larger than the (downstream) center velocity ug.
Thus the velocity of the upstream facing front, v —vf, is
positive for p &p,""",negative for p&p,' "", and zero at

conv
C

V. NONLINEAR CONVECTION
IN THE PRESENCE

OF DIFFERENT BOUNDARY CONDITIONS

In this section we investigate how different kinds of
boundary conditions at the inlet and outlet of the channel
influence the nonlinear convective structure. We present
results obtained by the amplitude equation (4.1) in direct
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FIG. 1. The basic conductive state A —=0 is stable below the
threshold of linear stability e„convectively unstable for

e, & e & e", "", and absolutely unstable for e& e", "". For convec-
tion suppressing inlet and outlet boundary conditions and in the
absence of a continuous source of perturbations permanent con-
vection is only possible in the absolutely unstab1e subregion. If
e", ""(Re) is approached from the left the streamwise growth
length I of the roll pattern diverges. At the dotted line 1=10.
The stars indicate the control parameter combinations used for
the simulations shown in Fig. 5.

FIG. 2. Snapshot of the laterally periodic, fully developed ve-

locity field for @=0.114, Re=1.67. The arrows indicate local
flow velocities in the x-z plane. The whole pattern moves down-

stream, to the right. Right (left) turning convection rolls are
displaced downwards (upwards) due to the horizontal flow

(2.1b).

comparison with two-dimensional computer simulations
of the full hydrodynamic field equations. In doing so we
use a finite diff'erence formulation [34] which expresses
spatial derivatives by central differences and applies a for-
ward Euler step for the time integration. After each time
step pressure and velocity fields are iteratively adapted to
each other with the aid of a variant [35] of the SQLA code
[36]. The spatial resolution was 20 grid points per unit
length d, the temporal step size 5X10 time units
(d /z). We checked the accuracy of the algorithm by
control runs with finer space and time resolution and
found errors of less than 3% for velocity or temperature
amplitudes; global quantities like the vertical heat trans-
port through the layer are better approximated than 1%.
A11 simulations have been performed with a Prandtl num-
ber of cr =1.

A. Periodic boundary conditions

The idealized case of a fluid layer which extends in
streamwise direction to infinity is investigated by using
periodic boundary conditions (i.e., inlet equals outlet).
To drive the throughflow a pressure difference between
entrance and exit of the channel was imposed, that is to
say, Vp was periodic. The periodicity length (the length
of the channel) was I =2 keeping the wave number of the
convection rolls fixed at k =2~/I =n, i.e., very close to
the critical wave number k, (Re) =3.116+0(Re ).

Since periodic BC's do not allow initial perturbations
to leave the channel the aforementioned distinction be-
tween absolute and convective instability is meaningless
and permanent convection appears for any e) e, . Figure
2 shows one periodicity length of the fully developed ve-
locity field. The arrows indicate the local flow direction.
Their lengths are proportional to the flow velocity. The
whole pattern moves downstream (positive x direction)
with a well-defined constant phase speed v~h„, . Due to
the horizontal velocity component of the basic Poiseuille
flow right (left) turning convection rolls are displaced
downwards (upwards). The vertical dependencies of the
convective fields $=(u, i0, 8) at an arbitrary x position

agree well with the shape of the corresponding eigenfunc-
tions tI)(z) predicted by the linear stability theory.

Under periodic BC's the long-time solution of the am-
plitude equation (4.1)

e i[qx Q(,q)t ]—
p (5.1a)

uniform wave number k =k, +q, and frequency
ttj=co, +Q(q). The frequency correction is given by

Q(q)= [qovgq+goq (c—, —cz) —tu(co —c2)] .1

Tp
(5.1c)

Both amplitude Ap as well as frequency shift 0 depend
on the wave-number displacement q, which is a free pa-
rameter of the solution (5.1}. To compare with our nu-
merical solutions, where the wave number of the pattern
is fixed at k=m, we have to impose q=~ —k, . Since k,
is very close to m. in all of our runs, the correction factor
(1—

goq /p)' in Eq. (5.1b) can be neglected in the fol-

lowing discussion.
An important quantity in convection experiments is

the Nusselt number N, measuring the total vertical heat
transfer through the layer reduced by its conductive con-
tribution. In terms of the amplitude A it is given by

A 11 jj,

1+p y 1+@ ' (5.2)

where the second equality follows from Eqs. (5.1a) and
(5.1b). Due to the weak Re dependence of the nonlinear
coefficient y (Appendix B} all simulation data for
different Re are expected to collapse onto a common line,
if they are plotted versus p. This is confirmed by Fig. 3
where we compare our computer experiments with the
analytic solution (5.2). The dotted line is a best fit
through the simulation results (for 0 ~ jt, 5 0.5 and
0(Re S7) with

describes a convective pattern of homogeneous amplitude

(5.1b)
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%=1+1.423 (1+0.09&p) .
1+p (5.3)

The leading term is in agreement with the amplitude

equation result (5.2) where the calculation yields
1/y=1. 423+0(Re ) for a =1 (see Appendix B).

The phase speed at which the whole roll pattern travels
in flow direction is

tv, +O(q) tv, +vsq+goq (c, c2—)lro p(—co c2—)tro
U phase

q 7T
(5.4)

Since co„u, co, c&, and c2 are in lowest order propor-
tional to Re it is useful to reduce U h„, by the mean
throughflow velocity U =o. Re. Neglecting higher-order
Re c~~~~~tions the rat~~ v h„,~U is independent of
flow rate and a function of Ra only. For cr = 1 we obtain

=1.171—0.0188@ .
U =1

(5.5)

Figure 4 shows that this result agrees well with the simu-
lation data. The systematic error of about 0.5% is a re-
sult of the discretization density in the finite di6'erence al-
gorithm; it reduces if the spatial and temporal resolution
is improved. Equation (5.5) yields the theoretical ex-
planation for the observation [18] that the pattern propa-
gation velocity decreases linearly with the Rayleigh num-
ber if the flow rate Re is held fixed.

B. Convection suppressing boundsry conditions

1.4

In this and the following Sec. V C we investigate more
realistic convection channels with nonperiodic inlet and
outlet boundary conditions. Since information is trans-
ported downstream by the shear flow the entrance BC
turns out to be crucial for the convective behavior within
the bulk. To study this problem we simulated convection
in a channel of length I =25. In defining the boundary
conditions we orient ourselves by the experiments pub-
lished so far.

1. Spatially conPned convection patterns

Luijkx, Flatten, and Legros [11]used a porous plug at
both ends of the duct to reduce inlet and outlet tur-
bulence. Although there is no information about the ve-
locity and temperature distribution near the porous walls
it is reasonable to assume that convection is suppressed
there. Accordingly in our simulations we enforced the
basic field profiles T„„d(z) and U(z) (2.1) at the channel
apertures at x =0 and x =I . Figure 5 presents snapshots
of the vertical velocity field w(x, z=0.5) after sufficient
long integration time when a steady state has established.
Thin lines are obtained from the numerical simulation of
the full hydrodynamic equations. The thick envelope re-
sults from the final-state solution of the amplitude equa-
tion, which is of the form A(x, t)=B(x)e' '. The sta-
tionary envelope ~8(x)

~

increases over a distance
l(Re, Ra) to half its saturation value while the roll pat-
tern propagates downstream. As observed in earlier
simulations [19] the front of the envelope is pushed more
and more downstream if the flow rate is increased. Note
that the e-Re control parameter combinations used in
Fig. 5 (indicated by stars in Fig. 1) are within the abso-
lutely unstable subregion. At e", ""(Re) the growth length
l diverges. Entering into the convectively unstable region
below the curve e", ""

by increasing Re or decreasing e
any initial convection is "blown" completely out of the
system.

We emphasize here the importance of the homogene-
ous (convection suppressing) inlet boundary condition
which forbids new perturbations to penetrate into the
cell. Permanent convection, therefore, is not possible for

1.2

0.2 0.4 1.l 6
0

1

0,2 0.4

FIG. 3. The Nusselt number N as a function of the relative
distance from threshold p= Ra/Ra, (Re) —1. Solid line: Am-

plitude equation result according to (5.2); dotted line: best fit

(5.3) through the simulation data for Re=0 (circles), 1.67 (trian-

gles), 3.33 (squares), 6.67 (stars).

FIG. 4. The propagation velocity of the pattern U»„, re-
duced by the vertically averaged Bow velocity U=o. Re. Solid
line: amplitude equation result (5.5). Simulation data:
Re = 1.67 (triangles), 3.33 (squares), 6.67 (stars).
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FIG. 5. Snapshots of the fully developed velocity field under
convection suppressing inlet-outlet BC. The control parameters
(a=0. 114, Re as indicated) are such that the conductive state is
absolutely unstable (cf. stars in Fig. 1). Thin lines show the
vertical velocity field w(x, z =0.5) taken from computer simula-
tions of the full hydrodynamic equations. Local node distances
4(x) (squares) are smaller than half the critical wavelength A,
The structures propagate to the right (downstream) the en-
velopes are stationary. Full lines are obtained by numerical
solution of the amplitude equation (4.1) with A =0 at inlet-
outlet. The envelopes grow from the inlet over a length I to half
of the bulk value.

e, & e & e", ""even though the basic conductive state is un-
stable to extended perturbations -e' . Later we will
demonstrate how a continuous source of disturbances
(e.g., inlet turbulence) can change this behavior. Let us
mention that the "blowing out" of the pattern is a rever-
sible process: When crossing the borderline e", "" in Fig.
1 from below the propagating roll pattern invades the
channel in upstream direction up to the appropriate dis-
tance l(Re, Ra) from the inlet.

In Fig. 6 we compare I as computed from the ampli-
tude equation (solid line) with the simulations of the full
equations for various Re and Ra. With L =&ILtl/go plot-
ted versus Vs(Re, Ra) =usmc/[gtt(1+c

&
)]' all simula-

tion data fall onto the line resulting from the amplitude
equation. This scaling behavior can be understood if the
throughflow rate Re is small enough to neglect the imagi-

nary parts co, c&, and c2 in the amplitude equation. With
a stationary solution A(x)=+y/pA(x) and a rescaled
space variable X=v'px /go one finds from (4.1)

(5.6)

Since V is the only contro1 parameter in this anharmonic
oscillator equation it governs the reduced characteristic
length L. The function L( V ) shown in Fig. 6 is univer-
sal in the sense that it is independent of the Prandtl num-
ber; all 0. dependencies are contained in the scaling of the
axis. The divergence condition V, =2 is equivalent to
e=e", "". The rapid increase of I. close to Vg=2 is
reflected in Fig. 1 by the dotted curve for I =10, which is
very close to e", ""where the growth length l diverges. In
the experiments of Luijkx, Platten, and Legros [ll] and
Ouazzani and Platten [37] propagating transversal roll
patterns filled the whole channel for small flow rates
whereas convection was more confined to the outlet re-
gion for increasing Reynolds numbers.

2. 8'avelength selection

In our computer simulations we found a unique wave-
length selection in the presence of throughflow. The
solid squares in Fig. 5 indicate local distances between
two adjacent rolls (which is half of the local wavelength).
Characteristic spatial wavelength gradients appear in
areas of strong amplitude variations while the convective
bulk region shows a spatially uniform wavelength. For
Re & 0 this selected bulk value turns out to be indepen-
dent of the initial configuration and history of the system.
It only depends on the final e-Re combination and the
Prandtl number o. Also the length of the channel does
not affect the selection mechanism. Obviously, the
homogeneous convection suppressing BC's prevent phase
pinning so that the traveling rolls are free to select their
preferred wave number. Figure 7 demonstrates for o. =1
that the bulk wavelength A, weakly decreases with Re and
Ra. This is in qualitative agreement with experiments
[11]where the number of convection rolls was found to
increase with growing flow rate. However the amplitude
equation (4.1) with homogeneous A =0 inlet-outlet BC's

5

p
0

V, = v,
—'

V'p, (I+c,')
0

~z 2.O-
LLj

LU)
1.9—

CO

4

FICx. 6. Reduced growth length L =Mpl/go vs scaled group
velocity V =vous/[g~(1+c, )]'~ . Symbols result from com-
puter simulations of the hydrodynamic field equations:
a=0. 114, Re ~ 2.5 (circles); a=0.215, Re & 3.4 (squares);
E'=0.417, Re ~4 (triangles). The solid line is obtained by in-
tegration of the amplitude equation. Near the divergence a fit
shows I.=2.31(2—

Vg )

FIG. 7. Bulk wavelength selected in simulation runs:
e=O. 114 (circles), 0.215 (squares), 0.417 (triangles). In the pres-
ence of throughflow full symbols show the wavelengths selected
independently of cell length and history of the system. Without
throughflow (Re=0) several stable states of different A. could be
realized (open symbols), e.g., by varying the channel length. Ar-
rows indicate simulation protocols.
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does not reproduce these characteristic wavelength varia-
tions. There the selected values are always very close to
the critical wavelength k, .

3. In+uence ofperturbations

Our foregoing discussion is based on the idealized as-
sumption that the undisturbed basic conductive state is
realized at the channel entrance. Experiments, however,
always show a certain level of perturbations, e.g., inlet
turbulence, other fluctuations, and thermal noise. Such a
permanent source of disturbances turns out to be crucial
if the system is convectively unstable.

To investigate this problem qualitatively we imposed in
our simulations at the inlet a fluctuating vertical velocity
field by using uncorrelated random numbers of vanishing
mean. We performed runs with average noise amplitudes
between 1% and 100% of the downstream convective
saturation amplitude of m. For absolutely unstable e-Re
combinations the convection behavior was hardly
affected by the inlet noise. Only in a short entrance re-
gion of a few roll diameters do stochastic variations of
the envelope reAect the random inlet BC. With increas-
ing distance from inlet the inhuence of the noise quickly
decays and nonlinear convection behaves as in the undis-
turbed case.

For convectively unstable parameters the situation is
completely different. Figure 8 shows the simulation re-
sults for @=0.114 and Re=3. The phase of the pattern
fluctuates and also the intensity envelope of the propaga-
ting rolls is no longer stationary but varies slightly
around a mean profile. The temporal average of the
growth length l is a monotonously decreasing function of
the noise strength (a: 1%; b: 10%; c: 100%). Obvious-

ly, the system acts like a selective amplifier of the inlet
disturbances with temporal and spatial delay. All con-
vective structures are noise sustained [38], they die out as
soon as the noise source is removed. This property might
be a useful tool for quantitative measurements of the ex-
perimental noise. Note, even in the case of a spatially ex-
tended noise source disturbances originating close to the
inlet would be amplified most since they have the longest
downstream distances to grow.

The amplitude equation also shows this dynamics if the
A =0 inlet BC is replaced by a noisy one. In the region
close to the entrance, where the convective amplitude is

still small, it follows from the linearized amplitude equa-
tion that a Fourier mode Ao(co) of a noisy inlet ampli-

tude Ao(t)=A(x=O, t) increases downstream according
to [38]

spatial growth behavior in downstream direction. This is

easy to see because the condition Real[a] &0 (spatial de-

cay) must be fulfilled if the conductive state is absolutely
stable (p&0). Taking the positive square root in (5.7)
yields the spatial growth or decay exponent of a signal in
upstream direction. Neglecting the small imaginary parts
cp, c& the maximum spatial growth exponent appears for
6)=0 with

7 pVg
K =K(CO=0}—

'2 1/2
1 Pvs

2' ko
(5.8)

-4"

CD
ll

{b)

I

I

I

I

I

I

0-

Thus the fastest growing mode, ~o=0 (corresponding to
to, in the order parameter), is amplified exponentially

downstream by a factor e '" . This result is also in ac-
cordance with our finite difference simulations: The
straight dashed line in Fig. 8 connects downstream posi-
tions of the same small field amplitude resulting from
noise that increases linearly on a log scale from Fig. 8(a)
to 8(c). At a given channel position x )0 the isolines
a,„x=const, or equivalently

A(x, co)= Ao(co)e '

where

10 20

VpUg
K(67)—

2/0(1+ic, )

VpUg

2g'0(1+ic, )

p(1+ tco ) ttoro—
(1oi+c, )

(5.7)

Here the negative sign in front of the square root (with
positive real part) must be taken to obtain the correct

FIG. 8. Snapshots of the vertical velocity field w(x, z=0.5)
under the influence of inlet noise. Parameters, a=0. 114 and
Re= 3, are such that the basic conductive state is convectively

unstable (cf. Fig. 1). The inlet noise amplitude of w(x =O,z, t) is

(a) 1%, (b) 10%, and (c) 100% of the saturation value of w. The
whole pattern propagates downstream, the envelope fluctuates

slightly around an (temporally) averaged distribution. If the in-

let noise source is removed convection dies out. The straight

dashed line connects downstream positions of the same small

field amplitude.
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constP= 70V—
x

const
x

(5.9)

define curves in the e-Re control parameter plane where
the same (small) convection amplitude occurs. We
checked Eq. (5.9) with the experimental data and the
coefficients of Babcock et al. (see their Fig. 6) and found
good agreement for their three x positions with
const=6. 2. The foregoing "linear" argument only holds
in the convectively unstable region. As soon as the sys-
tem becomes absolutely unstable any perturbation ex-
pands in both horizontal directions and the form of the
envelope is determined by the nonlinearity, so that no in-
formation can be obtained from Eqs. (5.7) and (5.8) for

Conv

C. Phase-pinning boundary conditions

Instead of fixing the convective amplitude at inlet and
outlet to be zero we now consider a phase-pinning BC.
This investigation is motivated by experiments [26] with
azimuthally opposite throughflow in the two halves of an
annular conduit. In this situation a stationary deformed
pattern appears for small Re while roll propagation sets
in beyond a critical flow rate. To explain this dynamics
phenomenological arguments have been used to extend
the phase diffusion equation of the classical Rayleigh-
Benard problem by an additional advective term [26,39]
to take the throughflow into account. In our following
discussion we show how an equivalent phase equation can
be rigorously deduced from the amplitude equation and
compare its solutions with numerical simulations.

I Derivation. of the phase equation

To compensate the critical time dependence of the or-

ldll

der parameter, tv —A(x, t)e ', we introduce the am-
plitude

A (x, t ) = r(x, t )e'+""= A (x, t )e

and obtain from (4.1) the evolution equation

(5.10)

r (a, +v, d„)A =
[ [p(1+ic ) ito, r ]+—g'(1 +i c)d„'

—) (1+ic2)IA 12] A . (5.11)

Its stationary solution describes a stationary pattern.
Since deformed patterns only occur for very small flow
rates, we use an expansion in powers of Re:

r(x, t)=r' '+r"'(x, t)Re+0(Re ),
P(x, t)=g' '(x)+g'"(x, t)Re+0(Re )

(5.12)

kq 1)""(x)=qx (5.13)

describes a stationary roll structure with an undisturbed

to extract an equation of motion for the phase g(x, t ). In
the absence of throughflow (Re =0) the coefficients vs, co,
c„c2,and ~, drop out and the lowest-order solution of
(5.11)

uniform wave number k=k, +q. Here we used p=e
+O(Re ).

In what follows we investigate how this basic convec-
tive structure is modified in the presence of a weak
throughflow. From the imaginary part of (5.11) one finds
in O(Re)

r B,f=g 8 1(+2( q

2

ro —to, +v q+ —
q (c, —c2)— —(cO —c2)

CO 2 E

(5.14)

After adiabatic elimination of the amplitude term
d„r/r' ' we obtain the following inhomogeneous phase
diffusion equation:

B,Q=D~~B„Q—(co, +0)
with the diffusion constant

g2 ~ 3(2q 2

D
koq

The inhomogeneity

2

(to, +0)=co, +vsq+ —
q (c, —c2) ——(cO —c2)

(0 2

(5.15)

(5.16)

(5.17)

increases in lowest order linearly with the flow rate.
Note that the phase dynamics depends via D~~ and 0 on
the wave number k =k, +q of the undisturbed roll struc-
ture. The stationary solution of (5.15)

Cgc+ ~
g(x) =— (x —I )x+qx

2 D
(5.18)

represents a standing deformed roll pattern with a local
wave number

a = co, +0
k(x)=k, + =k, +q+

Bx '
D((

rx
2

(5.19)

increasing linearly with a gradient (co, +0)/D~~ propor-
tional to Re. The integration constant in (5.19) was
chosen such that the undisturbed wave number k =k, +q
occurs at x =I /2 in the middle between inlet and outlet
as in the experiments [26]. Thus the largest deviations of
k(x) from k are located near the apertures of the conduit.

2. Comparison with simulation results

To incorporate phase fixing into our computer simula-
tions we used as inlet-outlet boundary conditions

8 w =B„T=O at x =0 and x =I
to pin maximal convective upflow or downflow at the
apertures. The throughflow was increased step by step
keeping @=0.215 constant. The time interval between
two steps in Re was sufficiently long for the pattern to re-
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10 20

FIG. 11. Time evolution of the nodes of the vertical velocity
6eld m(x, z=0.5, t) under phase-pinning BC. For these param-
eters (a=0.215, Re=0.0833) a stationary pattern is Eckhaus
unstable both at inlet and outlet according to (5.21). Creation
and annihilation of rolls at inlet and outlet, respectively, and
downstream pattern propagation in the bulk occurs.

(5.22)

r), /=Did„g U(k, +q)—. (5.23)

Since an undisturbed roll pattern subjected to a sudden
throughflow is not immediately affected by the presence
of (phase pinning) lateral boundaries it is reasonable to
identify the momentary velocity U with the propagation
speed of the pattern if there were no phase pinning,

~c+0
U U phase

c
(5.24)

By inserting (5.24} into (5.23} we recover our inhomo-
geneous phase equation (5.15).

VI. SUMMARY

leads to the same results as our inhomogeneous equation
(5.15): The quantities tp and g are related by y=k, x+g
and U is the momentary propagation speed of the pattern
when a throughflow is suddenly switched on. Substitu-
tion into (5.22) and neglecting terms of order Re gives

simulate a channel of infinite length. For supercritical
drive, e & e„ the whole duct is filled with convection rolls
traveling downstream. Vertical heat transport as well as
pattern propagation velocity observed in the simulations
agree well with the solution of the amplitude equation.
The latter also yields the theoretical explanation for the
phase velocity to decrease with growing Rayleigh num-
ber.

Convection patterns with space-dependent envelopes
appear if more realistic BC's are imposed: If convective
motion is suppressed at the cell apertures a more or less
extended region near the inlet of the channel remains free
of convection whereas the remaining part of the duct is
filled with traveling rolls. Within this bulk region the
wavelength of the structure is uniquely selected by the
final control parameter combination independent of the
geometry and history of the system. Increasing the flow
rate broadens the conductive region to the debit of the
convective one. If a critical Reynolds number is exceed-
ed any convection is "blown" out of the duct even though
the basic conductive state is unstable. This is because the
system has become convectively unstable and initial per-
turbations are carried out of the cell. At the same time
the system becomes very sensitive against permanent per-
turbations: If such a continuous source of noise (e.g. , in-
let turbulence, perturbations, thermal noise) is present,
the disturbances are amplified exponentially downstream
and generate "noise-sustained" convective structures
with fluctuating phase. These states disappear as soon as
the noise is removed. On the other hand, if the system is
absolutely unstable noise does not play an important role
because the occurring convection is not appreciably
affected by small perturbations.

Motivated by experiments of Pocheau et al. [26], we
also have considered BC's pinning the phase of the con-
vective rolls at the cell apertures. The standing deformed
patterns, which appear for small flow rates, are explained
by an inhomogeneous phase equation obtained by a Rey-
nolds number expansion of the amplitude equation. It
could be shown that this phase equation is equivalent to
the one discussed earlier [26]. For increasing
throughflow the deformed structure becomes unstable
due to a local Eckhaus instability. Roll generation or an-
nihilation occurs resulting finally in a transition to travel-
ing rolls.

We have investigated the Rayleigh-Benard problem
subjected to a plane Poiseuille shear flow perpendicular
to the roll chain. This convective structure can be rea1-
ized experimentally in a long narrow conduit if a weak
throughflow is imposed. Although channel sidewalls are
essential for transversal rolls to appear, we used for the
sake of mathematical simplicity a two-dimensional
description for the fields in a vertical plane perpendicular
to the roll axes. Results obtained by an amplitude equa-
tion are presented and compared with computer simula-
tions of the full 2D hydrodynamic field equations. The
main issue of our analysis is the influence of different inlet
and outlet boundary conditions on the nonlinear convec-
tive structure.

The most simple BC's are periodic ones appropriate to
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APPENDIX A:
EXPANSION OF co„Ra„AND vg

FOR SMALL THROUGHFLOW RATES

For a convection channel of infinite length it is con-
venient to expand the x dependences of w and 0 in plane
waves. At the threshold Ra, there is only the critical
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mode excited:

w(x, z, t)
8(x,z, t )

)'(k X —6) 1)
e +c.C.

8(z}
(Al)

where k, =k, (Re) denotes the critical wave number in
the presence of throughflow. Inserting (Al) into (2.1) and
dropping the nonlinear terms leads to the linear stability
problem:

ice, (B,—k, )+o (i), k—, ) 6—ik, o Re[2+z(1 —z)(8, —k, )]

Ra,

—o.k, w(z)

ice, +(8, k,—) 6i—k, o Rez(1 —z)
=0 (A2)

with the boundary conditions

w=B, w=8=0 at z=0 and z=1 . (A3)

where Ra, =1707.76 is the critical Rayleigh number
without flow. The adjoint solution

This problem is only solvable for special values of
Ra, (Re) and ai, (Re). Accordingly we expand for small
Re:

A f
Wp

8p

Ra', w,
—k 8 (A6)

r

&(z)

8(z)

to, =t(iiRe+O(Re },

wo(z) wi(z)

8o(z) 8i(z)

w2(z)
+ Re +O(Re ),

82 z

Ra, =Ra, +Ra2Re +O(Re ),
(A4) (Q2 k2)2

Ra,

W1

is necessary to formulate the solvability conditions in the
next expansion orders. In O(Re') one obtains from (A2)
the following system for wi(z) and 8i(z):

(6), —k, ) —k, &0

Ra' 8' —k' g
(A5)

where the symmetry conditions for Ra, and t0, (Ra,
even, co, odd in Re) have already been taken into account.
Inserting (A4) into (A2) leads to a hierarchic system of in-
homogeneous boundary value problems for w, (z), 8;(z),
which all have to fulfill (A3). In lowest expansion order
(Re=0) Eq. (A2) yields the Rayleigh-Benard stability
problem

k, 12+ 6z(1 —z )— (8, —k, )woo.k,
CO1

9po.k,
ok, 6z(1 —z)—

(A7)

The requirement that the inhomogeneity on the right-
hand side of (A7) has to be orthogonal to the adjoint solu-
tion (A6) yields the coefficient

& wo i [12+6z(1—z )(8,—k, )]wo &+cr & 80' 6z(1 —z)80&

& wo i(B,' —k,')wo&+cr&80fi80&
(A8}

The brackets abbreviate integration between z =0 and l. Analogously the solvability condition in O(Re ) gives the ex-
pansion coefficient

Ra = —k2 c

(
)2+ 6*(1—*)— „(6,—k, ) &,)+ (() 6*(1

o-k,
(A9)

By virtue of (A8) and (A9) and taking into account that
the functions w, and 8, in Ra2 are also o. dependent the
structural o. dependences of co, and Ra, are found to be
of the form

bp+b1 u+b2~ +b3u +b4u 2Ra, =Ra, + Re +O(Re } .
(a2 +a3o )

(A11)

ap+ a1o.
co —o Re+0(Re ),a 2+a3o.

(A 10) The factors a, , b, can be calculated either by successive
solution of the boundary value problems (A5), (A7), and
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w(x, z, i ) ~~( )
8(x,z, r) 8(z)

where the complex growth exponent s =v iso,—as well as
the z dependences iv(z) and 8(z) are to be calculated nu-
merically (e.g., by a shooting algorithm). The linear
coefficients then arise [30] by evaluating the following
derivatives at the critical point k„Ra, :

1 Bco ()co

Ra(Bv/() Ra), '
(}Ra, ' s Bk

()2Ra rp 82'
2 Ra (}k

'
2g Bk

In order to derive the nonlinear coefficients y and c2, the
nonlinear equation (2.3) is needed and we abbreviate it in
the form

XY=N . (Bl)

Writing Ra=Ra, (o,Re)(1+p) we expand X, Y, and N
in powers of p' . Since the spatial translation symmetry
of the system forbids nonlinear derivative terms in the
amplitude equation to appear up to the considered expan-
sion order p it is not necessary to introduce slow time
and space scales. We therefore get

X =So+PE, ,

Y=p' Ao YI+p Y2+p Y3+"
N=pN2+p N3+" ~,

(B2)

where p' AD=A is the amplitude of the lowest-order
solution Y, . Equation (Bl) then splits into a hierarchic
system of linea~ inhornogeneous boundary value prob-
lems for the Y;:

evaluation of the integrals or—more conveniently if a
computer solution of the stability problem is available-
by fitting them to the exact numerical results for different
Prandtl numbers o.. The results of the latter procedure
are given by Eqs. (3.1) and (3.2). The same procedure has
been applied to derive an expression for the group veloci-
ty v =Bco, /Bk„presented by Eq. (4.3).

APPENDIX B:
DERIVATION OF THE AMPLITUDE EQUATION

To determine the linear coefficients 'Tp vg gp cp and

c, the right-hand side of Eq. (2.3) is set equal to zero and
the x dependence of the solution is expanded into planes
waves proportional to e' . For given Ra, k, Re, and o
the solution can be written in the form

solve (B3).
Equation (B3a) defines the linear stability problem with

the eigensolution

(v(z) i(k, x ro—t)Yi= e ' ' +c.c.
8(z

(B4)

at onset Ra=Ra, (o., Re). Equation (B3b) is only solvable
if the scalar product of the inhomogeneity N2 with the
adjoint solution Y~ vanishes:

& Y', lN, &=0. (B5)

Here the bracket denotes integration over the whole fluid
layer. The condition (B5) is trivially fulfilled since the
(quadratic} nonlinearity N2 with its x dependencies

+2ik x
e ' and e =1 is out of resonance with the adjoint

i(k x —co t)
solution Y, ~e ' ' . The solution Y2 separates in
the form

2 A.
Y2=IAol Po(z)+Aoirj2(z)e ' ' +c c (B6)

where the f;(z) are z dependencies to be calculated. The
quadratic nonlinearity in (B3c) couples Y, with Y2 so
that N3 is of the form

i(k x —a) t)
N3= Apl Apgi(z)e ' ' +" (B7)

where the ellipsis represents nonresonant terms, which
are unimportant for the following discussion since their
scalar product with Y~i drops out. Consequently the sol-
vability condition in O(p ~

) reads

0=& Yil&2Y( &Ap & Yil ji(z)e'"'" '
&IApl Ap

where the brackets denote numbers to be evaluated nu-
merically. Note that we treat here the special situation
where Ao depends neither on time nor space. The
coefficients y and c2 arise by comparison of (B8) with the
space- and time-independent amplitude equation (4.1).
One obtains

1+icp =
& Yi lX2 Y, ),

y(1+icz)= & Yi lyi(z)e ' ' ) .

(B9a)

(B9b)

70 —7.693 X 10 1
Re

39.13

2

Re
7 0 140 1

All coefficients of the amplitude equation depend on the
throughflow rate Re as well as the Prandtl number 0..
The following fit formulas give the leading Re dependen-
cies for o = 1:

2

Apso Y, =0 for 0((((,'~ ),
Xp Y2:N, for O(p, )

XoY3= —A+&Yi+N3 for O(@3~2) .

(B3a)

(B3b)

(B3c)

gp ——0. 148 1—

vg ——1.229 Re,

Re
35.24

Re
332.6

2

Re
39.98 '

(B10}

This system is only solvable if certain conditions are
fulfilled. These solvability conditions yield a nonlinear
equation for Ao which contains the coefficients y and c2.
In the following we give some details of the procedure to

y =0.7027 1— Re
C2—

387

The expressions for ci, y, and cz given earlier [20] differ
slightly from (B10);they are not correct.
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