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Investigation of the homogeneous-shear nonequilibrium-molecular-dynamics method
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The homogeneous-shear (HS} technique has been used extensively to study shear How, but it uses
artificial methods to remove the viscous heat generated. In reality the viscous heat is removed from the
system by conduction out through the boundaries. This inevitably leads to characteristic gradients in
temperature, density, and shear rate. While at low shear rates these effects may be neglected, and the use
of HS justified, at high shear rates they certainly cannot, and doubts remain as to the validity of HS in
this regime. In this study we make careful comparisons between HS and a more-realistic sliding-
boundary method. HS gives very similar results when conditions corresponding to different regions
within the sliding system are used. The use of HS simulations at shear rates where energy is generated at
a rate faster than can be realistically removed by any natural process is called into question.

PACS number(s): 47.50.+d, 47.25.Ei, 44.90.+c, 66.20.+d

I. INTRODUCTION

During the last two decades there have been a number
of methods devised to compute fluid shear viscosities by
nonequilibrium molecular dynamics (NEMD), e.g., Refs.
[1—8]. Of these, the homogeneous-shear (HS) method has
proved to be the most popular. In this method planar
Couette flow is imparted on the sample using Lees-
Edwards [2] periodic-boundary conditions in order to
measure the average stress response. The shear viscosity
is then computed using the expression
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where y=t)u i' is the shear rate, u is the a com-
ponent of the local flow velocity vector u, and I'
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appropriate off-diagonal component of the pressure ten-
sor. The problem with this method is that it is necessary
to use large values of j for the small samples employed in
simulations in order to achieve an acceptable error
(( 10%) in ( P tt ). In most cases these shear rates are or-
ders of magnitude larger than those employed in even the
most extreme experimental studies, and it is necessary to
control the temperature artificially in order to achieve
steady state. In the HS method, for instance, this can be
done by ad hoc rescaling [1], by loose coupling [9), by
utilizing the Nose-Hoover thermostat [10,11],or by using
the method of Gaussian least constraint [12]. The latter
two methods both incorporate the temperature control
into the equations of motion. Tests have shown [8], how-
ever, that the results are insensitive to the type of ther-
mostat used. The problem with any of these methods is
that it is uncertain to what extent the necessary interfer-
ence with the Newtonian equations of motion affects the
structural dynamics of the fluid. For this reason the HS
method has been criticized and the physical relevance of
the results of such calculations, particularly in the very-
high-shear-rate regime where considerable amounts of

thermal energy have to be removed, has remained in
doubt.

A more realistic simulation of a laboratory shear flow
can be achieved by using sliding boundaries (SB). These
were first employed by Ashurst and Hoover [1] to investi-
gate the shear viscosity of a dense fluid. In this case the
fluid region is bounded above and below by walls which
translate in opposite directions to produce a shear flow.
In this method the trajectories of the fluid are generated
from unmodified Newtonian equations of motion and so
evolve natura11y with the heat being removed by conduc-
tion out through the walls.

As a method for extrapolating the limiting low-shear-
rate viscosity, the SB method has been largely discarded
due to the boundary effects, minimization of which in-
volves using a relatively large system size. In contrast, it
has been shown [13] that for the simple atomic system
used here the HS method produces results that are rela-
tively insensitive to system size above N =200. In this ar-
ticle our primary concern is not the relative merits of
these two methods for the calculation of the limiting
zero-shear-rate viscosity. There is no doubt in our minds
that in this case HS is the technique to use. Whether this
is to be preferred over the Green-Kubo or other equilibri-
um techniques is another question entirely, and one
which will not be addressed here.

Our main inquiry here is, given that in the SB case
temperature, density, and shear rate vary across the sys-
tem, how well does a homogeneous system with input pa-
rameters (p, T, y ), taken from the averages at a particular
point of the SB system, reproduce the pressure tensor
measured in the SB case? It has long been established
[14] that above a certain shear rate, homogeneous ther-
mostated systems display normal pressure difFerences and
nonequipartition of the kinetic energy between the x, y,
and z directions. Whether these are the result of a real
effect (normal pressure differences certainly occur in, e.g.,
polymeric systems [15]) or originate from the artificial
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way in which the heat is removed has not been estab-
lished. It has already been shown that the "string
phases" [16] that occur at very high shear rates can be el-
iminated by switching to a profile-unbiased thermostat
[17]. It was suggested [18] some time ago that a close
comparison be made between HS and a large-scale
boundary-driven shear simulation. In this paper we
present the results of such a comparison.

Our original intention was to probe into the shear-rate
regime where nonequipartition and normal pressure
differences start to occur. For reasons which we shall
discuss later, this proved very difficult to do using the SB
method to be described here. This in itself has some im-
portant implications regarding HS simulations at high
shear rates. The comparison we report is at about the
highest possible shear rate for which our SB system is
stable, the rationale here being that if differences do exist
they are most likely to occur at the highest possible shear
rate.

In the SB method we have used very large samples
()40000 particles) to minimize the boundary effect.
Only the temperature of the boundary particles is con-
trolled by using the ad hoc momenta-rescaling scheme.
This provides a mechanism for removal of heat from the
fluid by thermal conduction and leads to the establish-
ment of characteristic temperature and density profiles in
the Quid.

In Sec. II we will first describe in detail the SB and HS
model systems used to perform the simulations. The re-
sults and discussion will be presented in Sec. III and a
brief conclusion in Sec. IV.

II. DETAILS OF MODELS AND SIMULATIONS

Fig. 1). Each boundary contains N„,&&
particles arranged

in just three hexagonal-close-packed layers. This was
considered to provide an adequate barrier to Quid-

particle penetration and to be sufficiently deep in view of
the short interaction range of the WCA potential.
Periodic-boundary conditions are imposed only in the x
and z directions to give a laminar model.

For simplicity, the particles in the boundary are exact-
ly the same as those in the fluid; the same WCA potential
acts between all the particles in the system. The bound-
ary particles, however, are each subjected to an addition-
al harmonic potential with respect to the hexagonal lat-
tice points reqp

y(~r(t) —r, ~)= —,'k (~r(t) —r, ~)

where r(t) is the position of a boundary particle at time t.
For particles in the walls, coordinates and velocities are
specified with respect to a set of axes embedded in each
boundary. Their positions with respect to the fixed set of
axes at the center of the fluid region are obtained by the
appropriate transformations. The rigidity of the wall is
determined by the force constant k„and the value used
(72E/2' 0 ) is obtained by putting r =ra in the second
derivative of the interaction potential [Eq. (2a)]. The
purpose of the harmonic potential is to maintain the lat-
tice structure of the boundary while simultaneously pro-
viding freedom for the boundary particles to act as a sink
for the viscous heat.

Shear Qow is induced in the fluid system by translating
the origin of axes for the walls, and hence the wall parti-
cles, along the x axis a distance hx at each time step,

A. Interaction potential

In this particular study we have used a model atomic
Quid. The shifted and truncated Lennard-Jones 12-6 po-
tential, often termed the Weeks-Chandler-Anderson
(WCA) potential, is used to describe the interaction be-
tween particles,
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where r0=2' o. is the distance at which the potential is
a minimum in the fuH Lennard-Jones 12-6 potential, o. is
the "collision diameter, " and c. is the we11 depth. All
properties will be quoted in units reduced by c., o, and the
mass of a particle, m.

B. Sliding-boundary model

In the SB model the system is composed of an ortho-
rhombic cell which is split into three regions in the y
direction; the top and bottom boundary layers with the
bulk Quid, containing X&„;d particles in a region of di-
mensions L„XL XL„sandwiched between them (see
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FIG. 1. A 2D schematic representation of our three-
dimensional sliding-boundary system (the z dimension is perpen-
dicularly out of the plane of the paper). The shaded and open
circles represent the fluid and boundary particles, respectively.
Note that the actual ratio of fluid to boundary particles is quite
different than is implied by the diagram. The arrows indicate
the direction in which the walls slide in order to impose a shear
field on the fluid. The dashed lines indicate the position of the
periodic boundaries in the x direction. Periodic boundaries are
also used in the z direction.
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such that

(4)

where L +o is the distance between the two boundaries,
as defined by the anchoring lattice points of the layers
nearest the fiuid; ht is the time step used in the simula-
tion,' and j', is the applied shear rate. The term Ax is

positive for the top boundary and negative for the bottom
boundary. As a result of this shearing action, heat is con-
stantly generated in the Quid. This heat must be removed
from the system if a steady state is to be reached. This is
achieved by using the ad hoc momenta-rescaling scheme

[1]. For this particular system only the boundary parti-
cles are thermostatted and the two walls are treated in-

dependently. The top and bottom boundary tempera-
tures are evaluated using

wall

~mv
w 3~ k ~ l l

wall B

where v; is the particle velocity with respect to the mov-

ing set of axes embedded in the appropriate wall. Two
independent scaling factors are then calculated from
these temperatures and used to rescale the mornenta of
the corresponding wall particles at each time step.

In the SB model we calculate the normal and tangen-
tial y components of the pressure tensor, Pyy P y and

P, , from the forces on the wall particles:

wall fluid

&@= g g FJ/A,
l =1 j=1

where a represents x, y, or z; A ( =L, XL, ) is the area of
the Quid-boundary interface; and F; is the a component
of force on particle i due to j. %e have also used the
virial-theorem expression for the pressure tensor

1 fluid

P= — g m;[v; —u(r;)][v; —u(r;)]
V

fluid fluid+x xr„F,,),
i =1 j)i

where V is the volume of the fiuid system, u(r; ) is the lo-
cal streaming velocity at position r;, and v,. is the total
velocity of particle i. In this case two problems arise due
to the presence of the physical walls. %ithout going into
great detail, the first arises from the relatively ill-defined
dimension of the fiuid cell in the y direction; this, of
course, affects in turn the value for the volume to use in

Eq. (7). We have found that the walls are on average
pushed back slightly by the Quid and we discuss later how
an average volume is calculated. The second problem
arises in the defini. tion of the local streaming velocity,
which in the case of boundary driven shear cannot be as-
surned to take any simple functional form. This problem
only affects the kinetic components and is related to the
calculation of a local temperature which is discussed
below.

For the geometry of the system described, we expect
there to be a dependence of the properties only on the

perpendicular distance from the walls, i.e., in the y direc-
tion. %e have, therefore, calculated the variation in the
density, Aow velocity, and temperature as a function of y
by splitting the region between the walls into a number of
slabs N,&,b or width b,y. If we define the function H„(y; )

such that

H„(y, )=1 if (n —1)by (y, —yo(nby, (8)

3 fluid

p*(y„,t)= g H„(y;(t)) . (10)

Here y„ is the coordinate of the midpoint of the nth slab.
Similarly, the instantaneous slab velocity u(y„, t) is given

by
fluid

u(y„, t)= g H„(y, (t))v, (t) .

Using Eq. (11), we attempted to calculate the slab tem-
peratures in the x, y, and z directions from

fluid

H„(y;(t))m, [U, (t) —u (y„,t)]
T (y„,t)=

fluid

k~ g H„(y;(t))

where a represents x, y, or z. At steady state, u (y„,t)
and u, (y„,t) are essentially zero for all n and so the
values obtained for T (y„,t) and T,(y„,t) are considered
to be reliable estimates of the local temperature. Howev-
er, u„(y„,t) is a measure of the induced fiow field and is
of quite a substantial magnitude for the shear rates ap-
plied here. This causes a problem in the determination of
local temperatures in the x direction as the use of
u„(y„,t) as the fiow velocity for all positions within the
nth slab can easily be shown to result in a systematic
overestimation of T, (y„,t) by a factor roughly propor-
tional to Ay . To some extent, this error can be rnini-
mized by reducing hy but unfortunately once the average
number of particles per slab falls much below —100, a
significant underestimation takes over as there are no
longer enough particles to give a reliable instantaneous
estimate of the time-averaged slab How velocity. As a
compromise, we have used X,&,b =40, which gives a slab
width hy = 1.4o..

The SB model has 37 500 fiuid and 5610 boundary par-
ticles and the dimensions of the Quid system are I.„
55.00o', I. , 48.54o', and 1.„16.52o.. The reduced density
p* =Xo /V of the fiuid is approximately 0.85 (the densi-

ty cannot be specified exactly due to the uncertainty in-
troduced by having a particulate wall structure). The
separation of wall particles is o in the x direction and
rocos(m. /6) in the y and z directions, giving a reduced
density of 1.06. The equations of motion are integrated

where yo is the coordinate of some arbitrary point below
the lower wall; otherwise,

H„(y;)=0 .

Then the instantaneous reduced number density of a slab
p'(y„, t) can be determined by
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calculated using the virial theorem as given by Eq. (7).
Again, a linear velocity profile is assumed in order to esti-

mate the streaming velocity required for the calculation
of the kinetic contribution.

The system used for HS simulations contains 1000 par-
ticles and the potential paraineters (E and o ) used are the
same as in the SB method. The density, temperature, and
shear rate applied are determined from the SB simula-

tions. In the HS simulations, the equations of motion are
integrated using the leap-frog form of the Verlet algo-
rithm [19]using a time step of 0.002 26m.

using the leap-frog form of the Verlet algorithm [19] us-

ing a time step of ht =0.002 26~ where the usual
Lennard-Jones time unit r = (c/m 0 )

' . To check the
stability of the algorithm at the very high temperatures
generated under boundary driven shear (see later), equi-
librium (NVE) simulations, using standard periodic-
boundary conditions, were carried out with this time step
at T*—1S and p*=0.85. No perceptible drift was seen
in the total energy in 20000ht and the root-mean-square
deviations in the total energy were found to be acceptably
low, —

l%%uo of those in the potential energy.
In order to perform simulations using large-size sys-

tems more efficiently, a parallel molecular-dynamics
(MD) algorithm for distributed-memory machines was
developed. The algorithm is based on spatial decomposi-
tion and implemented on a Meiko computing surface
[20]. The parallelized program shows good scaling prop-
erties and the efficiency is fairly constant over a wide
range of system sizes.

III. RESULTS

We used the SB model to study the shear viscosity at
an applied shear rate of 0.4427~ '. A total of 340~ is re-

quired for the system to attain steady state and a further
run of 113~was performed to collect data for averaging.

The density profile across the system, p'(y„), under

steady-state shear is shown in Fig. 2. The ordering effect
on the fluid due to the solid boundaries extends for a dis-

tance of about 4cr. This effect has been observed previ-
ously for both smooth [21] and structured boundaries
[22—24]. Apart from this e6'ect, the density profile in the
middle region is smooth, as would be expected for a fluid.
The profile is, however, not flat but shows a definite dip
in the center, an effect which we shaH show is related to
the temperature profile through the system. To calculate
the total volume occupied by the fluid, we summed the
volumes of aH the slabs which contained fluid particles.
The mean fluid density at steady state using this
definition is 0.848, which is slightly lower than the initial
value. This occurs because the boundaries were pushed
back as a result of the normal pressure generated in the
fiuid under shearing conditions (see Table I).

The temperature profile T(y„) is shown in Fig. 3. The
function shown is actually the mean of the y and z tem-
peratures since, as was explained above, the definition of
the local temperature used here, Eq. (12), gives results for
the x temperature which depend on the slab width.
Differences between the y and z temperature profiles are
very small, amounting to at most -0.02 in reduced units,

C. Homogeneous-shear model
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where we assume that the local flow velocity is simply
given by

0.5
~ I E ~ s I I I E I I I I l

u(r;)=(jy;, 0,0) . (14) -30 -20 -10 0 10 20 30
Although this assumption has been shown to produce
spurious results at very high shear rates [16],at the shear
rates used in this study it is an acceptable assumption
[»].

For the HS system, the various pressure tensors are

FIG. 2. The mean density profile at steady state for the SB
model. The arrows indicate densities chosen for the
homogeneous-shear simulations.

The (HS) method implemented is similar to that origi-
nally proposed by Lees and Edwards [2]. The system em-

ployed is periodic in all directions but the periodic images
in the y direction are made to translate along the x axis in

opposite directions. This sliding motion induces and
maintains a shear flow within the fluid system. Apart
from when d j'/dt is nonzero, this is equivalent to in-

tegrating the Sllod [8] equations of motion (so named be-
cause of their relationship to Dolls tensor algorithms),
which although not derivable from a Hamiltonian do give
an exact description of planar Couette flow as in their
second-order form we are simply integrating Newton's
equations in conjunction with the Lees-Edwards bound-
ary conditions (see Ref. [8] for a detailed discussion of
this and related points). As in the SB model, this shear-
ing motion will result in a gradual increase in the temper-
ature of the fluid system. However, in this case, to con-
trol temperature the momenta of all the fluid particles are
rescaled at each time step using the ad hoc scheme. Our
own unpublished data and those of others [9] have
demonstrated that the various constant temperature algo-
rithms produce essentially the same result for the viscosi-
ty. For a more detailed discussion of the connection be-
tween different thermostatting methods, the interested
reader is referred to Ref. [9].

The system temperature was calculated from
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TABLE I. Pressure tensor calculated from the sliding-
boundary simulation. The components P* and P„are calculat-
ed using the virial theorem, while the other two are calculated
from the wall.

12 ~ I I I I I I ~ I I I ~ I ~ I I I I I ~ I 5 ~ i ~ I ~ I
0

pQ

36.28+0.02 36.28+0.02

p alt

36.25+0.02

pxy

1.01+0.01

-4
which is of the same order as the statistical precision.
The temperature profile is consistent with the trend ob-
served in the density profile in that the region of lowest
density, i.e., the center of the fluid regime, corresponds to
that of highest temperature. Simple hydrodynamic
theory [25] predicts a parabolic profile for a system
sheared between walls at y =+h held at a temperature of
To

-8

-12 I I I I ~ ~ I I ~ a I ~ I 0 ~ I I ~ I ~ s I I ~ ~ ~

-30 -20 -10 0 10 20 30

FIG. 4. The mean How velocity in the x-direction profile at
steady state for the SB model.

2

T(y)=To+ (h —y )
2K

(15)

5

u„(y„)= g Cky",
/c =0

(16)

using nonlinear least-squares regression. This is shown as
the continuous curve in Fig. 4.

For the SB model, the viscosity is always calculated us-
ing the resultant stress on the boundaries ( P„~ ). The—

but there are significant deviations from this form. The
reasons for this discrepancy are that the theory assumes a
constant thermal conductivity (a) and a constant rate of
energy production ( 0- rty ) between the walls. This is al-
most certainly incorrect since there are large variations in
density, temperature, and, as will be shown, shear rate
across the system. The continuous curve actually shown
in Fig. 3 is a nonlinear regression least-squares fit of
T(y„) to a fourth-order polynomial.

The x velocity (streaming) profile is found to be s
shaped at the shear rate used (Fig. 4), and the average ve-
locity of particles in the first layer of fiuid (see Fig. 2) is
within 2% of the wall velocity so that there is close to
stick-boundary behavior. This result is consistent with a
recent study by Thompson et al. [23]. We have fitted the
velocity profile to a fifth-order polynomial:

use of the average wall stress is justified in this calcula-
tion since for mechanical stability, the stress must be uni-
form across the system at steady state. This has also been
verified numerically using direct calculations of both di-
agonal and of-diagonal components of the pressure ten-
sor from the momentum flux across various planes paral-
lel to the boundaries [26,27]. As discussed above, there
are two problems associated with the calculation of the
pressure tensor from the virial theorem in the system
with explicit walls. In Table I average values are given
for the components of the pressure tensor of interest
here. P and P„are calculated from the virial theorem
and Pyy and Pzy are determined from the forces on the
walls. The errors quoted are the standard errors deter-
mined using a method previously described [28]. Within
these uncertainties, there are no significant differences in
the normal components of the pressure tensor.

In the HS method the viscosity is calculated for an
infinite homogeneous fluid at a well-defined state point.
From the SB simulation we have calculated the "local"
viscosities within the fluid, well away from the
boundaries, from the induced local shear rate in the sys-
tem at steady state. Numerically, the local induced shear
rate j'(y) was obtained by differentiating the fitted
streaming velocity profile, Eq. (16),

15
du„(y)

(17)

10 From y(y), the corresponding y-dependent viscosity i)(y)
is given by

i)(y) =
y(y)

(18)

0 a I I I I E I I I ~ E I I I a I s I I I a a I ~ I I I

-30 -20 -10 0 10 20 30

FIG. 3. The mean temperature profile at steady state for the
SB model.

The results (Fig. 5) show that the induced shear rate in-
creases gradually to a maximum from the boundary to
the center of the system, which means the "local" viscosi-
ty decreases to a minimum at the center. This represents
the local fluid viscosity, which can be used to compare
with that calculated by the HS method.

An alternative way of calculating the viscosity at
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0.-55

0.50

0.45~ 0.40

0.35
~ ~

0.30
CO

5.5
5.0
4.5

4.0 ~
3.5 ~
s.o ~ y /cr T*(y) p*(y) q*(y)

TABLE II. Results for the local viscosity and the particular
conditions found at three locations in the sliding-boundary
simulations. The density, temperature, and shear rate are deter-
mined from the various fitted profiles T*(y), y *(y), and p*(y).
The viscosities are calculated using the induced shear rate and
the average wall shear stress from Table I.

0.25

0.20

0.15
-30 -20 -10 0 10 20 30

2.5

2.0

1.5

13.603
6.802
0.000

0.4564
0.4976
0.5091

9.872
13.373
14.621

0.8271
0.7556
0.7342

2.21+0.02
2.00+0.02
1.95+0.02

FIG. 5. The shear rate (left-hand scale) and viscosity (right-
hand scale) profiles at steady state for the SB model.

steady state is to use the applied shear rate j', so that

7f

Ya
(19)

The value so obtained is 2.28+0.02. This is the method
that would be used in the laboratory. Although it has re-
cently been experimentally demonstrated that viscosities
are insensitive to the thickness of the liquid film down to
distances of about ten molecular diameters [29], these ex-
perirnents were performed at low shear rates where heat-
ing effects were not severe. For our model the large
range of shear-induced temperatures and densities in the
liquid makes it difficult to compare the viscosity calculat-
ed using Eq. (19) with HS results obtained at fixed density
and temperature.

A. Comparisons between the two methods

To perform the comparison, HS simulations were car-
ried out at three different state points corresponding to
the steady-state temperatures, densities, and shear rates
as found in the SB simulation at values of y equal to 0,
6.8', and 13.60.. The exact conditions at each point are
determined by substituting these values of y into the
least-squares fits to the profiles T'(y), y '(y), and p'(y)
obtained from the SB simulation (see Table II). These
points are marked with arrows in the density profile (Fig.
2). The point at y =13.6o. is close to that where the
thermal gradient is a maximum but is far enough from
the wall to be considered as being in the Quid regime.
The y=0 point is at the center of the system where the
thermal gradient is zero but the temperature is a rnax-
imum and the density is a minimum. The third point is
intermediate between these two.

The HS systems at these three state points were al-
lowed to evolve for about 100~ in order to reach steady
state after which data were collected for averaging over
the next 226~. Values obtained for the significant com-
ponents of the pressure tensor are shown in Table III
along with other relevant data.

A comparison of the average pressure tensors obtained
under SB and HS conditions can be drawn from Tables I
and III. For the shear stress there is very good agree-
ment within the statistical uncertainties. Consequently,

the "local" viscosities from SB and HS simulations are
also in good agreement (compare the final columns of
Tables II and III). For the normal pressure components,
if we compare the three HS simulations individually,
there is good agreement among P Pyy and P„ for two
of the three state points but for the lowest-density,
highest-temperature point, P„„ is slightly higher. We do
not consider this difference as being significant as it is
only just larger than our estimated errors. Comparisons
between the three HS simulations and the SB one show
that there are some systematic deviations which we attri-
bute to small errors in the original specification of the
conditions ( T", j ', and p*) under which the HS calcula-
tions were carried out. Again, these differences are not
considered significant.

We conclude from this comparison that at a shear rate
of about 0.4~ ', the HS method reproduces very well the
pressure tensor measured using sliding boundaries at
points in the Quid which span the range of temperatures
(10 to 15E/ks ) and densities (0.73 to 0.82) for which con-
ditions are at their most extreme.

The results obtained so far are in accordance with two
recent studies aimed at investigating the effect of a ther-
mostat in shear flow simulations. Loose [30] obtained ex-
cellent agreement for the shear viscosity of gases over a
wide range of shear rates using kinetic theory and the HS
method. Ciccotti et al. [21] used a stochastic wall sys-
tem and found the viscosity is in agreement with those
obtained from HS simulations for Lennard-Jones argon.

Unfortunately, it has not been possible to extend the
SB simulations to shear rates where significant normal
pressure differences and nonequipartition of the kinetic
energy occur, y*-2, as the very high temperatures gen-
erated lead to fluid particles penetrating the wall. At-
tempts to "stiffen" the boundaries by using higher values
of k proved counterproductive as this leads to a reduc-
tion in the rate of energy transfer between the fluid and
the boundary particles and a consequent increase in the
fluid temperature This decoupling behavior is well
known for system with disparate characteristic frequen-
cies [31]. Another possibility might be to modify the in-
teraction potential between the wall and fluid particles in
order to reduce penetration, but we have not explored
this method.

In principle, we could reduce the high temperature of
the system by shortening the distance between the walls.
However, our system is only —50 molecular diameters
wide already and the walls have a detectable influence on
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the density profile over 20% of this range, seriously re-
ducing the volume of material which can be said to be
shearing as a fluid. Ideally, we would like to simulate a
much larger system where this immediate boundary effect
is negligible and we can thus access the limiting bulk fluid
behavior. Even assuming a quadratic dependence [Eq.
(15)j of the maximum temperature on the distance be-
tween the walls means that if the temperature is not to in-
crease, then a proportional reduction has to be made in
the applied shear rate. This is a significant point, as in
the laboratory the combination of the physical properties
of the fluid and the material making up the boundaries,
and the geometry of the system, must ultimately impose
some upper limit to the temperature and hence strain
rates that are accessible. In particular, the thermal con-
ductivity plays an important role in determining the rate
at which heat can be removed from the system. It is
significant that even in our SB simulation, where the
thermostatted walls provide a very efficient energy sink,
enough heat is generated to cause severe problems in
maintaining the integrity and functionality of the
boundaries. Now, from the results presented here, we
have seen that HS reproduces very well the pressure ten-
sor at state points corresponding to local conditions
appertaining to a boundary driven shear. It would seem
from this that a fluid shearing with heat being removed at
a rate which is naturally realizable either through conduc-
tion or homogeneously behaves in much the same way.
What we cannot say is whether this will be the case when
heat is removed at a rate far higher than physically possi-
ble, as can occur in HS simulations carried out at a fixed
("wall" ) temperature. It is perhaps significant, then, that
for the atomic system being studied here, the phenomena
of normal pressure differences and nonequipartition of ki-
netic energy manifest themselves in just such a regime.

IV. CONCLUSIONS

We have examined the validity of the HS method of
studying shear flow by making comparisons with a SB
method. The main difference between the two techniques
is the way that heat energy is removed from the system.
In the HS method the equations of motion are modified
in order to extract kinetic energy in a homogeneous,
though completely unphysical, manner. This is achieved
more realistically in the SB method by conducting heat
out through the boundaries. As a result, we observed the
development of characteristic density, temperature, and
velocity profiles between the boundaries. For the SB
method adopted here, it transpired that the highest ap-
plied shear rate that could be studied was limited by the
disruption caused to the boundaries by the viscous heat
generated in the fluid. The results from an SB simulation
carried out at an applied shear rate of 0.44~ ', c1ose to
this upper limit, were compared with those from HS cal-
culations, using the local conditions at different points in

the SB system as input. This comparison seems to indi-

cate that the pressure tensor is largely insensitive to the
method of removal of viscous heat provided that the rate
at which it is dissipated is physically realizable.

Although the present results seem to provide some
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validation for the HS method, we are unable to make
comparisons in the more controversial region of shear
rates in excess of 2~ ', where the phenomena of normal
pressure differences and nonequipartition of the kinetic
energy are manifested in HS simulations. At these very
high shear rates, the amount of heat that has to be re-
moved to maintain a fixed temperature in a HS simula-
tion is far in excess of that which could ever be dissipated
by thermal conduction. It seems unlikely that this
artificial enhancement of the thermal conductivity has no
effect on the rheological properties of a fluid, so we be-
lieve that the results of HS calculations must be treated

with caution, especially when relating them to the prop-
erties of real shearing fluids.
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