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The nonequilibrium canonical distribution function of the generalized Boltzmann equation entails a
nonequilibrium Kirkwood hierarchy of integral equations for dynamic correlation functions. A sheared
simple fluid at constant density and temperature is considered. Shear effects appear in the nonequili-
brum potential as additional contributions to the intermolecular potential. Approximations are intro-
duced into the hierarchy to derive a closed integral equation for the dynamic pair-correlation function
that reduces identically to the Percus-Yevick integral equation as the shear rate vanishes. Two exact re-
sults are obtained: the dynamic pair-correlation function is proven to possess the symmetry of the none-
quilibrium potential, and the corresponding structure factor is shown to be positive definite for all wave-
number vectors. The dynamic pair-correlation function is expanded in terms of the spherical harmonics,
and the equations for coupled radial components are solved numerically. The shear rate and angular
dependences of the dynamic pair-correlation function and structure factor are shown. In the low-shear-
rate limit, the shear stress P,,, pressure difference p(¥)—p(0), and normal-stress differences P,, —P,
and P,, — P,, obey power laws with exponents 1, 2, and 2 respectively; P,, — P,, is zero identically.

PACS number(s): 05.20.Dd, 05.60.+w, 05.90.+m

I. INTRODUCTION

The structure of nonequilibrium dense fluids is of con-
siderable experimental and theoretical interest, and its
understanding is one of the important goals in nonequili-
brium statistical mechanics. Experimentally, it has
drawn attention from a number of directions, such as
light scattering [1] from colloidal suspensions under
shear, studies [2] of liquid crystal under shear, and light
scattering [3] off a liquid subject to a thermal gradient.
Information on the distortions of the equilibrium liquid
structure can also be obtained by using computer simula-
tions [4-6]. These phenomena, in principle, should be
studied from the standpoint of nonequilibrium statistical
mechanics. The difficulties associated with nonequilibri-
um statistical mechanics of dense fluids have impeded de-
velopment in that direction. In recent years, a class of
approaches broadly termed fluctuating hydrodynamics
[7] have been utilized in studying problems related to the
fluctuation phenomena and the question of the nonequili-
brium structure of liquids. In these approaches, random-
ly fluctuating terms are added to the macroscopic (hydro-
dynamics) equations in a phenomenological way. Then,
the theory of stochastic processes is used to compute
various mean hydrodynamic observables and nonequili-
brium fluctuations, in particular. For example, density-
density correlation functions are computed, which pro-
vide nonequilibrium correlation functions and structure
factors. In another approach, Hess [8] postulates a phe-
nomenological evolution equation for the nonequilibrium
correlation function, which is then suitably solved. Being
phenomenological, this theory involves empirical param-
eters that Hess calls relaxation times. With a suitable
choice of their values, the theory yields results compara-
ble with those by computer simulations. Because of the
phenomenological origin of the fluctuating terms in the
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fluctuating-hydrodynamic theory or the evolution equa-
tion for nonequilibrium correlation function postulated
by Hess, their parentage in nonequilibrium statistical
mechanics is not transparent. Moreover, in the theoreti-
cal treatment by Ronis [7(b)] and Hess [8] of the none-
quilibrium distortions of the fluid structures due to shear,
the equilibrium pair-correlation function is treated as an
input to the equation used. Therefore, it does not form
an integral part of the theory, in the sense that it is not
determined by the same equation used to describe the
nonequilibrium correlation function. These considera-
tions indicate that there is a need for further studies
based on nonequilibrium statistical mechanics.

It is well established that the Boltzmann equation is
adequate for nonequilibrium phenomena in dilute gases,
provided it is solved appropriately. On the basis of this
fact and the view that dense fluid kinetic equations have a
mathematical structure similar to the Boltzmann
equation—the similarity principle—a generalized
Boltzmann equation [9] was formulated for dense fluids.
One of the principal consequences derived from the gen-
eralized Boltzmann equation is that the nonequilibrium
distribution function can be written in a form similar to
the canonical-ensemble distribution function, namely, an
exponential form, whose exponent consists of the local
equilibrium Hamiltonian and terms due to nonequilibri-
um contributions. The consequences of this nonequilibri-
um canonical distribution function together with various
macroscopic equations derived from the generalized
Boltzmann equation for dense fluids have been examined
quite extensively by one of us (B.C.E.) in the context of ir-
reversible thermodynamics and generalized hydrodynam-
ics. The resulting theory is shown to conform to the
second law of thermodynamics. In the generalized hy-
drodynamics there occur nonlinear constitutive equations
for fluxes, and their implications have been tested for a
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number of problems [10-13].

In this paper, we derive from the nonequilibrium
canonical distribution function a hierarchy of nonlinear
integral equations for correlation functions of various or-
ders that describe nonequilibrium fluctuations. This ap-
proach to the structure of nonequilibrium dense fluids is
similar in spirit to the theory of structure of equilibrium
dense fluids [14,15]. In the equilibrium theory, the
Percus-Yevick [16] (PY) and hypernetted-chain [17]
equations for pair-correlation function have played an
important role. In this article, we show that an integral
equation for the dynamic pair-correlation function
(DPCF) can be derived from the hierarchy of nonequili-
brium correlation functions mentioned earlier. This in-
tegral equation reduces to the PY integral equation for
the equilibrium pair-correlation function when the fluid is
in equilibrium. It can also be argued that a hypernetted-
chain type of integral equation is obtainable for the dy-
namic pair-correlation function from the hierarchy. The
integral equations for the dynamic pair-correlation func-
tion suggest that the Ornstein-Zernike relation also holds
for nonequilibrium fluids.

The integral equation for the dynamic pair-correlation
function contains a set of macroscopic parameters {X'®'}
that are determined from the generalized Boltzmann
equation in a manner consistent with the second law of
thermodynamics. To an approximation, these parame-
ters are proportional to macroscopic fluxes such as the
heat flux, shear stress, etc. Therefore, in this approxima-
tion, the dynamic pair-correlation function is a nonlinear
functional of the macroscopic fluxes. The heat flux, shear
stress, etc. obey a set of evolution equations, namely, the
constitutive equations, which can be derived from the
generalized Boltzmann equation in a way consistent with
the second law of thermodynamics. Consequently, the
integral equation for the dynamic pair-correlation func-
tion is coupled to the constitutive equations for fluxes.
The calculation of, for example, a dynamic structure fac-
tor requires the solution of the coupled equations, which
are generally nonlinear. In this paper, we consider a
nonequilibrium simple fluid undergoing a steady shear in
the plane-Couette-flow geometry.

In Sec. II, the nonequilibrium Kirkwood integral equa-
tion for the dynamic correlation function, originally de-
rived in Ref. [9(c)], is introduced. The integral equation
is specialized to the case of a steady shear flow at uniform
density and temperature for a non-heat-conducting fluid.
Under these assumptions, the nonequilibrium Kirkwood
integral equation simplifies considerably. The integral
equation, which is a member of an open hierarchy of in-
tegral equations, is closed at the level of triplet-
correlation function by the Kirkwood superposition ap-
proximation assumed for the dynamic triplet-correlation
function. In this way, a closed integral equation is ob-
tained for dynamic pair-correlation function. Further ap-
proximations are introduced into this integral equation
that enable us to derive a new integral equation for the
dynamic pair-correlation function. The resulting integral
equation reduces to the well-known Percus-Yevick in-
tegral equation for the equilibrium pair-correlation func-
tion as the shear rate vanishes. In this manner, the struc-
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ture of the equilibrium fluid forms an integral part of the
nonequilibrium sheared fluid. A hypernetted-chain
(HNC) type of integral equation will also be proposed for
the dynamic pair-correlation function. These integral
equations naturally satisfy a nonequilibrium Ornstein-
Zernike relation, which will be made use of to obtain nu-
merical solutions of the integral equation.

Implicit in the integral equations for the dynamic
pair-correlation function is the notion of nonequilibrium
potential. It contains terms from the intermolecular po-
tential and nonequilibrium shearing effects. Given a
nonequilibrium potential with an arbitrary rotational
symmetry, it is proven that the dynamic pair-correlation
function must possess the same symmetry. This is proven
in Sec. III A. The nonequilibrium structure factor of the
sheared fluid at zero wave number is related to the
compressibility, which must be positive for the sheared
fluid to execute a stable (steady) flow. In Sec. III B, we
show that the structure factor is positive definite for all
wave-number vectors for a fluid described by the integral
equation for the dynamic pair-correlation function (of PY
type). In Sec. IV, the dynamic pair-correlation function
is solved numerically for its radial distribution functions
81 (r). Results for the radial distribution functions show-
ing distortions of the equilibrium pair-correlation func-
tion are displayed and analyzed in detail in Sec. V. The
shear-rate dependences of the nonvanishing harmonic
components for /=0-4 are shown. The angular and
shear-rate dependences of the (total) dynamic pair-
correlation function g(r) and structure factor S(k) are
also shown. These results are compared with those ob-
tained from nonequilibrium-molecular-dynamics
(NEMD) simulations [4]. In Sec. VI, the radial distribu-
tion functions obtained in Sec. V are used to evaluate the
sheared pressure p(7), shear stress P,,, and normal-stress
differences P,, —P,, and P,,—P,,. These are functions of
the shear rate 7, whose limiting power laws at low shear
rates are deduced. Section VII gives a discussion and
conclusions.

II. INTEGRAL EQUATION FOR DYNAMIC
PAIR-CORRELATION FUNCTION

A. Derivation of integral equations

The theoretical basis of our development is the none-
quilibrium canonical distribution function,

N A
S MW 1y=pNexp —BZ(Hj-i-H}”—mo‘l) , (2.1)
j=1

which is a solution of the generalized Boltzmann equa-
tion [9] according to the modified moment method.
Consequences of this form of N-body distribution func-
tion have been explored in the context of the kinetic
theory of nonequilibrium fluids and thermodynamics of
irreversible processes [9—-13]. The distribution function
(2.1) has been demonstrated to yield a structure of none-
quilibrium thermodynamics that conforms with the laws
of thermodynamics. The Hamiltonian of the jth particle
in the frame moving with the fluid velocity u is
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N
S Vi 2.2)

k(#j)=1

where C;=(p;—mu)/m, p; denotes the momentum of
particle j, m is the mass, and V}; is the intermolecular
potential between particles j and k; here we assume a
pairwise additive potential. The nonequilibrium part of
the Hamiltonian is a sum of contributions from all con-
ceivable nonequilibrium processes in the system:

H}1)=zx(a)®h;a)(x(m,u) ,

a

(2.3)

where h }“) are the microscopic expressions for the non-
conserved variables such as the shear stress, heat flux,
etc.; they are functions of the phases of N particles
xM=(r"™,p™). Some relevant expressions for ;% will
be explicitly written out later, but a more complete listing
is found in Ref. [9(c)]. The {X‘®’} are unknown functions
to be determined by the kinetic equation in terms of only
the macroscopic observables chosen for the description of
the nonequilibrium processes in the fluid. These un-
knowns are determined in such a way that the second law
of thermodynamics is satisfied. Since they also appear in
the constitutive equations for the fluxes chosen to de-
scribe the nonequilibrium evolution of the system, the
entire macroscopic formulation for the system is
guaranteed to satisfy the second law of thermodynamics.
This is a distinctive feature of the modified moment
method underlying the theory presented here. In writing
down the distribution function (2.1), it is assumed that
F"™ is normalizable. This means that if the series in Eq.
(2.3) is to be truncated, it must be done such that £V is
normalizable. Other symbols in Eq. (2.3) are as follows;
the symbol ® stands for the scalar product between X (®’
and h;®, which can be, in general, vectors or tensors.
The normalization factor for £V is given by the formula

exp( —BmN.ﬁ )

N
~B3 (H;+H") ] , (2.4

1
YT dex(N)exp .

j=1

where h is the Planck constant, V is the volume of the
system, and B=1/kpT. The A may be identified as the
nonequilibrium free energy per unit mass of the fluid. In
the equilibrium limit, all the nonequilibrium processes
vanish, namely, X (@)=0 for all ¢, and Eq. (2.1) naturally
reduces to the equilibrium canonical distribution func-
tion.

The explicit microscopic expressions for the traceless
symmetric and excess trace parts of the stress tensor ap-
pearing in Eq. (2.3) are
(2)

N
> ijrjkrjk

h]u): ijCj+% (2.5)
k(£j)=1
and
B =1pmC241 . For,r,—%2 (2.6)
g 5T g 2 jkTjk Tjk ’ .
K(F))=1 p

respectively. The symbol [ ) denotes the traceless sym-
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metric part of the second-rank tensor or the dyadic, say
AA:

[AA]Y=AA- 42

U
_3_ ’

where U is a unit second-rank tensor. Other notations
are

rjk'—-"l‘j—rk >
1 V(ry)

r]-k arjk

*= ’
p is the hydrostatic pressure, and p is the number density.
For the purpose of the present paper, Egs. (2.5) and (2.6)
will suffice; other expressions of h{* are found in Ref.
[9(c)]. These equations can be compactly written as

N
MO=RECH+ 3 hx ), @7
k(#j)=1

where h ,‘{}‘) (@=1,2) contain all terms depending on C;

variables and possible constants, while Af% contain only
terms depending on the potential; the former is the kinet-
ic part and the latter the potential part. In the absence of
heat flux, it is sufficient to describe shear-related process-
es by keeping only the microscopic expression (2.7) for
the stress tensor. In this case, the total Hamiltonian that
appears in the exponent of the distribution function (2.1)
can be separated into the velocity- and coordinate-
dependent parts. Naturally, reduced distribution func-
tions will be factorized into velocity- and coordinate-
dependent factors. In other words, the distortion of the
equilibrium distribution function in the velocity space is
independent of the distortion in the coordinate space.
This is also the approximation made in Ref. [18] for
sheared fluids.

The nonequilibrium canonical distribution function
(2.1), at a quick glance, looks like the one obtained by the
maximum entropy method in information theory [19].
Despite the similarity in form, the meanings of the none-
quilibrium contribution and the viewpoint taken for (2.1)
and related quantities are significantly different from
those taken for the exponential form derived in the
maximum-entropy method. First, the nonequilibrium
canonical form (2.1) does not make the entropy
differential exact because of the presence of nonequilibri-
um fluxes. Second, the unknown functions {X‘®} are
determined from the generalized Boltzmann equation
such that the second law of thermodynamics is strictly
obeyed for all degrees of removal from equilibrium.
These unknowns can, in principle, be determined to an
arbitrary degree of accuracy from the set of equations
generated from the generalized Boltzmann equation. In
the maximum-entropy method, the X'® play the role of
the Lagrange multipliers associated with the flux imposed
as a variational constraint on the nonequilibrium entro-
py. Third, the fluxes obey well-defined constitutive equa-
tions derived from the generalized Boltzmann equation,
whereas in the maximum-entropy method the Lagrange
multipliers are computed from the constraints, namely,
the statistical definition of the fluxes used as constraints.
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The constraints are not evolution equations. These are
significant points of departure that put the present theory
apart from the entropy-maximization approach.

The pair and triplet mass density of reduced distribu-
tion functions of a single component simple fluid are
defined by

N N
pPr,rt)=3 3 (m?8(r;—1)8(r;—r1,)

i=1j=1

(i)
Xf(N)(x(N);t)> (28)
and
N N N 3
Prpr=3 3 3 (m 8(r; —r))8(r;—r13)
i=1j=1k=1
(i#lj,';‘stllc,iaék)

x8(r, —r3)f M(x™M;0))
(2.9)

respectively. The angular brackets { - f™M(x¥;¢))
denote an averaging over the nonequilibrium distribution
function Y. Higher-order reduced distribution func-
tions are defined in a similar manner. It is also con-
venient to introduce the following notations:

J
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' (r;,1,,&5¢)
(Nm PR (e, 1) f MM, 650)) o
= o , (2.10)
P (rl’r2’§;t)
M'r,,1,,15,&;1)
(Nm)P ety (e, ) f MM, 600D o
= 3 , (2.11)
pPAry,1651)

where £ is the charging parameter that varies from O to 1,
and the subscripts on { ) mean integration over all the
phases except for those indicated.

An important feature of the reduced distribution func-
tions is that they are coupled in a hierarchy. For exam-
ple, p'¥ is coupled to p'*, which in turn is coupled to p*,
and so on, thereby forming an open hierarchy of equa-
tions. To derive the hierarchy, the mathematical device
introduced by Kirkwood [20] is employed. The deriva-
tion of the hierarchy proceeds from Eq. (2.1) in exactly
the same manner as for the Kirkwood hierarchy of equi-
librium correlation functions. The leading member of the
hierarchy thus derived is [9(c)]

(2) .
1 P (rprz’g)t) 3 (a) (a)
R Vel Lo 2 15 — X YOI (r,1),65t)
Bln 22(0) §Virym) fo dg% fofnd
_%fogdgfdg [V(rl,r3)p[31(r1,rz,r3,§;t)+2X“®H(“)(f1,fz,1'3’§?’)]
a
+ lzN fogdgfdrldrg, [V(fpfa)"'EXaQH(a)(fvfz»g?t) }P(z)(rl’rz’g;t) ’ (2.12)
m a
I
where ately get
pP(0)=p2(r),1p,=0;1)=(p'")? 2.13)  TAr,rpn=hiH(r,r) , (2.15)
and H‘“’(rl,rz,r3,§;t)=h}‘,‘ﬁ(rl,rz)p[3](r1,r2,r3,§;t) - 216

BNy, r,15,68)=p 1, 1015,&1) /p P 1,10 E51) .
(2.14)

The singlet distribution function p'" (=mp) is just the
mass density of the fluid. Equation (2.12) is seen as a
nonequilibrium generalization of the Kirkwood integral
equation [14,20] for the equilibrium pair-distribution
function in statistical mechanics. The nonequilibrium
distribution function f'¥ reduces to the equilibrium
canonical distribution function as X'®’—0, and the none-
quilibrium hierarchy (2.12) reduces to the equilibrium
Kirkwood hierarchy of integral equations in the same
limit.

At this stage, specialization to shear-related processes
without heat conduction is made to simplify integral
equation (2.12). In other words, under the assumptions
stated earlier, only the A J( U and h}Z) terms [of Egs. (2.5)
and (2.6), respectively] are retained. In this case, expres-
sions in Egs. (2.10) and (2.11) simplify, and we immedi-

Notice that Eq. (2.15) is actually time independent.
Nonequilibrium pair- and triplet-correlation functions
are related to the mass-distribution functions in Egs. (2.8)
and (2.9) as follows:

(2)( (2)(

(2.17)
(2.18)

g8 ry, 10, &) =p' P (x,,1,,& 1) /(mp)?

gr, 1,15, 60)=p 1), 10 15,6;) /(mp)? .

Further, we introduce the following definition of none-
quilibrium potential:

V3e(r,r;)=BV(r,r,)+B 3 X 1)ont%)(r,,r,) ,
a=1,2

(2.19)

which consists of the intermolecular potential and the
shear-induced terms. Here, V3§ is reduced and is thus
dimensionless. The nonequilibrium Kirkwood integral
equation (2.12) can be recast by using Egs. (2.15)-(2.19);
we thereby obtain
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lng‘z’(r,,r2,§;1)=—§V§E(r1,r2;t)—pfo§d§fdr3V§E(rl’r3?t)[8[3](r1’r2’r3’§;t)_8(2)“1"3’5;”]

in the thermodynamic limit, N/V—p. This integral
equation is valid for sheared incompressible fluids
without heat conduction. The triplet-correlation func-
tion g 3! is defined by

8[3](r1»r2’f3,§;t)=8(3)(f1’f2’f3’§§t)/8(2)“1,1'2’5;” .
(2.21)

The integral equation (2.20) is coupled to the integral
equation for g[3], which, in turn, is coupled to the in-
tegral equation for g*), and so on, thus forming an open
hierarchy of coupled integral equations. This hierarchy
must be suitably closed. We will introduce three approxi-
mations required to arrive at the final integral equation
for the dynamic pair-correlation function. These approx-
imations were first discussed in the context of the equilib-
rium Kirkwood hierarchy, where the PY integral equa-
tion was derived [21].

To close the hierarchy, we impose the Kirkwood su-
perposition approximation for the dynamic triplet-
correlation function:

(2)(

gl 115, &0) =g 1, 13, &8 )g P ry,1352) . (2.22)

This approximation may need an improvement, but any
improvement gives rise to an equation significantly more
complicated to solve. Since it is known to be adequate
for equilibrium liquid structures, we will regard it as a
first-order approximation. The dynamic pair-correlation
function may be expressed in terms of the dynamic cavity
function y(r;,1,,&;¢), defined by the relation

g2y, 1y, &) =exp[ —EVRp(r, 1) (1,15, 651) .
(2.23)

Then, as the second assumption, we vest the entire £
dependence in the Boltzmann factor in conjunction with
taking y(r,r,,§=1;¢) for the cavity function, namely,

g2 ry, 156t )=exp[ —EVRE(r, ) y(r, 1, E=151) .
(2.24)

This assumption presumes the cavity function to be a
slowly varying function of §&. The assumptions in Egs.
(2.22) and (2.24) are crucial in linking the Kirkwood
hierarchy and the PY integral equation in equilibrium
statistical mechanics [21]. Approximation (2.24) permits
the integration of the & parameter to be readily per-
formed in the integral equation (2.20). We then substi-
tute approximations (2.22) and (2.24) into integral equa-
tion (2.20) and integrate over £ to yield a closed integral
equation for the dynamic cavity function:

lny(rl,rz;t)=pfdr3fNE<r1,r3;t)y(rl,rs;t)
X {(p(ryryt)[ 1+ fnp(ry,rt)]— 1)

=pP[r,,15tly], (2.25)
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(2.20)

[

where we have set £=1 and have defined the nonequili-
brium Mayer function by

Sfne(rryt)=exp[ —VXgp(r,ryt)]—1. (2.26)

Finally, integral equation (2.25) is linearized with respect
to the density parameter to obtain

y(r,1;t)=1+pP[r,15tly], (.27

where P is defined in Eq. (2.25). This is the principal re-
sult of this paper. As the shear rate vanishes, and hence
the fluid tends to equilibrium, the integral equation (2.27)
reduces to the PY integral equation, which is known to
provide a sufficiently accurate description of equilibrium
fluid structures. In view of this fact, this equation may be
regarded as a generalization of the PY integral equation
to nonequilibrium shear phenomena. It will henceforth
be called the DPCF integral equation. Sources of none-
quilibrium effects are contained solely in the nonequilibri-
um Mayer function fng. When these effects are assumed
to vanish, namely, when X'® =0, the system returns to
equilibrium. In this case, integral equation (2.27) be-
comes the PY integral equation for the equilibrium pair-
correlation function. Thus the equilibrium structure of
the fluid forms an integral part of the description of its
dynamic correlations. The present approach differs from
the approaches taken in Refs. [7(b)], [8], and [22] for
nonequilibrium fluids, where the equilibrium structure of
the fluid is treated as an input, and therefore, cannot be
determined within the framework of the dynamic theory.
It must be emphasized that the integral equation (2.25),
within the validities of the superposition approximation
and approximation (2.24), remain valid for an arbitrary
strength of shear as long as X!’ is accurately determined
from the generalized Boltzmann equation and the consti-
tutive equation for the stress tensor is accurate. - Equation
(2.25) should not be regarded as being applicable in the
low-shear regime only, because as far as the approxima-
tions (2.22) and (2.24) are concerned, there does not ap-
pear to be an indication that they are valid in the low-
shear regime only; there is no assumption required to
that effect for the derivation of Eq. (2.25).

At this point, we invoke the incompressibility assump-
tion stated earlier and recall [9(c)] that X'?’=0 under the
assumption. This assumption simplifies the nonequilibri-
um potential further, which now reads

V;IE(fhl'z;t)ZBV(Tl’r2)+BX(1)(t)iFlz(rlz)[flzrlz](Z) .
(2.28)

Since X! is proportional to the shear stress [see Eq.
(2.35) below], the second term on the right is the shear-
induced effect, which is a source of anisotropy. The an-
isotropy of the nonequilibrium potential is reminiscent of
angle-dependent intermolecular potentials for molecular
fluids [23], where the angular dependence originates from
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the orientations of nonspherical molecules. Because of
this mathematical similarity, the methodology of obtain-
ing the solutions of integral equation (2.27) is similar to
that used in solving for the structure of dense molecular
fluids, as will be seen in Sec. IV. As noted earlier, X!
should be determined from the generalized Boltzmann
equation for dense fluids [9(b),9(c)]. Given an approxi-
mate solution of X! from the kinetic equation, the
DPCEF integral equation can be solved for y(r,?) at vari-
ous densities, temperatures, and shear rates. By virtue of
the neglect of heat flux in the problem, the system under
consideration is homogeneous in temperature.

It is easy to verify that the DPCF integral equation
(2.27) can be written in the form of the time-dependent
Ornstein-Zernike relation

hir,t)=c(r,t)+p [dr'c(r—r,D)h(r',t),  (2.29)

where the time-dependent direct correlation function has
the form of the PY closure in equilibrium fluids:

pr(r,t)szE(l',t)y(l',t) . (2.30)

In Eq. (2.29), r=r,—r1, and h(r,t)=g®(r,t)—1. Since
the nonequilibrium contribution enters the problem
through the nonequilibrium Mayer function, it is also
justified to propose a HNC-type closure,

cuncln,t)=h(r,t)—lny(r,t), (2.31)

for nonequilibrium sheared fluids. For fluids with a
long-range potential, this closure is seen as more ap-
propriate than closure (2.30), just as in equilibrium fluids.
In the k space, the time-dependent Ornstein-Zernike rela-
tion reads

e(k,t)
1—pe(k,z)

and the time-dependent structure factor is given by the
formula

S(k,t)=1+ph(k,t) .

h(k,t)= (2.32)

(2.33)

Relation (2.29) or (2.32) with closure (2.30) is equivalent
to integral equation (2.27). This relation will be used to
solve the DPCF integral equation in Sec. IV. Once the
integral equation is solved for 4, the structure factor is
obtained from Eq. (2.33).

B. Plane Couette flow

We consider a plane Couette flow where the fluid
confined between two parallel infinite plates is sheared.
The plates are aligned parallel to the x axis and are
separated by a distance D in the y direction. The z direc-
tion is, therefore, neutral. The plates at y==xD /2 move
at velocities Tu,/2, in opposite directions along the x
axis. This means that the velocity field of the flow is
u=uyyD "'¢,, where €, is the unit vector along the x
axis. In this case, the x-y plane defines the shear plane,
and the nonvanishing shear stress is the xy component.
The DPCEF integral equation contains macroscopic vari-
ables, the shear stress in the present case, through XV
The evolution equation (constitutive equation) for shear
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stress can be derived [10] from the generalized
Boltzmann equation in full generality. The constitutive
equation obtained has been used to examine [10,24], quite
successfully, the rheological properties of various fluids
which becomes non-Newtonian at high shear rates. If the
shear rates are low or moderate and the normal stress
effects are neglected because they are known to be
second-order effects, the constitutive equation, which is
generally nonlinear, for shear stress becomes the Maxwell
equation [25]. For the present problem, the Maxwell
equation takes the form

oP,,
at

where P, is the xy component of the traceless symmetric
shear stress, y is the shear rate defined by
y=2"13u, /dy), Q=p /n, where p is the hydrostatic
pressure, and 17, is the shear viscosity; Q! is the relaxa-
tion time for shear stress. We remark that the constitu-
tive equation should be at least corotational if the normal
stresses are adequately taken into account [10]. Since the
present work aims to illustrate the utility of the present
theory in a manner as simple as possible, the normal
stresses are neglected. In the steady-state limit, the shear
stress is given by the Newtonian formula P,,=—27,y,
implying that 7, is a Newtonian viscosity. This viscosity
can, in principle, be calculated from its statistical
mechanical formula given in Ref. [9(b)], but it will be
treated as an empirical parameter in this work, since its
evaluation is not the aim of this paper. For a fluid not
too far from equilibrium, XV is proportional to the shear
stress [10,24(c)]:

= —2py—QPp,,, (2.34)

xD=_ fj}’_ )
2p

For a liquid, the shear stress described by Eq. (2.34) re-
laxes fairly quickly to its steady-state value predicted by
the Newtonian formula. Since we are interested in a
steady-shearing experiment here, it is permissible to take
the Newtonian formula for P,,, so X D is written in the
form

(2.35)

NoY
—-—p .

xM= (2.36)

More generally, for non-Newtonian fluids, the Maxwell
equation is replaced by a more-suitable constitutive equa-
tion. Such constitutive equations can be found in Refs.
[9(b)], [10], [24], and [25]. The shear viscosity becomes y
dependent in this case. It has now become apparent from
the integral equation (2.27), the definition of the none-
quilibrium potential (2.28), and relation (2.36) that the
dynamic pair-correlation function is a nonlinear function-
al of the shear stress. The non-Newtonian fluid will be
considered in a sequel to this paper.

To fix the coordinate system, we denote the polar angle
between a vector and the z axis by 6 and the azimuthal
angle around the z axis by ¢. The shear xy plane lies on
the plane of 6=m/2. From the definition of Vg [Eq.
(2.28)] and relation (2.36), the nonequilibrium potential in
the chosen coordinate system is given by
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*
V;}E(r,e,qb):V*(r)—ﬂrgyar—(r)sin2¢sin26. (2.37)
We choose the soft-sphere intermolecular potential
V*=pBer " '2, where r is a reduced radial distance R /o,
with o being the effective diameter of the molecule, and
the parameter Be is set equal to unity (see Fig. 1). The
shear effect should diminish in the hard-core region
(r<1). This is satisfied when Vy{g=0, or, more
specifically, when the normalized shear rate ¥ is less than
unity:

12790y
p

Limiting 7 to low values is consistent with the use of the
Maxwell equation to obtain the shear stress. In the
present calculation of sheared fluids, condition (2.38)
marks the range of validity of approximations (2.34) and
(2.36). When these approximations are replaced by
more-accurate ones, the range of the allowed values of 7
can be extended.

We will now obtain approximate solutions of the
DPCEF integral equation (2.27) for a fluid undergoing a
steady shear. The first iterative solution of integral equa-
tion (2.27) is given by

y(r)=1+pP[rly,],

where the equilibrium cavity function y,(r) is to be ob-
tained from the PY integral equation. We then use the
definition of the dynamic cavity function [Eq. (2.23)] and
the nonequilibrium potential [Eq. (2.28)] to obtain an ap-
proximate dynamic pair-correlation function

y= <1. (2.38)

(2.39)

g(r,0,¢)=gq(rexp(—7r ~'%sin2¢ sin’6) , (2.40)

where g,(r) is the equilibrium pair-correlation function.
The shear viscosity of the fluid is taken from NEMD
simulations [26] of the same soft-sphere potential

g(r)

0 . . . L A

0 1 2 3 4 5
FIG. 1. Equilibrium pair-correlation function of a simple

fluid with soft-sphere potential V*=pBer ~'%, where Be=1. The

result is from the Percus-Yevick integral equation at packing

fraction 7=0.45. The variable r is a reduced radial distance
R/o.
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V*r)=r 2. At packing fraction 7=0.45, the viscosity
has the value 1,=1.5(me)'"?c 2. If we define the di-
mensionless variables y*=oy(m /€)'/? and p*=po’/e,
the reduced shear rate is given by 7 =18y*/p*. Then
p* =10 at packing fraction 7=0.45, so 7 =2y *.

The dynamic pair-correlation function of the first itera-
tive solution vanishes in the core region because of condi-
tion (2.38) and the presence of the factor gy(r); it ap-
proaches g,(r) for r>>1. Because of the r~'? radial
dependence in its exponent, significant nonequilibrium
distortions in g(r) are confined to the vicinity of r=1. In
this approximation, g(r) is still nonlinear in the shear
rate. The nonequilibrium factor of solution (2.40) is also
density dependent through the Newtonian viscosity 7.
Outside of the hard core (r > 1), the linearized solution

g(r,0,8)=g,(r) 1—%sin2¢ sin%0 (2.41)

is a good approximation to the first iterative solution
(2.40). In terms of the spherical harmonics, the new solu-
tion is given by

g(r,0,8)=V4ango(r{ Yoo +(i7/r'* 1/ Z
X[Y5(6,4)=Y5(6,4)]} ,
(2.42)

where i is an imaginary number. Evidently, only /=0
and 2 harmonics are retained in the linearized solution.
It will be shown in Sec. IV that these are also the dom-
inant harmonics contributing to the nonequilibrium dis-
tortions of equilibrium pair-correlation function. The an-
gular dependence of solution (2.41) is identical with the
Stokes approximation [26]. This result has also been ob-
tained by other authors [7(b),8] who have used different
approaches.

ITII. EXACT RESULTS

A. Symmetry of the dynamic
pair-correlation function

The nonequilibrium potential Vy{g(r;,ry¢) [of Eq.
(2.28)] may possess certain symmetry properties depend-
ing on the system under consideration. In equilibrium
simple fluids, V*(r) has radial symmetry or rotational in-
variance. It is evident that the equilibrium pair-
correlation function has the same symmetry regardless of
the integral equation it satisfies. For nonequilibrium
fluids, the relationship between the symmetry of the
nonequilibrium potential V{; and dynamic pair-
correlation function g(r;,r,;¢) needs to be established. It
will be proven in the following that for an arbitrary rota-
tional symmetry of V¥g(r;,r,¢), the dynamic pair-
correlation function g(r,,r,;¢) has the same rotational
symmetry.

Nonlinear integral equations satisfied by the dynamic
pair-correlation function can be generally written as

g(ry,r)=L[r,nlg,fxe] - (3.1
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L is a function of the variables r; and r, through the
function g(r,,r,) and the nonequilibrium Mayer function
Sne(rry). The time variable is suppressed because it
does not affect the arguments to follow. In principle, Eq.
(3.1) can be rearranged so that g(r,,r,) is expressible in
terms of fyg(r;,r,) functions only. Formally, it reads

g(r,1)=M[r,1,|fng] (3.2)

where M is a functional of fyg, or, equivalently, Vyg.
An example of Eq. (3.2) would be the cluster expansion of
the dynamic pair-correlation function, which is easily
performed by iterating integral equation (3.1) in a fashion
similar to equilibrium fluids. We assume that the none-
quilibrium potential V¥ or fyg is dependent only on the
molecular variable r=r;—r,. This is certainly the case
with the nonequilibrium potential (2.37) for sheared fluids
described in Sec. II B. Suppose the function fyg has an
arbitrary rotational symmetry:

ﬁfNE(l')szE(ﬁl')=fNE(l') ’

where 7R is a rotation operator [27]. The same rotation
operator 7 operates on g(r,r,); we have, from Eq. (3.2),

Rg(r),1,)=g(R1, R1))=M[R1), Ry fg] . (3.4)

(3.3)

We can also define a new function 1 to be related to the
function M in the following way:

MR, R, fnE]

= [dr M| fae(Rr,—1), frp(RE,—1)] . (3.5)

It is permissible to write M in this form because it is
strictly a functional of fyg functions. Since r’ is an in-
tegration variable, the following change of variable is al-
lowed:

(3.6)
(3.7

r'—Rr,
dr'—>d(Rr') .
With this change of variable, Eq. (3.5) then reads
M[R1, Rry| fxg ]
= [d(ROMfyp(R(1,—1), frp(Rir,—1'))] .
(3.8)

Since the Jacobian of rotational transformation is equal
to unity and fyg has rotational invariance [Eq. (3.3)], we
conclude, from Egs. (3.4) and (3.8), that

Rg(r,1)=M[r,,1,|fng]=8(r},1,) , (3.9)

i.e., g(r;,r;) possesses the same rotational symmetry of
the nonequilibrium potential Vg described by the rota-
tion operator 2. To reiterate the requirements for the
validity of the proof, we require the nonequilibrium po-
tential to be a function of the molecular variable r and
that the integral equation (3.1) be expressible as a func-
tional of the nonequilibrium potential only. Both re-
quirements are clearly satisfied in a sheared simple fluid.
The symmetry property of the dynamic pair-correlation
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function will be useful in constraining the number of
solutions needed to solve the integral equation it satisfies
and in explaining various features of dynamic structures
obtained from it.

B. Positivity of the dynamic structure factor

The dynamic structure factor can be shown [15] to be
related to the scattering cross section in the perturbative
approximation, and it is therefore a positive quantity.
This is a constraint that must be satisfied by the solutions
of the integral equation obeyed by the dynamic pair-
correlation function. For a fluid undergoing a steady
plane Couette flow, which is described by the DPCF in-
tegral equation (2.27) or Eq. (2.29) with closure (2.30), the
positivity of its structure factor can be shown. The
steady-state structure factor is given by

St=—3=41—

1—pe(k)
In a plane Couette flow, described in Sec. II B, the none-
quilibrium potential has inversion symmetry. According-
ly, the dynamic pair-correlation function also possesses
inversion symmetry {rom the recult of Sec. III A. The dy-
namic cavity and direct correlation function then have
inversion symmetry:

(3.10)

y(r)=y(—r),
(3.11)
c(r)=c(—r) .
Furthermore, physical requirements dictate that
y(r)z0. (3.12)

It holds trivially when y(r) satisfies the nonequilibrium
Kirkwood integral equation (2.20) or the HNC-type in-
tegral equation [(2.29) with closure (2.31)]. Inequality
(3.12) will hold for integral equation (2.27) or Eq. (2.29)
with closure (2.30) in the domain of fluid densities, as is
the case with the PY integral equation for equilibrium
fluids.

From its definition in Eq. (3.10), the structure factor is
obviously positive when p=0. To prove that it is also
positive when p >0, it is sufficient to prove the inequality

1—pc(k)>0, (3.13)
where

—pe(k)=—p [ dre™7c(r) . (3.14)

The ¢(k) function is an example of a multivariate
characteristic function. Its Taylor expansion in variables
(ky,k,,k3), referring to (x,y,z) components of k, is given
by

(ik )™ (iky) "2 ik 5) ™

—ptk)=—pz(0) 3 myim !

my,my,my

x.umlmzm3 ’ (315)

where the moments are defined by
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ml m2 m3

#mpmz’m3=f:0dxf_wwdy f_:dzx y ‘z
X[elx,y,2)/2(0)] ,
(3.16)

and m;=0,1,2,.... Since c(x,y,z) is even in its argu-
ments [Eq. (3.11)], the moments are nonzero only when
m,, m,, and m; take zero or even-integer values. The
function —pe(k) of Eq. (3.15) can be rewritten in terms
of its cumulants [28]:

(i)™ (k) "k 5)™

mlm,im;!

—pc(k)=—pc(O)exp| 3’

my,my,my

XK, , (3.17)

1Mmym;
where the prime on the summation means that the in-

dices are not all zero simultaneously. The cumulants are
defined by

m m m ml mz a
x =(x™ymmy=9 9" pay|
mymyms m my ms
ok, ' 0k, * 3k, o
(3.18)
where
F(k)=In[E(k)/E(0)] . (3.19)

Since F(k) is even in all of its arguments, only those cu-
mulants with indices having zero or even integers are
nonzero. This means that the exponent of Eq. (3.17) is
real and that the exponential factor itself is, therefore,
positive. To complete the proof, we have to show that
—pc(0) is positive. We use the definition of ¢(0) and clo-
sure (2.30) to obtain a bound for —p¢(0):

—pe(0)=—p [drc(r)=—p [ drfyg(r)y(r)

=p [dr|f\e(Dly(r)>0. (3.20)

The third equality holds because of the restriction that
SN =0 or V=0 [see the discussion following Eq.
(2.37)], the condition y(r)=0, and the fact that the in-
tegrand is not zero everywhere. Equations (3.17) and
(3.20) imply that the bound (3.13) is satisfied; consequent-
ly, the structure factor is positive for p>0. Since this
also holds when p=0, we conclude that S(k) is positive
definite for all physical fluid densities. When the inter-
molecular potential has an attractive tail, say, the
Leonard-Jones potential, the nonequilibrium potential is
no longer repulsive everywhere. In this case, the in-
tegrand — fyg(r)y(r) is not strictly positive everywhere,
but its mean may still be positive. This is almost certain-
ly assured because — fyg is positive in the core region
(r <1) and approaches zero rapidly outside this region,
where the attractive potential becomes effective.

IV. HARMONIC DECOMPOSITION
OF THE DPCF INTEGRAL EQUATION

The DPCF integral equation (2.27) satisfies the none-
quilibrium Ornstein-Zernike relation with closure (2.30).
We find it more efficient to solve the integral equation in
the form of the Ornstein-Zernike relation than the in-
tegral equation itself. We first write the Ornstein-Zernike
relation in k space:

h(k)=e¢(k)+pe(k)h(k) . (4.1)

The function 4 (k) can be expanded in terms of a com-
plete set of spherical harmonics:

% 1
k=3 3
=0 m=

Ry, ()Y, (k) , 4.2)
!

where k is a unit wave-number vector. The (k) function
can be similarly expanded in terms of the spherical har-
monics. On using the harmonic expansions of 4 (k) and
¢(k), we obtain the (/3m;) component of the Ornstein-
Zernike relation from Eq. (4.1) by using standard manip-
ulations of the spherical harmonics:

ﬁ]am3(k)=513m3(k)+p 2 Q(111213;m1m2m3)2"11m1(k)
IIIZ

my,m,

Xﬁ,z,,,Z(k) , (4.3)

where the coefficients

QUi ly;m mymy)= [dk ¥, ,, (Y, , @Y, K

20, +1)20,+1) '

4m(21,+1)

X C(1,1,15;000)
XC(lllzl3;m1m2m3). (44)

The C(l,l,l;;m m,m;) are the Clebsch-Gordan
coefficients [29,23]; they are zero when m;7m;+m,.
As the sheared fluid approaches equilibrium, the shear
rate vanishes, and, consequently, all harmonic com-
ponents tend to zero except for the (00) component, leav-
ing only one equation to solve.

In the plane Couette flow under consideration, the
function A (r) has the following symmetries:

h(x7y)z)=h(—x)—y,—z) 3 (4-5)

h(xyy,Z):h(—x, —y,Z) ) (4-6)

which are also the symmetries of the nonequilibrium po-
tential. These symmetries restrict the harmonic com-
ponents h,, (r) to having only even / and m indices. It
can be readily shown that the same symmetries hold for
% (k) and likewise for ¢(k). Furthermore, since A (k) and
¢(k) are real functions, we have the symmetry relations

B (K)=R }_,,(K)
T (K)=C 1, (K)

4.7)
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for even ! and m; the asterisk denotes complex conjuga-
tion. Let us define a new function

Bty ()= Ry () =T (KO (4.8)
We further define functions with their equilibrium values
subtracted out as follows:

g\ k)=g,,(k)—7 (k)8;08,m0 »

4.9)
¢\ k)=, (k)—¢ O(k)8;48 0 »

where the superscript (0) denotes the equilibrium value of
the function. It is convenient to define two-dimensional
matrices whose elements are

I?((l3m3)(12m2);k)= E Q(111213;m1m2m3)61]m1(k) ’

lysmy
(4.10)
K V((13my)(1ymy);k )
=3 QU l,l;;mimomy)

Il,m]
X ([ ©A(k)+22 ©K)18; 0B m 0T, m (KD} -

(4.11)

Here, (I;m;) is the row index of the matrix, and (/,m,) is
the column index. In terms of the new functions, i.e.,
Egs. (4.9), (4.10), and (4.11), the integral Eq. (4.3) cast in
the matrix form reads
q“)=p[l7—-pﬁ]_lﬁ‘”‘é‘” , 4.12)

where @, K, K, and €'V are matrices whose elements
have been defined. The right-hand side is small at low
shear rates, even at high densities, because ¢ l)(k) is
small. The solution of Eq. (4.1) is now reduced to solving
the matrix equation (4.12). In principle, the matrix equa-
tion is infinite dimensional and therefore must be truncat-
ed in numerical computations. The convergence of the
solution as a result of considering a finite-dimensional
matrix equation can be checked by increasing the dimen-
sion of the matrix equation.

We still have to write the closure (2.30) in terms of the
spherical harmonics. The direct correlation function in
the configuration space can be written as

c(r)=[1+q(r)]fne(r),

where g(r)=h(r)—c(r).
¢(r) are given by

(4.13)

The harmonic components of

Ctymy ()= 121 QU 11135mymymy)
172

mym,

X[1+q(r)]1lmlf12,,,2(r) . (4.14)
where [1+q(r)]’1"'1 denotes the (/;m,;) component of
[1+g(r)]. The function f},,(r) is the radial component
of fne(r), and it is fixed when the nonequilibrium poten-
tial is given. It can be shown that for even [ and m,
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*
—8V &e(r)

f,m(r)=e—V*(”fd’f'e
=7],me"V*")f0]dx Py, (x)I,, »(2)

- 47T8108m0 ,

Y, (P)— V478,080

(4.15)

where the variable z is defined by

z ru( b4

and the coefficient 7,,, by

172
_ 47

Mim = 72

QI+ —m)
47(l +m)!

The ? is a unit vector in the coordinate space; P;, (x) are
the associated Legendre polynomials, and I,,,, are the
modified Bessel functions; 8 Vg denotes the shear part of
the nonequilibrium potential [see Eq. (2.37)].

The functions ¢} (r) are obtained from ¢, (r) of Eq.
(4.14) and the known equilibrium function ¢'%(7). Since
the equation (4.12) to be solved is in k space, we will need
to evaluate ¢, (r) in k space, and similarly for g, (k).
The forward and inverse transforms for the g function are
given by

q,,,,(k)=4m’fo°°dr r2j,(kr)gy, (r) (4.16)

and

(

—i) re
i (F)= ,,lz) S, dke K2y kg (k) 4.17)

2

respectively. These are simply the forward and inverse
Hankel transforms. The transform pairs of other func-
tions are defined in a similar manner.

The scheme of our numerical computation consists of
iterating Eq. (4.12) together with closure (4.14). The
linearized solutions of the functions A4, () and c,,,(r) are
used to initiate the iteration. Their explicit expressions
will be given below. The required transforms to go from
the configuration space to the k space and vice versa are
given by Egs. (4.16) and (4.17). In actual numerical im-
plementations, the transforms are not calculated accord-
ing to these expressions except for the case /=0, where
they are just the Fourier transforms. For the /70 cases,
the Hankel transforms are recast into expressions involv-
ing Fourier transforms, which are more suitable for nu-
merical computations. The details involved are nontrivi-
al, but they are entirely technical in nature. We refer the
reader to Refs. [30] and [23] for the details. The scheme
of computation of the structure of sheared fluids present-
ed here is analogous to the calculation of the structures of
equilibrium molecular fluids [23,31]. Lado’s method [32]
of performing the three-dimensional Fourier transform
was used throughout. It is essentially exact for the nu-
merical parameters we chose. The numerical parameters
are the maximum (reduced) radial distance R ,, and the
grid size AR. According to Lado’s prescription for the
Fourier transform, the corresponding parameters in k
space are Ak=w/R_, and &k, =NAk, where
N=R_.x/AR is the total number of points. We set
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R,.x=10 and AR =0.05 unless indicated otherwise.
This choice ensures that the radial distribution functions
are accurate to three significant figures at all points. For
example, in the hard-core region, g,,(r <0.5)<1073.
Typically, this accuracy required about 500 iterations for
packing fraction =0.45.

The initial values of the radial distribution functions
are obtained from the linearized solutions of A, (r) and
¢, (r). The contributing harmonic components of h(r)
are obtained from Eq. (2.42):

hio'(r)=Vamlgo(n—1],
1/2
L go(r)

(17/)75‘—

8w

(0) ()=
hayy (r) 15

’ (4.18)

RS2, (N=[h5(N]*;

other components (/ >2) are zero. The superscript (0)
denotes initial guessed values, and g,(r) is the equilibri-
um pair-correlation function. The approximate c,,,(7)
are deduced by linearizing closure (4.13) with respect to
the shear rate 7. We obtain

c(r)=Vimey(r),

1/2
8w

15

()= (4.19)

ey (nN=[cH(N]* .

All other components are again zero, and cy(r) is the
equilibrium direct correlation function obtained from the
solution of the PY equation.

V. NUMERICAL RESULTS

The DPCEF integral equation (2.27), together with the
method of solution presented in Sec. IV, allows a sys-
tematic examination of nonequilibrium effects in the
structure of sheared simple fluids. In particular, the tem-
perature, density, and shear-rate dependences of the dis-
tortions of the dynamic pair-correlation function can be
studied. For a given temperature, density, and shear
rate, the relative importance of the harmonic components
can be evaluated. In this work, we study the shear-rate
dependence of the sheared simple fluid structure at a
sufficiently high density, 7=0.45, as is done in NEMD
simulations [4]. The temperature scale is controlled by
Be, which has been set equal to unity for simplicity. The
shear-rate dependence of the dynamic pair-correlation
function has recently been extensively studied by Hanley
et al. [4(a)] using NEMD simulations. However, this
work is limited to two-dimensional sheared simple fluids.
Even so, many of its qualitative features are similar to the
three-dimensional results obtained here. Some results for
three-dimensional simple fluids have also been reported
[4(d)]. The works just cited will be used for comparison
with the results obtained here.

Calculations were performed at three shear rates:
7=0.25, 0.5, and 0.75. At each shear rate, truncation at

I max =4 was imposed, and higher-harmonic components,
=6, 8, 10, etc., were regarded as small. For the shear
rates considered here, this is indeed justified. The har-
monic components g, () were found to be either real
(Re) or imaginary (Im) and never fully complex; the
81 —m(r) components are simply the complex conjugate of
81 (7). Figure 2 shows Re(gy,)/V 41 as a function of the
radial distance r at shear rates 7=0.25 (dash-dotted
curve), 0.5 (dashed curve), and 0.75 (solid curve). The
most noticeable behaviors in Fig. 2 are the distortions at
the maxima and minima of Re(gyy). The magnitudes of
the distortions decrease with increasing distance from the
core region (r <1). Increasing the shear rate appears to
have the effect of decreasing the density, inasmuch as the
amplitudes of the oscillations tend to be reduced at the
extrema. Another prominent feature is the node struc-
ture of the curves at different shear rates. The nodes
occur along Re[gy(7r)]/V4m=1. In the two-dimensional
NEMD simulations of Ref. [4(a)], the scalar component
g, exhibits all the features related to the shear-rate depen-
dence of Re(gy,). As the shear rate increases, the curve
of Re(g,,) tends to move into the hard-core region, but
the effect is not significant. This effect arises because the
core of the nonequilibrium potential Vg [Eq. (2.37)]
softens when 7 is close to 1.

The node structure and the decrease of the amplitudes
of oscillations with increasing distance observed in the
shear-rate dependence of Re(g,) are also seen in the
higher-harmonic components, g;,, for / >0. Figures 3-7
show the curves of g;,, for /=2-4. For / >0 cases, most
significant contributions occur around r=1, but per-
sistent oscillations are seen at least up to » =5. These are
non-negligible long-range effects due to shearing that are
not seen in the linearized approximation (2.42). The

o©

FIG. 2. The dynamic pair-correlation function of a fluid un-
dergoing a steady plane Couette flow is shown. Results were
obtained by solving Eq. (2.27) numerically. The curves corre-
spond to the radial harmonic component Re(gy/V'4m) at
different shear rates: 7=0.25 (dash-dotted curve), 0.50 (dashed
curve), and 0.75 (solid curve). All results are at packing fraction
n=0.45.
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0.3L .

Re[g(20:r)]

FIG. 3. Same as in Fig. 2 but for the radial function
Re[ga(r)].

nonequilibrium distortion of the equilibrium pair-
correlation function due to the Im(g,,) component (in
Fig. 4) is always larger than the Re(g,;) component (in
Fig. 3) at all shear rates. In fact, the first peaks of Im(g,,)
are three times larger in magnitude than the correspond-
ing peaks of Re(—g,). The Re(gy) (Fig. 5) and Im(g,,)
(Fig. 6) components are comparable in magnitude, but
they are about an order of magnitude smaller than the
Im(g,,) component. The first minima of the Re(g,,) com-
ponent (in Fig. 7) are comparable in magnitude to the
corresponding minima of the Re(g,,) component, but the
amplitudes of the other extrema are much smaller in
magnitude. It is interesting that the linearized solution in
Eq. (2.42) already contains Re(gy,) and Im(g,,) com-
ponents. As can be seen in Figs. 2 and 4, these are also
the most significant nonequilibrium distortions in the dy-
namic pair-correlation function. However, in the linear-
ized solution, Re(g ) is independent of shear rate.

The angular dependence of the (total) dynamic pair-

Im[g(22;r)]

FIG. 4. Same as in Fig. 2 but for the radial function
Im[gzz(r)].

0.2

Re[g(40;r)]

—0.1# .

r

FIG. 5. Same as in Fig. 2 but for the radial function
Re[ga(r)].

correlation function is another important feature of
sheared fluids. We recall that the nonequilibrium poten-
tial is rendered anisotropic by the shear-induced term.
As a result, the dynamic pair-correlation function is an-
gle dependent. The nature of this dependence at different
shear rates can be understood by examining the none-
quilibrium potential. We will show the angular depen-
dence of g(r) at a fixed shear rate (¥=0.75) and its
shear-rate dependence at a fixed angle (¢ =37 /4). In Fig.
8, the angular dependence of the dynamic pair-
correlation function g(r,0=m/2,¢) in the shear plane is
shown at a fixed shear rate ¥ =0.75. In terms of its har-
monic components,

g(r,0=m/2,0)=38,(NY,, (6=m/2,¢) .

Lm

(5.1)

The curves at ¢=0 and 7 /2 (solid curves) exactly over-
lap. This is due to the symmetry of the nonequilibrium
potential

0.2 T T T T T L
J
0.1p 4
=

g 0 NN~

=0 \

E i
~0.1] 4
-0.2 1 ! L 1

0 1 2 3 4 5

FIG. 6. Same as in Fig. 2 but for the radial function
Im[g4,(r)].
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0.6

0.31 i

Re[g(44;r)]

FIG. 7. Same as in Fig. 2 but for the radial function
Re[gu(n)].

Vie(r,0=m/2,0=0)=Vig(r,0=1/2,6=1/2) . (5.2)

The curves of g(r,0=m/2,4) are also shown at angles
¢=1/4 (dash-dotted curve) and 37 /4 (dashed curve). In
the former case the dominant peak is positioned just out-
side of the hard core (r > 1), whereas in the latter case it
is positioned just inside of the hard core. These features
can be accounted for by evaluating the nonequilibrium
potential at the angles of interest. The shear-induced
term of the nonequilibrium potential has a sin2¢ angular
dependence in the shear plane (6=m/2). At angles ¢=0
and 7 /2, this term vanishes. Since at ¢ =1/4 it gives a
positive contribution, the nonequilibrium potential be-
comes more repulsive than the =0 or 7/2 case. Conse-
quently, the dominant peak of the curve at ¢ =7 /4 is po-
sitioned outside of the hard core ( > 1), as shown in Fig.
8. At ¢ =3m/4, the shear-induced term gives a negative

3 T T T T
2L
= f
)
1
i !
|
0 Ll ) ! . | . ] L
0 1 2 3 4 5

FIG. 8. The angular dependence of the total dynamic pair-
correlation function g(r,0=m/2,¢) [see Eq. (5.1)] at shear rate
¥=0.75 is shown. The curves shown are at angles ¢ =0 (solid
curve), m/4 (dash-dotted curve), w/2 (solid curve), and 37/4
(dashed curve). All results are at packing fraction 7=0.45.
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contribution, thereby weakening the nonequilibrium po-
tential in the hard core; hence the observed opposite
effect. In addition, the dominant peaks at different angles
have different heights, with the ¢ =37 /4 case higher than
the ¢ =m/4 case, which in turn is higher than the =0
and 7/2 cases. The overall features of these curves are
similar to the results provided by the NEMD simulations
[4(a)] in two dimensions. In this connection, we remark
that the dynamic pair-correlation function for sheared
fluids obtained from Hess’s equation reads [8]

g(r)=fowdae—“go(x——a?y,y,z) ) (5.3)
where 7 is the normalized shear rate and g, is the equi-
librium pair-correlation function. We have evaluated Eq.
(5.3) for y=0.75 at 7=0.45, using the Percus-Yevick
solution for g,(7). The relative positions of the first peak
of g(r,0=m/2,¢) at different values of ¢ are the same as
those we have obtained. However, numerical solutions
show that g(r) is significantly different from zero in the
hard-core region (r <1). Computer simulations [4(a)] do
not show such behavior, however. This difficulty can be
identified by examining the behavior of Eq. (5.3) in the
core region. Furthermore, the first peak of
gr,0=m/2,6=m/4) is higher than g(r,0=m/2,
¢=3m/4), which is not seen in NEMD simulations and
our calculations.

In Fig. 9, the shear-rate dependence of the total pair-
correlation function g(r,0=w/2,¢) at ¢=3w/4 is
shown. The solid curve corresponds to zero shear rate,
and the dash-dotted and dashed curves are for shear rates
7=0.5 and 0.75, respectively. As the shear rate is in-
creased, the repulsiveness of the nonequilibrium potential
is progressively weakened, thereby causing the curves to
move further into the core region. The opposite is true at
¢=m/4, as can be deduced from the nonequilibrium po-
tential. A similar analysis can be made for the dynamic
structure factor.

T
Faper
-

o
T
1

g(r)

0 . . . .
0 1 2 3 4 5

FIG. 9. The shear-rate dependence of the total dynamic
pair-correlation function g(r,0=w/2,¢) at angle ¢=37w/4 is
shown. The cases shown are at shear rates ¥ =0 (solid curve),

0.5 (dash-dotted curve), and 0.75 (dashed curve). All results are
at packing fraction n=0.45.
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The nonequilibrium structure factor in terms of the
spherical harmonics is written as

S(k,0,,0,)=1+p 3 S,,(k)Y,,,(0;,0;) ,

Im

(5.4)

where its radial distribution functions in terms of A, (r)
are

s,,,,(k)=4m’fo°°dr r2j,(kr)hy,(r) . (5.5)
The azimuthal angle ¢, is defined to be in the k, —k,
plane, and 6, refers to the polar angle. Structure factors
in the shear plane (6, =w/2) at angles ¢, =0,7/2 (solid
curve), ¢, =mw/4 (dash-dotted curve), and ¢, =3w/4
(dashed curve) are displayed in Fig. 10. The shear rate is
fixed at =0.75. These curves are equivalent to the
curves of Fig. 8 but in the reciprocal k space. The struc-
ture factors are positive at all angles (¢) and k values
shown. This is a numerical confirmation of the positivity
of the structure factor of sheared simple fluids, proven
analytically in Sec. III B. Some insignificant numerical
noise is seen in the low-wave-number region, however.
As is the case in the configuration space, the structure
factors in the k, —k, plane at angles ¢, =0 and 7/2
(solid) curves are the same. The curve at ¢, =w/4
(dash-dotted curve) is moved to the left of the ¢, =0
curve, to the lower-wave-number region, whereas the
curve at the ¢, =37 /4 (dashed) curve is moved to the
higher-wave-number region. Since the structure factor is
related to the differential cross section, its angular depen-
dence can be explained in terms of the collision mecha-
nism of the molecules. The structure factor at ¢, =m/4
samples molecules interacting at larger distances than
those sampled at ¢, =37 /4 because its main contribution
is in the lower-wave-number region or lower momentum
transfer. The shear-rate dependence of the structure fac-
tors, in the shear plane, at ¢, =37 /4 is shown in Fig. 11.
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FIG. 10. The angular dependence of the structure factor
S(k,0,=m/2,¢;) [see Eq. (5.4)] at shear rate ¥ =0.75 is shown
as a function of the wave number k. The curves shown are at
angles ¢, =0 (solid curve), 7/4 (dash-dotted curve), 7/2 (solid
curve), and 37 /4 (dashed curve). All results are at packing frac-
tion n=0.45.
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FIG. 11. The shear-rate dependence of the structure factor
S(k,0,=m/2,¢,=3m/4) is shown as function of the wave
number k in the shear plane. The cases shown are at shear rates
7=0 (solid curve), 0.5 (dash-dotted curve), and 0.75 (dashed
curve). All results are at packing fraction 7=0.45.

The solid curve refers to ¥ =0, the dash-dotted curve to
7=0.5, and the dashed curve to 7=0.75. Increasing the
shear rate has the effect of moving the extrema of the
structure factor at ¢, =3m/4 toward the higher-wave-
number or frequency region. The opposite effect was
found to be the case for the structure factor at ¢, =7 /4.
In summary, the nonequilibrium potential plays a vital
role in accounting for the observed features of the none-
quilibrium structures, which are qualitatively in accord
with computer simulations. In the present theory, the
nonequilibrium potential determines the nature of none-
quilibrium effects.

VI. PRESSURE AND NORMAL-
STRESS DIFFERENCES

The thermodynamics functions of sheared fluids close
to equilibrium can be constructed from the structural in-
formation obtained from the DPCF integral equation
(2.27). The functions may include the nonequilibrium
pressure tensor, internal energy, compressibility, etc.
Determination of the shear-rate dependence of these
functions will yield information about the macroscopic
state of the sheared fluid as it is gradually removed from
equilibrium. The results for the shear-rate dependence of
the pressure tensor are available from the three-
dimensional NEMD simulation [33], mode-coupling cal-
culations [34], and kinetic theory [35]. We evaluate the
pressure tensor of the sheared fluid in the following.

The pressure tensor for a steady sheared fluid is given
by [36]

2
F=LG_2L 1t 3V (r)
p=50U a2 e

where g(r) is the dynamic pair-correlation function of the
sheared fluid. The dynamic pair-correlation function is
determined by the DPCF integral equation (2.27). In a

(6.1)
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simple shear flow, the relevant quantities are the pressure
D, shear stress ny, and normal-stress difference. For the
soft-sphere potential assumed, they are written in terms
of g;,,(r) as

B ap7)=L1p7)—p(0)]
p p

_ 0 _ goo(r)
_8,Tpf0 drr10 v —go(r)] , (6.2)
B 6 172
T © —
Ep — |27 d 10 6.
ppxy 4pf0 rr %Imlgy(r)], (6.3)
B 6 172
T © —
o PPy = |75 | 8p [ TdrrRe(gn(n)],
(6.4)
[)’ 172
o
;(Pyy—Pzz)=— 5| 12

X fowdr r_lo{gzo(r)+\/'—%Re[g21(r)]} .
(6.5)

Other components of the tensor do not contribute be-
cause the symmetry of the shear flow admits only even-m
values. Since the pressure tensor (6.1) is of rank 2, only
/=0 and 2 components of g;, are involved in Egs.
(6.2)-(6.5). The (primary) normal stress difference in Eq.
(6.4) vanishes because Re(g,,)=0. This is due to the
symmetry of the nonequilibrium potential; it depends
only on the xy and  variables. Accordingly, g' depends
on the same variables. Then, by using the symmetry of
g(z) and Eq. (6.1) to evaluate P,, and Pyy, we see that
these diagonal tensor components are the same. Three-
dimensional NEMD simulations [4(d)] indicate that
Re(gy,)#0. Thus P,,#P,, in general for non-Newtonian
fluids. This defect of the present calculation can be
rectified by using constitutive equations that are more
general than the Maxwell equation. The remaining non-
vanishing quantities are Egs. (6.2), (6.3), and (6.5); Eq.
(6.5) is sometimes called the secondary normal-stress
difference [25].

Associated with the thermodynamic functions in Egs.
(6.2), (6.3), and (6.5), there are three coefficients charac-
terizing the macroscopic state of the sheared fluid [30]:

Ap(7)=4D(7)7?, (6.6)
P, =—27(7)7, (6.7)
P,—P,=—4W(7)7?%. (6.8)

The numerical factors appear on the right-hand side of
these equations because of our definition of ¥. The
coefficients D, 7, and ¥ in general depend on the shear
rate 7, density p, and temperature 3. Since p and [ are
fixed for all shear rates in the sheared system considered,
the coefficients can vary with 7 only. The coefficient
D(¥) is identified as the dilatancy factor due to shear,
and coefficient 7(7) is the non-Newtonian shear viscosity.
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It is instructive to compare the shear-rate dependence of
the coefficients obtained from the linearized solution [Eq.
(2.42)] with those from the numerical solutions of the
DPCEF integral equation (2.27). We recall that the linear-
ized solution retains only the g, g,5, and g, _, harmonic
components. In this approximation, g, is independent
of 7, so D =0 from Eq. (6.2). The g,, or g,_, component
is linear in shear rate 7, and this means 7 is a constant or
it is a Newtonian viscosity. Finally, V¥ is clearly zero be-
cause the g,, component does not contribute to the
linearized solution. Hence, the linearized solution has
the consequence that the fluid is Newtonian.

Figure 12 shows the numerical results for the curves of
the thermodynamic functions versus shear rate, con-
structed from the solutions of the DPCF integral equa-
tion (2.27). The curves of Ap(¥) (solid curve), P,,/4
(dashed curve), and P,, —P,, (dash-dotted curve) versus ¥
are shown on a logy-log;, graph; all curves are scaled by
a factor B/p. The range of the shear rate covers two de-
cades, 107 “<¥y < 1. For ¥>0.5, the radial distribution
functions g,, were calculated to an accuracy of three
significant figures, as was the case with all the calcula-
tions reported in Sec. V. When ¥ <0.5, the thermo-
dynamic functions of Egs. (6.6)—(6.8) acquire small
values, thus requiring them to be computed with greater
accuracy. We increased the accuracy of g;,, to 4-5
significant figures. This was achieved with a finer grid
size, AR =0.025, and greater cutoff radius, R, =15.
The curves of the functions in Egs. (6.6)—(6.8) are linear
on the logy-log;, graph for ¥ <0.3. This implies that
they obey power laws. The quantities Ap and P,, —P,
have the same slope of 2, whereas P,, has a slope of 1;
they obey, respectively, quadratic and linear laws in the
low-shear-rate limit. The exponent for Ap(7), however,
is at variance with the value obtained by NEMD simula-
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FIG. 12. The shear-rate dependence of the pressure

difference Ap(7) (solid curve), shear stress P, /4 (dashed curve),
and normal stress difference P,, —P,, (dash-dotted curve) are
shown; the curves are scaled by a factor B/p. These results
were obtained from Egs. (6.2), (6.3), and (6.5). All results are at
packing fraction 7=0.45.
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tions, which gives 1.5 while our value is 2. Thus, from
expressions (6.6)—(6.8), the coefficients D, ¥, and 7 are
found to be constant functions. The constancy of the
viscosity coefficient with respect to the shear rate again
implies that it is Newtonian.

The limiting power laws for the thermodynamic func-
tions (6.6)—(6.8) can be demonstrated analytically if the
first iterative solution [Eq. (2.40)] is assumed to be a good
approximation in the low-shear-rate limit. We expand
g(r) in terms of the shear-rate parameter 7 to get

g(r,0,8)=V"4mg(r)
X[Yopo—7 A(r,0,8)

+(F /2 AU, 0,6)— -], (6.9
where
A(r,0,0)=(—i/r'*)/2[Y,(6,4)—Y,_,(6,¢)] .
(6.10)

This expansion is then substituted into Eq. (6.1). To ob-
tain Egs. (6.2)-(6.5), the appropriate components of Eq.
(6.1) are selected. We then use the orthogonality of the
spherical harmonics and a property of the Clebsch-
Gordan coefficients; i.e., they vanish for m;¥*m,+m,
[see definition (4.4)]. The leading corrections for Ap(¥)
and P,,—P,, due to nonequilibrium effects are found to
be quadratic in ¥, whereas it is linear for the shear stress
P,,. Hence an approximate analytical analysis of the
relevant stress tensor components reproduces the shear-
rate dependence of the thermodynamic functions in the
low-shear-rate limit, as shown in Fig. 12.

VII. DISCUSSION AND CONCLUSION

The theory of the structure of nonequilibrium dense
fluids presented in this article was developed in parallel
with the theory of equilibrium fluids. This was made pos-
sible by the nonequilibrium canonical distribution func-
tion for nonequilibrium simple fluids. Given the none-
quilibrium canonical distribution function, the procedure
used to derive [9(c)] the integral equations for the dynam-
ic pair-correlation function is analogous to that used in
equilibrium fluids [14,20]. In fact, the parallelism is so
close that the integral equations obtained suggest the gen-
eralization of the Ornstein-Zernike relation for equilibri-
um fluids to nonequilibrium situations. The connection
between the equilibrium and nonequilibrium integral
equations is made through the nonequilibrium potential.
When the nonequilibrium terms in the aforementioned
potential are taken to vanish, the equilibrium integral
equations are recovered identically. The proof of the
equivalence of the symmetry properties of the nonequili-
brium potential and the dynamic pair-correlation func-
tion provides an efficient way of specifying the symmetry
of the dynamic pair-correlation function. It can, there-
fore, be exploited to constrain the number of (indepen-
dent) solutions needed to be solved from the DPCF in-
tegral equation. The positivity of the structure factor of
sheared fluids corresponding to the DPCF integral equa-
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tion (2.27) was shown under general conditions. Numeri-
cal solutions of the DPCF integral equation (2.27)
confirmed the analytic demonstration of the positivity of
structure at all shear rates and angles considered. Sys-
tematic tools were then set up to solve the DPCF integral
equation (2.27). We have used expansions in the spheri-
cal harmonics to reduce the integral equation into single-
variable coupled equations of the radial distribution func-
tions in the reciprocal space. The adequacy of truncating
the expansion at /,, =4 was tested numerically for all
shear rates considered, 7 < 1.

A significant limitation in the calculations ought to be
noted. Use was made of the Maxwell equation for shear
stress, which, by definition, is valid only for fluids near
equilibrium, hence the constraint on the range of the
shear rate, 7 <1. This limitation can be easily removed
by using a more adequate equation for stress tensor [9(b)]
that is valid for fluids far from equilibrium. The dense-
fluid kinetic equation, on which the present work is
based, has provided constitutive equations that can ade-
quately describe nonlinear fluid properties, such as non-
Newtonian viscosities of complex fluids. These constitu-
tive equations can be applied to study nonequilibrium
structures of fluids far from equilibrium. Extensions can
also be made by considering a more-accurate form of
X'®. This would require more elaborate solutions from
the kinetic equation. Another important extension of the
calculations presented in this paper is the inclusion of the
heat-flux term in the nonequilibrium potential. It will en-
able us to treat nonuniformity in temperature that may
arise from the presence of heat fluxes at boundaries and
the unavoidable thermoviscous effect in a sheared system.
The scope of the theory presented in Sec. II is sufficiently
general to encompass such extensions.

The N-body distribution function of the modified mo-
ment method has a form similar to that of the maximum
entropy method [19]. However, the macroscopic fluxes
X@ are determined in a different way. In the present
theory, they are determined by an underlying kinetic
equation to any degree of accuracy desired, in such a
manner that they are consistent with the exponential
form of the distribution function. In this sense, the dis-
tribution function of the modified moment method is, in
principle, capable of describing systems that are far from
equilibrium. The velocity distribution function of the
maximum entropy method for a dilute gas has been com-
pared with molecular-dynamics simulations [37]. This
aspect of simulation data may also be examined by using
the modified moment method, but the focus of the
present work has been the correlation of particles in the
configuration space.

The radial harmonic components of the dynamic pair-
correlation function obtained from the DPCF integral
equation enabled us to evaluate the pressure tensor com-
ponents of the sheared fluid. From these tensor com-
ponents, the shear-rate dependences of the pressure-
related thermodynamic functions were deduced. They
were found to obey integral power laws in the low-shear-
rate limit. The theory developed in this paper provides a
relatively economic alternative, albeit an approximate
one, to numerical-simulation methods, and therefore may
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be used as a qualitative guide to more-elaborate numeri-
cal methods. Its more practical utility probably lies in
the direction of using the DPCF integral equation for in-
vestigations of quantities less accessible to numerical
simulations, such as dynamics of phase transitions. The
integral equation has the potential of being as useful as its
equilibrium counterpart, the Percus-Yevick equation.
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